Draw stars Prolog up to N: draws one line too less - prolog

The predicate draw/2 with argument N and M should draw up to M stars and should increase N until N > 5. Example: draw(3,5) =>
***
****
*****
My problem is that my code only draw up to four stars, so:
***
****
Why does that happen when there is a M1 =< N condition in draw/2?
line(0,_) :- nl.
line(X, Symbol) :-
write(Symbol),
Line is X - 1,
line(Line, Symbol).
% b)
draw(N, N).
draw(M, N) :-
line(M, '*'),
M1 is M + 1,
M1 =< N,
draw(M1, N).

The problem is that the first clause of draw/2, draw(N, N). succeeds before you even get to the condition in the second clause.
But it would be much easier to do this whole exercise using between/3 since it counts the prolog way (both lower and upper limit included). Here are some examples:
?- between(3, 5, X).
X = 3 ;
X = 4 ;
X = 5.
?- forall(between(3, 5, X), format("~d~n", [X])).
3
4
5
true.
?- forall(between(3, 5, X), ( forall(between(1, X, _), write(*) ), nl )).
***
****
*****
true.
If you don't like one-liners you can define:
draw(N, M) :-
forall(between(N, M, X),
line(X)).
line(X) :-
forall(between(1, X, _),
write(*)),
nl.
You should most definitely avoid counting on your own. Because there are two hard things in programming and the third one is off-by-one errors.
With SWI-Prolog you can also use a format hack to print the necessary number of stars directly:
?- forall(between(3, 7, X), format("~`*t~*|~n", [X])).
***
****
*****
******
*******
true.
It is somehow documented why this works.
Note: the forall/2 predicate is defined as \+ ( Cond, \+ Action ). So you could rewrite the last without forall, directly as:
?- \+ ( between(3, 5, X), \+ format("~`*t~*|~n", [X]) ).
***
****
*****
true.
This itself could be re-written as a "failure loop", but this has some downsides.
?- ( between(3, 5, X), % generate solutions for X = 3 ; 4 ; 5
format("~`*t~*|~n", [X]), % side effect
fail % fail to backtrack to the next solution
; true % when there are no more solutions, succeed
).
***
****
*****
true.
For example, a failure of the side-effect in a fail driven loop causes it to fail (see the forall/2 docs). Compare:
?- ( between(3, 5, X), fail, fail ; true ).
true.
?- forall(between(3, 5, X), fail).
false.
?- \+ ( between(3, 5, X), \+ fail ).
false.

If you want to count up, you might want to take a look at the definition of a library predicate that has similar functionality: numlist/3.
If you take only the logic in numlist_/3, drop the last argument and instead directly use the value to print a line, you get:
draw(U, U) :-
!,
line(U).
draw(L, U) :-
line(L),
L2 is L+1,
draw(L2, U).
You will need to add the argument checking however. You could do it like this:
line(0) :-
!,
nl.
line(X) :-
succ(X0, X),
write(*),
line(X0).
draw(L, U) :-
L =:= U,
!,
line(U).
draw(L, U) :-
L < U,
line(L),
L2 is L+1,
draw(L2, U).

Related

Writing a prolog star/1 program

I was tasked to write up a program that ,given a list of N integers as argument, prints N rows, each row
with X stars, where X in an element in the list. And I was given this example:
?-printstars([4,3,4,2]).
****
***
****
**
Attempts to make it have not went well.
foreach([]).
foreach([N|R]) :- stars(N), foreach(R).
Solutions have only produced:
?- stars(4).
ERROR: Unknown procedure: stars/1 (DWIM could not correct goal)
Using a recursion is a good idea here:
printstars([]).
printstars([0 | R]) :- nl, printstars(R), !.
printstars([A | B]) :- write("*"), K is A - 1, printstars([K | B]).
You had half of the predicates right. You just needed to define stars/1.
foreach([]).
foreach([N|R]) :- stars(N), foreach(R).
stars(0) :- nl.
stars(N) :-
N > 0,
write("*"),
N2 is N - 1,
stars(N2).
?- foreach([2,3,2,1]).
**
***
**
*
true
Since printing is a side effect, it would be cleaner if you used forall/2, like this:
print_stars(L) :-
forall(member(X, L), stars(X)).
stars(X) :-
forall(between(1, X, _), write(*)),
nl.
In addition, in SWI-Prolog, you can use the following formatting specifier to print a sequence of N stars:
format("~`*t~*+", [N]).
With this you can get rid of the second loop:
print_stars(L) :-
forall(member(X, L), format("~`*t~*+~n", [X]).

