How does GFortran handle stride=1 arrays? - performance

When arrays have stride equal to 1 (a very common case), it seems that code compiled for the generic case (any nonzero stride) will often be suboptimal.
On the other hand, creating multiple versions of compiled functions and subroutines when some of the arguments are stride=1 scales exponentially with the number of arguments that are arrays.
What is the approach taken by GFortran here?

Related

How to efficiently vectorize polynomial computation with condition (roofline model)

I want to apply a polynomial of small degree (2-5) to a vector of whose length can be between 50 and 3000, and do this as efficiently as possible.
Example: For example, we can take the function: (1+x^2)^3, when x>3 and 0 when x<=3.
Such a function would be executed 100k times for vectors of double elements. The size of each vector can be anything between 50 and 3000.
One idea would be to use Eigen:
Eigen::ArrayXd v;
then simply apply a functor:
v.unaryExpr([&](double x) {return x>3 ? std::pow((1+x*x), 3.00) : 0.00;});
Trying with both GCC 9 and GCC 10, I saw that this loop is not being vectorized. I did vectorize it manually, only to see that the gain is much smaller than I expected (1.5x). I also replaced the conditioning with logical AND instructions, basically executing both branches and zeroing out the result when x<=3. I presume that the gain came mostly from the lack of branch misprediction.
Some considerations
There are multiple factors at play. First of all, there are RAW dependencies in my code (using intrinsics). I am not sure how this affects the computation. I wrote my code with AVX2 so I was expecting a 4x gain. I presume that this plays a role, but I cannot be sure, as the CPU has out-of-order-processing. Another problem is that I am unsure if the performance of the loop I am trying to write is bound by the memory bandwidth.
Question
How can I determine if either the memory bandwidth or pipeline hazards are affecting the implementation of this loop? Where can I learn techniques to better vectorize this loop? Are there good tools for this in Eigenr MSVC or Linux? I am using an AMD CPU as opposed to Intel.
You can fix the GCC missed optimization with -fno-trapping-math, which should really be the default because -ftrapping-math doesn't even fully work. It auto-vectorizes just fine with that option: https://godbolt.org/z/zfKjjq.
#include <stdlib.h>
void foo(double *arr, size_t n) {
for (size_t i=0 ; i<n ; i++){
double &tmp = arr[i];
double sqrp1 = 1.0 + tmp*tmp;
tmp = tmp>3 ? sqrp1*sqrp1*sqrp1 : 0;
}
}
It's avoiding the multiplies in one side of the ternary because they could raise FP exceptions that C++ abstract machine wouldn't.
You'd hope that writing it with the cubing outside a ternary should let GCC auto-vectorize, because none of the FP math operations are conditional in the source. But it doesn't actually help: https://godbolt.org/z/c7Ms9G GCC's default -ftrapping-math still decides to branch on the input to avoid all the FP computation, potentially not raising an overflow (to infinity) exception that the C++ abstract machine would have raised. Or invalid if the input was NaN. This is the kind of thing I meant about -ftrapping-math not working. (related: How to force GCC to assume that a floating-point expression is non-negative?)
Clang also has no problem: https://godbolt.org/z/KvM9fh
I'd suggest using clang -O3 -march=native -ffp-contract=fast to get FMAs across statements when FMA is available.
(In this case, -ffp-contract=on is sufficient to contract 1.0 + tmp*tmp within that one expression, but not across statements if you need to avoid that for Kahan summation for example. The clang default is apparently -ffp-contract=off, giving separate mulpd and addpd)
Of course you'll want to avoid std::pow with a small integer exponent. Compilers might not optimize that into just 2 multiplies and instead call a full pow function.

