I have an application that takes files from one place and moves them to another place - pretty much all this application does is checks if files are in s3 and downloads ones that are not to another s3. Currently application uses very low amounts of provided CPU. From this post, my understanding that it is to be expected (seeing as my app is pretty much I/O and nothing more).
My initial idea was to lower the number of CPUs provided to the app. However, providing less and less negatively impacted the speed at which my app performs its duties (which according to this article kind of make sense - less CPU means less total clock speed). This is not an option as it needs to run somewhat fast.
I am using kafka messages to start my app. So another idea of mine was to increase the number of partitions in my topic from which my app consumes the messages (so that I can increase the no. of threads that can run concurrently). That allowed me to reduce the number of CPU that I provide to my app (while maintaining the desired processing speed) but my app still uses very low amounts of CPUs.
My app runs in kubernates whose cluster is deployed to EC2s, if that is of any difference. My app is springBoot java. I tried to only give it a minimum number of CPUs, while maxing out the no. of concurrent threads in my app, but again I can see a lot of wasted CPU there.
My question is then as follows: is it possible to somehow make an application to use all available CPU (thus making it more efficient) in this scenario? Is there a config or a method or something that does that? Or for an app that checks data is present and downloads data somewhere else, this is an expected behavior - increasing the number of available resource would improve speed at which my app runs but as a cons of that, there will be waster CPU? (so I am in the classic "good comes with the bad" sort of situation here?)
Related
I have a high-performance software server application that is expected to get increased traffic in the next few months.
I was wondering what approach or methodology is good to use in order to gauge if the server still has the capacity to handle this increased load?
I think you're looking for Stress Testing and the scenario would be something like:
Create a load test simulating current real application usage
Start with current number of users and gradually increase the load until
you reach the "increased traffic" amount
or errors start occurring
or you start observing performance degradation
whatever comes the first
Depending on the outcome you either can state that your server can handle the increased load without any issues or you will come up with the saturation point and the first bottleneck
You might also want to execute a Soak Test - leave the system under high prolonged load for several hours or days, this way you can detect memory leaks or other capacity problems.
More information: Why ‘Normal’ Load Testing Isn’t Enough
Test the product with one-tenth the data and traffic. Be sure the activity is 'realistic'.
Then consider what will happen as traffic grows -- with the RAM, disk, cpu, network, etc, grow linearly or not?
While you are doing that, look for "hot spots". Optimize them.
Will you be using web pages? Databases? Etc. Each of these things scales differently. (In other words, you have not provided enough details in your question.)
Most canned benchmarks focus on one small aspect of computing; applying the results to a specific application is iffy.
I would start by collecting base line data on critical resources - typically, CPU, memory usage, disk usage, network usage - and track them over time. If any of those resources show regular spikes where they remain at 100% capacity for more than a fraction of a second, under current usage, you have a bottleneck somewhere. In this case, you cannot accept additional load without likely outages.
Next, I'd start figuring out what the bottleneck resource for your application is - it varies between applications, but in most cases it's the bottleneck resource that stops you from scaling further. Your CPU might be almost idle, but you're thrashing the disk I/O, for instance. That's a tricky process - load and stress testing are the way to go.
If you can resolve the bottleneck by buying better hardware, do so - it's much cheaper than rewriting the software. If you can't buy better hardware, look at load balancing. If you can't load balance, you've got to look at application architecture and implementation and see if there are ways to move the bottleneck.
It's quite typical for the bottleneck to move from one resource to the next - you've got CPU to behave, but now when you increase traffic, you're spiking disk I/O; once you resolve that, you may get another CPU challenge.
I have 12 tasks to run on an octo-core machine. All tasks are CPU intensive and each will max out a core.
Is there a theoretical reason to avoid stacking tasks on a maxed out core (such as overhead, swapping across tasks) or is it faster to queue everything?
Task switching is a waste of CPU time. Avoid it if you can.
Whatever the scheduler timeslice is set to, the CPU will waste its time every time slice by going into the kernel, saving all the registers, swapping the memory mappings and starting the next task. Then it has to load in all its CPU cache, etc.
Much more efficient to just run one task at a time.