Can single sided unification improve error handling?

Inspired by this question, I am trying to harden error
handling of reverse/2. So I tried this implementation:
reverse(X, Y) :- reverse(X, [], Y).
reverse(X, _, _) :- var(X), throw(error(instantiation_error,_)).
reverse([], X, R) :- !, R = X.
reverse([X|Y], Z, R) :- !, reverse(Y, [X|Z], R).
reverse(X, _, _) :- throw(error(type_error(list,X),_)).
Everything works fine, until I try reverse/2 as a generator:
?- reverse([1,2,3],X).
X = [3, 2, 1].
?- reverse(2,X).
ERROR: Type error: `list' expected, found `2' (an integer)
?- reverse(X,Y).
ERROR: Arguments are not sufficiently instantiated
Can single sided unification change the situation, some typical solution based on single sided unification so that the generator reverse(X,Y) would still work? Single sided unification is available in SWI-Prolog 8.3.19.
I am afraid I cannot present a single sided unification solution. Its rather that normal unification in the form of (\=)/2 could be useful. I hardly use (\=)/2 ever. The solution is inspired by Dijkstra guards if-fi, link to paper at end of this post:
if
Cond1 -> ActionList1
..
Condn -> ActionList2
fi
The if-fi aborts if none of the conditions Cond1,..,Condn is satisfied. So we
simply use a conjunction of the negation of the conditions:
reverse(X, Y) :- reverse(X, [], Y).
reverse(X, _, _) :- X \= [], X \= [_|_], throw(error(type_error(list,X),_)).
reverse([], X, R) :- R = X.
reverse([X|Y], Z, R) :- reverse(Y, [X|Z], R).
Seems to work:
?- reverse([1,2,3],X).
X = [3, 2, 1].
?- reverse(2,X).
ERROR: Type error: `list' expected, found `2' (an integer)
?- reverse(X,Y).
X = Y, Y = [] ;
X = Y, Y = [_1778] ;
X = [_1778, _2648],
Y = [_2648, _1778] ;
Etc..
So single sided unification might be the wrong approach? I dont know. The above solution incures an overhead, unless some indexing might optimize away (\=)/2. Could even work in connection with attributed variables.
Nondeterminacy and Formal Derivation of Programs
Edsger W. Dijkstra - Burroughs Corporation
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.97&rep=rep1&type=pdf
This seems to work (a straightforward translation to use => of reverse/2 in library(lists)):
reverse(List, Reversed) =>
reverse(List, [], Reversed, Reversed).
reverse([], Ys, Reversed, Tail) =>
Reversed = Ys,
Tail = [].
reverse([X|Xs], Rs, Reversed, Tail) =>
Tail = [_|Bound],
reverse(Xs, [X|Rs], Reversed, Bound).

how can simulate nested loop in prolog?