OpenACC Scheduling

Say that I have a construct like this:
for(int i=0;i<5000;i++){
const int upper_bound = f(i);
#pragma acc parallel loop
for(int j=0;j<upper_bound;j++){
//Do work...
}
}
Where f is a monotonically-decreasing function of i.
Since num_gangs, num_workers, and vector_length are not set, OpenACC chooses what it thinks is an appropriate scheduling.
But does it choose such a scheduling afresh each time it encounters the pragma, or only once the first time the pragma is encountered?
Looking at the output of PGI_ACC_TIME suggests that scheduling is only performed once.
The PGI compiler will choose how to decompose the work at compile-time, but will generally determine the number of gangs at runtime. Gangs are inherently scalable parallelism, so the decision on how many can be deferred until runtime. The vector length and number of workers affects how the underlying kernel gets generated, so they're generally selected at compile-time to maximize optimization opportunities. With loops like these, where the bounds aren't really known at compile-time, the compiler has to generate some extra code in the kernel to ensure exactly the correct number of iterations are performed.
According to OpenAcc 2.6 specification[1] Line 1357 and 1358:
A loop associated with a loop construct that does not have a seq clause must be written such that the loop iteration count is computable when entering the loop construct.
Which seems to be the case, so your code is valid.
However, note it is implementation defined how to distribute the work among the gangs and workers, and it may be that the PGI compiler is simply doing some simple partitioning of the iterations.
You could manually define values of gang/workers using num_gangs and num_workers, and the integer expression passed to those clauses can depend on the value of your function (See 2.5.7 and 2.5.8 on OpenACC specification).
[1] https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf

CUDA implementation for arbitrary precision arithmetics

I have to multiply two very large (~ 2000 X 2000) dense matrices whose entries are floats with arbitrary precision (I am using GMP and the precision is currently set to 600). I was wondering if there is any CUDA library that supports arbitrary precision arithmetics? The only library that I have found is called CAMPARY however it seems to be missing some references to some of the used functions.
The other solution that I was thinking about was implementing a version of the Karatsuba algorithm for multiplying matrices with arbitrary precision entries. The end step of the algorithm would just be multiplying matrices of doubles, which could be done very efficiently using cuBLAS. Is there any similar implementation already out there?
Since nobody has suggested such a library so far, let's assume that one doesn't exist.
You could always implement the naive implementation:
One grid thread for each pair of coordinates in the output matrix.
Each thread performs an inner product of a row and a column in the input matrices.
Individual element operations will use the code taken from the GMP (hopefully not much more than copy-and-paste).
But you can also do better than this - just like you can do better for regular-float matrix multiplication. Here's my idea (likely not the best of course):
Consider the worked example of matrix multiplication using shared memory in the CUDA C Programming Guide. It suggests putting small submatrices in shared memory. You can still do this - but you need to be careful with shared memory sizes (they're small...):
A typical GPU today has 64 KB shared memory usable per grid block (or more)
They take 16 x 16 submatrix.
Times 2 (for the two multiplicands)
Times ceil(801/8) (assuming the GMP representation uses 600 bits from the mantissa, one bit for the sign and 200 bits from the exponent)
So 512 * 101 < 64 KB !
That means you can probably just use the code in their worked example as-is, again replacing the float multiplication and addition with code from GMP.
You may then want to consider something like parallelizing the GMP code itself, i.e. using multiple threads to work together on single pairs of 600-bit-precision numbers. That would likely help your shared memory reading pattern. Alternatively, you could interleave the placement of 4-byte sequences from the representation of your elements, in shared memory, for the same effect.
I realize this is a bit hand-wavy, but I'm pretty certain I've waved my hands correctly and it would be a "simple matter of coding".

gcc implementation of rand()