Things are different of course if the tasks use I/O and aren't purely compute bound.
Yes it's called queueing theory https://en.wikipedia.org/wiki/Queueing_theory. There are many different models https://en.wikipedia.org/wiki/Category:Queueing_theory for a range of different problems I'd suggest you scan them and pick the one most applicable to your workload then go and read up on how to avoid the worst outcomes for that model, or pick a different, better, model for dispatching your workload.
Although the graph at this link https://commons.wikimedia.org/wiki/File:StochasticQueueingQueueLength.png applies to Traffic it will give you an idea of what is happening to response times as your CPU utilisation increases. It shows that you'll reach an inflection point after which things get slower and slower.
More work is arriving than can be processed with subsequent work waiting longer and longer until it can be dispatched.
The more cores you have the further to the right you push the inflection point but the faster things go bad after you reach it.
I would also note that unless you've got some really serious cooling in place you are going to cook your CPU. Depending on it's design it will either slow itself down, making your problem worse, or you'll trigger it's thermal overload protection.
So a simplistic design for 8 cores would be, 1 thread to manage things and add tasks to the work queue and 7 threads that are pulling tasks from the work queue. If the tasks need to be performed within a certain time you can add a TimeToLive value so that they can be discarded rather than executed needlessly. As you are almost certainly running your application in an OS that uses a pre-emptive threading model consider things like using processor affinity where possible because as #Zan-Lynx says task/context switching hurts. Be careful not to try to build your OS'es thread management again as you'll probably wind up in conflict with it.
tl;dr: cache thrash is Bad
You have a dozen tasks. Each will have to do a certain amount of work.
At an app level they each processed a thousand customer records or whatever. That is fixed, it is a constant no matter what happens on the hardware.
At the the language level, again it is fixed, C++, java, or python will execute a fixed number of app instructions or bytecodes. We'll gloss over gc overhead here, and page fault and scheduling details.
At the assembly level, again it is fixed, some number of x86 instructions will execute as the app continues to issue new instructions.
But you don't care about how many instructions, you only care about how long it takes to execute those instructions. Many of the instructions are reads which MOV a value from RAM to a register. Think about how long that will take. Your computer has several components to implement the memory hierarchy - which ones will be involved? Will that read hit in L1 cache? In L2? Will it be a miss in last-level cache so you wait (for tens or hundreds of cycles) until RAM delivers that cache line? Did the virtual memory reference miss in RAM, so you wait (for milliseconds) until SSD or Winchester storage can page in the needed frame? You think of your app as issuing N reads, but you might more productively think of it as issuing 0.2 * N cache misses. Running at a different multi-programming level, where you issue 0.3 * N cache misses, could make elapsed time quite noticeably longer.
Every workload is different, and can place larger or smaller demands on memory storage. But every level of the memory hierarchy depends on caching to some extent, and higher multi-programming levels are guaranteed to impact cache hit rates. There are network- and I/O-heavy workloads where very high multi-programming levels absolutely make sense. But for CPU- and memory-intensive workloads, when you benchmark elapsed times you may find that less is more.
A customer is running a clustered web application server under considerable load. He wants to know if the upcoming application, which is not implemented yet, will still be manageable by his current setup.
Is there a established method to predict the performance impact of application in concept state, based on an existing requirement specification (or maybe a functional design specification).
First priority would be to predict the impact on CPU resource.
Is it possible to get fairly exact results at all?
I'd say the canonical answer is no. You always have to benchmark the actual application being deployed on its target architecture.
Why? Software and software development are not predictable. And systems are even more unpredictable.
Even if you know the requirements now and have done deep analysis what happens if:
The program has a performance bug (or two...) - which might even be a bug in a third-party library
New requirements are added or requirements change
The analysis and design don't spot all the hidden inter-relationships between components
There are non-linear effects of adding load and the new load might take the hardware over a critical threshold (a threshold that is not obvious now).
These concerns are not theoretical. If they were, SW development would be trivial and projects would always be delivered on time and to budget.