how can i simulate this code in Prolog?
// L = an existing list ;
// function foo(var X, var Y)
result = new List();
for(int i=0;i<L.length;i++)
for(int j=0;j<L.length;j++){
result.add(foo(L.get(i), L.get(j));
}
nested loops are basically joins between sequences, and most of lists processing in Prolog is best expressed without indexing:
?- L=[a,b,c], findall(foo(X,Y), (member(X,L),member(Y,L)), R).
L = [a, b, c],
R = [foo(a, a), foo(a, b), foo(a, c), foo(b, a), foo(b, b), foo(b, c), foo(c, a), foo(c, b), foo(..., ...)].
edit
Sometime integers allow to capture the meaning in a simple way. As an example, my solution for one of the easier of Prolog context quizzes.
icecream(N) :-
loop(N, top(N)),
left, loop(N+1, center), nl,
loop(N+1, bottom(N)).
:- meta_predicate loop(+, 1).
loop(XH, PR) :-
H is XH,
forall(between(1, H, I), call(PR, I)).
top(N, I) :-
left, spc(N-I+1), pop,
( I > 1
-> pop,
spc(2*(I-2)),
pcl
; true
),
pcl, nl.
bottom(N, I) :-
left, spc(I-1), put(\), spc(2*(N-I+1)), put(/), nl.
center(_) :- put(/), put(\).
left :- spc(4).
pop :- put(0'().
pcl :- put(0')).
spc(Ex) :- V is Ex, forall(between(1, V, _), put(0' )).
Running in SWI-Prolog:
?- icecream(3).
()
(())
(( ))
/\/\/\/\
\ /
\ /
\ /
\/
true.
?- forall(loop(3,[X]>>loop(2,{X}/[Y]>>writeln(X-Y))),true).
1-1
1-2
2-1
2-2
3-1
3-2
true.
You can define a forto/4 meta-predicate easily. An example, taken from the Logtalk library loop object:
:- meta_predicate(forto(*, *, *, 0)).
forto(Count, FirstExp, LastExp, Goal) :-
First is FirstExp,
Last is LastExp,
forto_aux(Count, First, Last, 1, Goal).
:- meta_predicate(forto_aux(*, *, *, *, 0)).
forto_aux(Count, First, Last, Increment, Goal) :-
( First =< Last ->
\+ \+ (Count = First, call(Goal)),
Next is First + Increment,
forto_aux(Count, Next, Last, Increment, Goal)
; true
).
Example goal:
?- loop::forto(I, 1, 2, loop::forto(J, 1, 3, (write(I-J), nl))).
1-1
1-2
1-3
2-1
2-2
2-3
true.
Some Prolog compilers also provide built-in or library support for "logical loops" with good expressive power. Examples are (in alphabetic order) B-Prolog, ECLiPSe, and SICStus Prolog. Check the documentation of those systems for details. If you need a portable solution across most Prolog systems, check Logtalk's library documentation. Or simply take the above examples and define your own loop meta-predicates.
you can use this predicate using SICStus-prolog for looping variables I,J until N and get all of them inside fact foo/2 mentioned below successively ;
Code
loop(N) :- for(I,0,N),param(N) do
for(J,0,N),param(I) do
write(foo(I,J)),nl.
Result
| ?- loop(2).
foo(0,0)
foo(0,1)
foo(0,2)
foo(1,0)
foo(1,1)
foo(1,2)
foo(2,0)
foo(2,1)
foo(2,2)
yes