I've tried for hours to find the implementation of rand() function used in gcc...
It would be much appreciated if someone could reference me to the file containing it's implementation or website with the implementation.
By the way, which directory (I'm using Ubuntu if that matters) contains the c standard library implementations for the gcc compiler?
rand consists of a call to a function __random, which mostly just calls another function called __random_r in random_r.c.
Note that the function names above are hyperlinks to the glibc source repository, at version 2.28.
The glibc random library supports two kinds of generator: a simple linear congruential one, and a more sophisticated linear feedback shift register one. It is possible to construct instances of either, but the default global generator, used when you call rand, uses the linear feedback shift register generator (see the definition of unsafe_state.rand_type).
You will find C library implementation used by GCC in the GNU GLIBC project.
You can download it sources and you should find rand() implementation. Sources with function definitions are usually not installed on a Linux distribution. Only the header files which I guess you already know are usually stored in /usr/include directory.
If you are familiar with GIT source code management, you can do:
$ git clone git://sourceware.org/git/glibc.git
To get GLIBC source code.
The files are available via FTP. I found that there is more to rand() used in stdlib, which is from [glibc][2]. From the 2.32 version (glibc-2.32.tar.gz) obtained from here, the stdlib folder contains a random.c file which explains that a simple linear congruential algorithm is used. The folder also has rand.c and rand_r.c which can show you more of the source code. stdlib.h contained in the same folder will show you the values used for macros like RAND_MAX.
/* An improved random number generation package. In addition to the
standard rand()/srand() like interface, this package also has a
special state info interface. The initstate() routine is called
with a seed, an array of bytes, and a count of how many bytes are
being passed in; this array is then initialized to contain
information for random number generation with that much state
information. Good sizes for the amount of state information are
32, 64, 128, and 256 bytes. The state can be switched by calling
the setstate() function with the same array as was initialized with
initstate(). By default, the package runs with 128 bytes of state
information and generates far better random numbers than a linear
congruential generator. If the amount of state information is less
than 32 bytes, a simple linear congruential R.N.G. is used.
Internally, the state information is treated as an array of longs;
the zeroth element of the array is the type of R.N.G. being used
(small integer); the remainder of the array is the state
information for the R.N.G. Thus, 32 bytes of state information
will give 7 longs worth of state information, which will allow a
degree seven polynomial. (Note: The zeroth word of state
information also has some other information stored in it; see setstate
for details). The random number generation technique is a linear
feedback shift register approach, employing trinomials (since there
are fewer terms to sum up that way). In this approach, the least
significant bit of all the numbers in the state table will act as a
linear feedback shift register, and will have period 2^deg - 1
(where deg is the degree of the polynomial being used, assuming
that the polynomial is irreducible and primitive). The higher order
bits will have longer periods, since their values are also
influenced by pseudo-random carries out of the lower bits. The
total period of the generator is approximately deg*(2deg - 1); thus
doubling the amount of state information has a vast influence on the
period of the generator. Note: The deg*(2deg - 1) is an
approximation only good for large deg, when the period of the shift
register is the dominant factor. With deg equal to seven, the
period is actually much longer than the 7*(2**7 - 1) predicted by
this formula. */

bignum in emacs/elisp

Does emacs have support for big numbers that don't fit in integers? If it does, how do I use them?
Emacs Lispers frustrated by Emacs’s
lack of bignum handling: calc.el
provides very good bignum
capabilities.—EmacsWiki
calc.el is part of the GNU Emacs distribution. See its source code for available functions. You can immediately start playing with it by typing M-x quick-calc. You may also want to check bigint.el package, that is a non-standard, lightweight implementation for handling bignums.
Emacs 27.1 supports bignums natively (see the NEWS file of Emacs):
** Emacs Lisp integers can now be of arbitrary size.
Emacs uses the GNU Multiple Precision (GMP) library to support
integers whose size is too large to support natively. The integers
supported natively are known as "fixnums", while the larger ones are
"bignums". The new predicates 'bignump' and 'fixnump' can be used to
distinguish between these two types of integers.
All the arithmetic, comparison, and logical (a.k.a. "bitwise")
operations where bignums make sense now support both fixnums and
bignums. However, note that unlike fixnums, bignums will not compare
equal with 'eq', you must use 'eql' instead. (Numerical comparison
with '=' works on both, of course.)
Since large bignums consume a lot of memory, Emacs limits the size of
the largest bignum a Lisp program is allowed to create. The
nonnegative value of the new variable 'integer-width' specifies the
maximum number of bits allowed in a bignum. Emacs signals an integer
overflow error if this limit is exceeded.
Several primitive functions formerly returned floats or lists of
integers to represent integers that did not fit into fixnums. These
functions now simply return integers instead. Affected functions
include functions like 'encode-char' that compute code-points, functions
like 'file-attributes' that compute file sizes and other attributes,
functions like 'process-id' that compute process IDs, and functions like
'user-uid' and 'group-gid' that compute user and group IDs.
Bignums are automatically chosen when arithmetic calculations with fixnums overflow the fixnum-range. The expression (bignump most-positive-fixnum) returns nil while (bignump (+ most-positive-fixnum 1)) returns t.

Resources