However there are some heuristics I personally used that you can apply. First you need a really good understanding of the current system:
Break the existing system's functions down into small, medium and large and benchmark those on your hardware
Perform a load test of these individual functions and capture thoughput in transactions/sec, CPU cost, network traffic and disk I/O figures for as many of these transactions as possible, making sure you have representation of small, medium and large. This load test should take the system up to the point where additional load will decrease transactions/sec
Get the figures for the max transactions/sec of the current system
Understand the rate of growth of this application and plan accordingly
Perform the analysis to get an 'average' small, medium and large 'cost' in terms of CPU, RAM, disk and network. This would be of the form:
Small transaction
CPU utilization: 10ms
RAM overhead 5MB (cache)
RAM working: 100kb (eg 10 concurrent threads = 1MB, 100 threads = 10MB)
Disk I/O: 5kb (database)
Network app<->DB: 10kb
Network app<->browser: 40kb
From this analysis you should understand how much headroom you have - CPU certainly, but check that there is sufficient RAM, network and disk capacity. Eg, the CPU required for small transactions is number of small transactions per second multiplied by the CPU cost of a small transaction. Add in the CPU cost of medium transactions and large ones, and you have your CPU budget.
Make sure the DBAs are involved. They need to do the same on the DB.
Now you need to analyse your upcoming application:
Assign each features into the same small, medium and large buckets, ensuring a like-for-like matching as far as possible
Ask deep, probing questions about how many transactions/sec each feature will experience at peak
Talk about the expected rate of growth of the application
Don't forget that the system may slow as the size of the database increases
On a personal note, you are being asked to predict the unpredictable - putting your name and reputation on the line. If you say it can fit, you are owning the risk for a large software development project. If you are being pressured to say yes, you need to ensure that there are many other people's names involved along with yours - and those names should all be visible on the go/no-go decision. Not only is this more likely to ensure that all factors are considered, and that the analysis is sound, but it will also ensure that the project has many involved individuals personally aligned to its success.
I'm developing a client/server application where the server holds large pieces of data such as big images or video files which are requested by the client and I need to create an in-memory client caching system to hold a few of those large data to speed up the process. Just to be clear, each individual image or video is not that big but the overall size of all of them can be really big.
But I'm faced with the "how much data should I cache" problem and was wondering if there are some kind of golden rules on Windows about what strategy I should adopt. The caching is done on the client, I do not need caching on the server.
Should I stay under x% of global memory usage at all time ? And how much would that be ? What will happen if another program is launched and takes up a lot of memory, should I empty the cache ?
Should I request how much free memory is available prior to caching and use a fixed percentage of that memory for my needs ?
I hope I do not have to go there but should I ask the user how much memory he is willing to allocate to my application ? If so, how can I calculate the default value for that property and for those who will never use that setting ?
Rather than create your own caching algorithms why don't you write the data to a file with the FILE_ATTRIBUTE_TEMPORARY attribute and make use of the client machine's own cache.
Although this approach appears to imply that you use a file, if there is memory available in the system then the file will never leave the cache and will remain in memory the whole time.
Some advantages:
You don't need to write any code.
The system cache takes account of all the other processes running. It would not be practical for you to take that on yourself.
On 64 bit Windows the system can use all the memory available to it for the cache. In a 32 bit Delphi process you are limited to the 32 bit address space.
Even if your cache is full and your files to get flushed to disk, local disk access is much faster than querying the database and then transmitting the files over the network.
It depends on what other software runs on the server. I would make it possible to configure it manually at first. Develop a system that can use a specific amount of memory. If you can, build it so that you can change that value while it is running.
If you got those possibilities, you can try some tweaking to see what works best. I don't know any golden rules, but I'd figure you should be able to set a percentage of total memory or total available memory with a specific minimum amount of memory to be free for the system at all times. If you save a miminum of say 500 MB for the server OS, you can use the rest, or 90% of the rest for your cache. But those numbers depend on the version of the OS and the other applications running on the server.
I think it's best to make the numbers configurable from the outside and create a management tool that lets you set the values manually first. Then, if you found out what works best, you can deduct formulas to calculate those values, and integrate them in your management tool. This tool should not be an integral part of the cache program itself (which will probably be a service without GUI anyway).