PROLOG: Determining if elements in list are equal if order does not matter

I'm trying to figure out a way to check if two lists are equal regardless of their order of elements.
My first attempt was:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
However, this only checks if all elements of the list on the left exist in the list on the right; meaning areq([1,2,3],[1,2,3,4]) => true. At this point, I need to find a way to be able to test thing in a bi-directional sense. My second attempt was the following:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L), append([H1], T1, U), areq(U, L).
Where I would try to rebuild the lest on the left and swap lists in the end; but this failed miserably.
My sense of recursion is extremely poor and simply don't know how to improve it, especially with Prolog. Any hints or suggestions would be appreciated at this point.
As a starting point, let's take the second implementation of equal_elements/2 by #CapelliC:
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
Above implementation leaves useless choicepoints for queries like this one:
?- equal_elements([1,2,3],[3,2,1]).
true ; % succeeds, but leaves choicepoint
false.
What could we do? We could fix the efficiency issue by using
selectchk/3 instead of
select/3, but by doing so we would lose logical-purity! Can we do better?
We can!
Introducing selectd/3, a logically pure predicate that combines the determinism of selectchk/3 and the purity of select/3. selectd/3 is based on
if_/3 and (=)/3:
selectd(E,[A|As],Bs1) :-
if_(A = E, As = Bs1,
(Bs1 = [A|Bs], selectd(E,As,Bs))).
selectd/3 can be used a drop-in replacement for select/3, so putting it to use is easy!
equal_elementsB([], []).
equal_elementsB([X|Xs], Ys) :-
selectd(X, Ys, Zs),
equal_elementsB(Xs, Zs).
Let's see it in action!
?- equal_elementsB([1,2,3],[3,2,1]).
true. % succeeds deterministically
?- equal_elementsB([1,2,3],[A,B,C]), C=3,B=2,A=1.
A = 1, B = 2, C = 3 ; % still logically pure
false.
Edit 2015-05-14
The OP wasn't specific if the predicate
should enforce that items occur on both sides with
the same multiplicities.
equal_elementsB/2 does it like that, as shown by these two queries:
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2,3]).
false.
If we wanted the second query to succeed, we could relax the definition in a logically pure way by using meta-predicate
tfilter/3 and
reified inequality dif/3:
equal_elementsC([],[]).
equal_elementsC([X|Xs],Ys2) :-
selectd(X,Ys2,Ys1),
tfilter(dif(X),Ys1,Ys0),
tfilter(dif(X),Xs ,Xs0),
equal_elementsC(Xs0,Ys0).
Let's run two queries like the ones above, this time using equal_elementsC/2:
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2,3]).
true.
Edit 2015-05-17
As it is, equal_elementsB/2 does not universally terminate in cases like the following:
?- equal_elementsB([],Xs), false. % terminates universally
false.
?- equal_elementsB([_],Xs), false. % gives a single answer, but ...
%%% wait forever % ... does not terminate universally
If we flip the first and second argument, however, we get termination!
?- equal_elementsB(Xs,[]), false. % terminates universally
false.
?- equal_elementsB(Xs,[_]), false. % terminates universally
false.
Inspired by an answer given by #AmiTavory, we can improve the implementation of equal_elementsB/2 by "sharpening" the solution set like so:
equal_elementsBB(Xs,Ys) :-
same_length(Xs,Ys),
equal_elementsB(Xs,Ys).
To check if non-termination is gone, we put queries using both predicates head to head:
?- equal_elementsB([_],Xs), false.
%%% wait forever % does not terminate universally
?- equal_elementsBB([_],Xs), false.
false. % terminates universally
Note that the same "trick" does not work with equal_elementsC/2,
because of the size of solution set is infinite (for all but the most trivial instances of interest).
A simple solution using the sort/2 ISO standard built-in predicate, assuming that neither list contains duplicated elements:
equal_elements(List1, List2) :-
sort(List1, Sorted1),
sort(List2, Sorted2),
Sorted1 == Sorted2.
Some sample queries:
| ?- equal_elements([1,2,3],[1,2,3,4]).
no
| ?- equal_elements([1,2,3],[3,1,2]).
yes
| ?- equal_elements([a(X),a(Y),a(Z)],[a(1),a(2),a(3)]).
no
| ?- equal_elements([a(X),a(Y),a(Z)],[a(Z),a(X),a(Y)]).
yes
In Prolog you often can do exactly what you say
areq([],_).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
bi_areq(L1, L2) :- areq(L1, L2), areq(L2, L1).
Rename if necessary.
a compact form:
member_(Ys, X) :- member(X, Ys).
equal_elements(Xs, Xs) :- maplist(member_(Ys), Xs).
but, using member/2 seems inefficient, and leave space to ambiguity about duplicates (on both sides). Instead, I would use select/3
?- [user].
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
^D here
1 ?- equal_elements(X, [1,2,3]).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
2 ?- equal_elements([1,2,3,3], [1,2,3]).
false.
or, better,
equal_elements(Xs, Ys) :- permutation(Xs, Ys).
The other answers are all elegant (way above my own Prolog level), but it struck me that the question stated
efficient for the regular uses.
The accepted answer is O(max(|A| log(|A|), |B|log(|B|)), irrespective of whether the lists are equal (up to permutation) or not.
At the very least, it would pay to check the lengths before bothering to sort, which would decrease the runtime to something linear in the lengths of the lists in the case where they are not of equal length.
Expanding this, it is not difficult to modify the solution so that its runtime is effectively linear in the general case where the lists are not equal (up to permutation), using random digests.
Suppose we define
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
This is the Prolog version of the mathematical function Prod_i h(a_i) | p, where h is the hash, and p is a prime. It effectively maps each list to a random (in the hashing sense) value in the range 0, ...., p - 1 (in the above, p is the large prime 1610612741).
We can now check if two lists have the same digest:
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
If two lists have different digests, they cannot be equal. If two lists have the same digest, then there is a tiny chance that they are unequal, but this still needs to be checked. For this case I shamelessly stole Paulo Moura's excellent answer.
The final code is this:
equal_elements(A, B) :-
same_digests(A, B),
sort(A, SortedA),
sort(B, SortedB),
SortedA == SortedB.
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
One possibility, inspired on qsort:
split(_,[],[],[],[]) :- !.
split(X,[H|Q],S,E,G) :-
compare(R,X,H),
split(R,X,[H|Q],S,E,G).
split(<,X,[H|Q],[H|S],E,G) :-
split(X,Q,S,E,G).
split(=,X,[X|Q],S,[X|E],G) :-
split(X,Q,S,E,G).
split(>,X,[H|Q],S,E,[H|G]) :-
split(X,Q,S,E,G).
cmp([],[]).
cmp([H|Q],L2) :-
split(H,Q,S1,E1,G1),
split(H,L2,S2,[H|E1],G2),
cmp(S1,S2),
cmp(G1,G2).
A simple solution using cut.
areq(A,A):-!.
areq([A|B],[C|D]):-areq(A,C,D,E),areq(B,E).
areq(A,A,B,B):-!.
areq(A,B,[C|D],[B|E]):-areq(A,C,D,E).
Some sample queries:
?- areq([],[]).
true.
?- areq([1],[]).
false.
?- areq([],[1]).
false.
?- areq([1,2,3],[3,2,1]).
true.
?- areq([1,1,2,2],[2,1,2,1]).
true.