Questions:
One image can be requested by multiple clients? Or, one image can be requested by multiple times in a short interval?
How short is the interval?
The speed of the network is really high? Higher than the speed of the hard drive?? If you have a normal network, then the harddrive will be able to read the files from disk and deliver them over network in real time. Especially that Windows is already doing some good caching so the most recent files are already in cache.
The main purpose of the computer that is running the server app is to run the server? Or is just a normal computer used also for other tasks? In other words is it a dedicated server or a normal workstation/desktop?
but should I ask the user how much
memory he is willing to allocate to my
application ?
I would definitively go there!!!
If the user thinks that the server application is not a important application it will probably give it low priority (low cache). Else, it it thinks it is the most important running app, it will allow the app to allocate all RAM it needs in detriment of other less important applications.
Just deliver the application with that setting set by default to a acceptable value (which will be something like x% of the total amount of RAM). I will use like 70% of total RAM if the main purpose of the computer to hold this server application and about 40-50% if its purpose is 'general use' computer.
A server application usually needs resources set aside for its own use by its administrator. I would not care about others application behaviour, I would care about being a "polite" application, thereby it should allow memory cache size and so on to be configurable by the administator, which is the only one who knows how to configure his systems properly (usually...)
Defaults values should anyway take into consideration how much memory is available overall, especially on 32 bit systems with less than 4GB of memory (as long as Delphi delivers only 32 bit apps), to leave something free to the operating systems and avoids too frequent swapping. Asking the user to select it at setup is also advisable.
If the application is the only one running on a server, a value between 40 to 75% of available memory could be ok (depending on how much memory is needed beyond the cache), but again, ask the user because it's almost impossible to know what other applications running may need. You can also have a min cache size and a max cache size, start by allocating the lower value, and then grow it when and if needed, and shrink it if necessary.
On a 32 bit system this is a kind of memory usage that could benefit from using PAE/AWE to access more than 3GB of memory.
Update: you can also perform a monitoring of cache hits/misses and calculate which cache size would fit the user needs best (it could be too small but too large as well), and the advise the user about that.
To be honest, the questions you ask would not be my main concern. I would be more concerned with how effective my cache would be. If your files are really that big, how many can you hold in the cache? And if your client server app has many users, what are the chances that your cache will actually cache something someone else will use?
It might be worth doing an analysis before you burn too much time on the fine details.
For some of the customers that we develop software for, we are required to "guarantee" a certain amount of spare resources (memory, disk space, CPU). Memory and disk space are simple, but CPU is a bit more difficult.
One technique that we have used is to create a process that consumes a guaranteed amount of CPU time (say 2.5 seconds every 5 seconds). We run this process at highest priority in order to guarantee that it runs and consumes all of its required CPU cycles.
If our normal applications are able to run at an acceptable level of performance and can pass all of their functionality tests while the spare time process is running as well, then we "assume" that we have met our commitment for spare CPU time.
I'm sure that there are other techniques for doing the same thing, and would like to learn about them.
So this may not be exactly the answer you're looking for, but if all you want to do is make sure your application doesn't exceed certain limits on resource consumption and you're running on linux you can customize /etc/security/limits.con (may be different file on your distro of choice) to force the limits on a particular user and only run the process under that user. This is of course assuming that you have that level of control on your client's production environment.
If I understand correctly, your concern is wether the application also runs while a given percentage of the processing power is not available.
The most incontrovertible approach is to use underpowered hardware for your testing. If the processor in your setup allows you to, you can downclock it online. The Linux kernel gives you an easy interface for doing this, see /sys/devices/system/cpu/cpu0/cpufreq/. There is also a bunch of GUI applications for this available.
If your processor isn't capable of changing clock speed online, you can do it the hard way and select a smaller multiplier in your BIOS.
I think you get the idea. If it runs on 1600 Mhz instead of 2400 Mhz, you can guarantee 33% of spare CPU time.
SAR is a standard *nix process that collects information about the operational use of system resources. It also has a command line tool that allows you to create various reports, and it's common for the data to be persisted in a database.
With a multi-core/processor system you could use Affinity to your advantage.