Finding the max in a list - Prolog

I was just introduced to Prolog and am trying to write a predicate that finds the Max value of a list of integers. I need to write one that compares from the beginning and the other that compares from the end. So far, I have:
max2([],R).
max2([X|Xs], R):- X > R, max2(Xs, X).
max2([X|Xs], R):- X <= R, max2(Xs, R).
I realize that R hasn't been initiated yet, so it's unable to make the comparison. Do i need 3 arguments in order to complete this?
my_max([], R, R). %end
my_max([X|Xs], WK, R):- X > WK, my_max(Xs, X, R). %WK is Carry about
my_max([X|Xs], WK, R):- X =< WK, my_max(Xs, WK, R).
my_max([X|Xs], R):- my_max(Xs, X, R). %start
other way
%max of list
max_l([X],X) :- !, true.
%max_l([X],X). %unuse cut
%max_l([X],X):- false.
max_l([X|Xs], M):- max_l(Xs, M), M >= X.
max_l([X|Xs], X):- max_l(Xs, M), X > M.
Ignoring the homework constraints about starting from the beginning or the end, the proper way to implement a predicate that gets the numeric maximum is as follows:
list_max([P|T], O) :- list_max(T, P, O).
list_max([], P, P).
list_max([H|T], P, O) :-
( H > P
-> list_max(T, H, O)
; list_max(T, P, O)).
A very simple approach (which starts from the beginning) is the following:
maxlist([],0).
maxlist([Head|Tail],Max) :-
maxlist(Tail,TailMax),
Head > TailMax,
Max is Head.
maxlist([Head|Tail],Max) :-
maxlist(Tail,TailMax),
Head =< TailMax,
Max is TailMax.
As you said, you must have the variables instantiated if you want to evaluate an arithmetic expression. To solve this, first you have to make the recursive call, and then you compare.
Hope it helps!
As an alternative to BLUEPIXY' answer, SWI-Prolog has a builtin predicate, max_list/2, that does the search for you. You could also consider a slower method, IMO useful to gain familiarity with more builtins and nondeterminism (and then backtracking):
slow_max(L, Max) :-
select(Max, L, Rest), \+ (member(E, Rest), E > Max).
yields
2 ?- slow_max([1,2,3,4,5,6,10,7,8],X).
X = 10 ;
false.
3 ?- slow_max([1,2,10,3,4,5,6,10,7,8],X).
X = 10 ;
X = 10 ;
false.
edit
Note you don't strictly need three arguments, but just to have properly instantiated variables to carry out the comparison. Then you can 'reverse' the flow of values:
max2([R], R).
max2([X|Xs], R):- max2(Xs, T), (X > T -> R = X ; R = T).
again, this is slower than the three arguments loops, suggested in other answers, because it will defeat 'tail recursion optimization'. Also, it does just find one of the maxima:
2 ?- max2([1,2,3,10,5,10,6],X).
X = 10 ;
false.
Here's how to do it with lambda expressions and meta-predicate foldl/4, and, optionally, clpfd:
:- use_module([library(lambda),library(apply),library(clpfd)]).
numbers_max([Z|Zs],Max) :- foldl(\X^S^M^(M is max(X,S)),Zs,Z,Max).
fdvars_max( [Z|Zs],Max) :- foldl(\X^S^M^(M #= max(X,S)),Zs,Z,Max).
Let's run some queries!
?- numbers_max([1,4,2,3],M). % integers: all are distinct
M = 4. % succeeds deterministically
?- fdvars_max( [1,4,2,3],M).
M = 4. % succeeds deterministically
?- numbers_max([1,4,2,3,4],M). % integers: M occurs twice
M = 4. % succeeds deterministically
?- fdvars_max( [1,4,2,3,4],M).
M = 4. % succeeds deterministically
What if the list is empty?
?- numbers_max([],M).
false.
?- fdvars_max( [],M).
false.
At last, some queries showing differences between numbers_max/2 and fdvars_max/2:
?- numbers_max([1,2,3,10.0],M). % ints + float
M = 10.0.
?- fdvars_max( [1,2,3,10.0],M). % ints + float
ERROR: Domain error: `clpfd_expression' expected, found `10.0'
?- numbers_max([A,B,C],M). % more general use
ERROR: is/2: Arguments are not sufficiently instantiated
?- fdvars_max( [A,B,C],M).
M#>=_X, M#>=C, M#=max(C,_X), _X#>=A, _X#>=B, _X#=max(B,A). % residual goals
list_max([L|Ls], Max) :- foldl(num_num_max, Ls, L, Max).
num_num_max(X, Y, Max) :- Max is max(X, Y).
%Query will be
?-list_max([4,12,5,3,8,90,10,11],Max).
Max=90
Right now I was working with recursion in Prolog, so if it is useful for someone I will leave 'my two cents' solving it in the two ways that I have thought:
% Start
start :- max_trad([2, 4, 6, 0, 5], MaxNumber1),
max_tail([2, 4, 6, 0, 5], 0, MaxNumber2),
show_results(MaxNumber1, MaxNumber2).
% Traditional Recursion (Method 1)
max_trad([Head|Tail], Max) :- max_trad(Tail, Value), Head > Value, Max is Head.
max_trad([Head|Tail], Max) :- max_trad(Tail, Value), Head =< Value, Max is Value.
max_trad([], 0).
% Tail Recursion (Method 2)
max_tail([], PartialMax, PartialMax).
max_tail([Head|Tail], PartialMax, FinalMax) :- Head > PartialMax, max_tail(Tail, Head, FinalMax).
max_tail([_|Tail], PartialMax, FinalMax) :- max_tail(Tail, PartialMax, FinalMax).
% Show both of the results
show_results(MaxNumber1, MaxNumber2) :-
write("The max value (obtained with traditional recursion) is: "), writeln(MaxNumber1),
write("The max value (obtained with tail recursion) is: "), writeln(MaxNumber2).
The output of the above code is:
Both methods are similar, the difference is that in the second an auxiliary variable is used in the recursion to pass values forward, while in the first method, although we have one less variable, we are filling the Stack with instructions to be executed later, so if it were an exaggeratedly large list, the second method is appropriate.
maximum_no([],Max):-
write("Maximum No From the List is:: ",Max).
maximum_no([H|T],Max):-
H>Max,
N = H,
maximum_no(T,N).
maximum_no(L,Max):-
maximum_no(L,Max).
The maximum number in a list in Prolog ?
max([],A):-print(A),!.
max([Head | Tail] , A):-A =< Head ,A1 is Head , max(Tail,A1) ; max(Tail,A).
max(L,M):-
member(M,L),
findall(X,(member(X,L),X>M),NL),
length(NL,0).

Resources