Spring boot: Separate thread pool for specific endpoint - spring

Given a microservice in Spring Boot, it offers 2 end-points to be consumed from 2 separate system.
One of this system is critical while the other one is not.
I would like to prevent the "not critical" one to consume (due to unexpected problems) all the threads (or many) of the HTTP thread pool, so I would like to configure separated thread pools for each one of these end-points.
Is that possible?

There are multiple ways to do this. Using DeferredResult is probably the easiest way:
#RestController
public class Controller {
private final Executor performancePool = Executors.newFixedThreadPool(128);
private final Executor normalPool = Executors.newFixedThreadPool(16);
#GetMapping("/performance")
DeferredResult<String> performanceEndPoint() {
DeferredResult<String> result = new DeferredResult<>();
performancePool.execute(() -> {
try {
Thread.sleep(5000); //A long running task
} catch (InterruptedException e) {
e.printStackTrace();
}
result.setResult("Executed in performance pool");
});
return result;
}
#GetMapping("/normal")
DeferredResult<String> normalEndPoint() {
DeferredResult<String> result = new DeferredResult<>();
normalPool.execute(() -> result.setResult("Executed in normal pool"));
return result;
}
}
You immediately release the Tomcat thread by returning a DeferredResult from a controller, allowing it to serve other requests. The actual response is written to the user when the .setResult method is called.
DeferredResult is one of the many ways you can perform asynchronous request processing in Spring. Check out this section of the docs to learn more about the other ways:
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html#mvc-ann-async

Not sure you can prevent, but you can surely increase the thread pool capacity. By default, tomcat (if default server) can handler 200 simultaneous requests , you can increase that number
Check if this article helps
https://stackoverflow.com/questions/46893237/can-spring-boot-application-handle-multiple-requests-simultaneously#:~:text=Yes%2C%20Spring%20boot%20can%20handle,can%20handle%20200%20simultaneous%20requests.&text=However%2C%20you%20can%20override%20this,tomcat.

Related

Spring Reactor and consuming websocket messages

I'm creating a spring reactor application to consume messages from websockets server, transform them and later save them to redis and some sql database, saving to redis and sql database is also reactive. Also, before writing to redis and sql database, messages will be windowed (with different timespans) and aggregated.
I'm not sure if the way I've accomplished what I want to achieve is a proper reactive wise, it means, I'm not losing reactive benefits (performance).
First, let me show you what I got:
#Service
class WebSocketsConsumer {
public ConnectableFlux<String> webSocketFlux() {
return Flux.<String>create(emitter -> {
createWebSocketClient()
.execute(URI.create("wss://some-url-goes-here.com"), session -> {
WebSocketMessage initialMessage = session.textMessage("SOME_MSG_HERE");
Flux<String> flux = session.send(Mono.just(initialMessage))
.thenMany(session.receive())
.map(WebSocketMessage::getPayloadAsText)
.doOnNext(emitter::next);
Flux<String> sessionStatus = session.closeStatus()
.switchIfEmpty(Mono.just(CloseStatus.GOING_AWAY))
.map(CloseStatus::toString)
.doOnNext(emitter::next)
.flatMapMany(Flux::just);
return flux
.mergeWith(sessionStatus)
.then();
})
.subscribe(); //1: highlighted by Intellij Idea: `Calling subsribe in not blocking context`
})
.publish();
}
private ReactorNettyWebSocketClient createWebSocketClient() {
return new ReactorNettyWebSocketClient(
HttpClient.create(),
() -> WebsocketClientSpec.builder().maxFramePayloadLength(131072 * 100)
);
}
}
And
#Service
class WebSocketMessageDispatcher {
private final WebSocketsConsumer webSocketsConsumer;
private final Consumer<String> reactiveRedisConsumer;
private final Consumer<String> reactiveJdbcConsumer;
private Disposable webSocketsDisposable;
WebSocketMessageDispatcher(WebSocketsConsumer webSocketsConsumer, Consumer<String> redisConsumer, Consumer<String> dbConsumer) {
this.webSocketsConsumer = webSocketsConsumer;
this.reactiveRedisConsumer = redisConsumer;
this.reactiveJdbcConsumer = dbConsumer;
}
#EventListener(ApplicationReadyEvent.class)
public void onReady() {
ConnectableFlux<String> messages = webSocketsConsumer.webSocketFlux();
messages.subscribe(reactiveRedisConsumer);
messages.subscribe(reactiveJdbcConsumer);
webSocketsDisposable = messages.connect();
}
#PreDestroy
public void onDestroy() {
if (webSocketsDisposable != null) webSocketsDisposable.dispose();
}
}
Questions:
Is it a proper use of reactive streams? Maybe redis and database writes should be done in flatMap, however IMO they can't as I want them to happen in the background and they will also aggregate messages with different time windows. Also note comment 1 from the code above where idea lints my code, code works however I wonder what this lint may result in? Maybe I should use doOnNext not to call emitter::next but to invoke some dispatcher of messages there with some funcion like doOnNext(dispatcher::dispatchMessage) ?
I want websockets client to start immediately after application is ready and stop consuming messages when application shuts down, are #EventListener(ApplicationReadyEvent.class) and #PreDestroy annotations and code shown above a proper way to handle this scenario in reactive world?
As I said saving to redis and sql database is also reactive, i.e. those saves are also producing Mono<T> is subscribing to those Monos inside subscribe of websockets flux ok or it should be accomplished some other way (comments 2 and 3 in code above)

Spring Integration - Scatter-Gather

I am using Spring Integration and Scatter Gather handler (https://docs.spring.io/spring-integration/docs/5.3.0.M1/reference/html/scatter-gather.html) in order to send 3 parallel requests (using ExecutorChannels) to external REST APIs and aggregate their response into one single message.
Everything works fine until exception is thrown within Aggregator's aggregatePayloads method (AggregatingMessageHandler). In this scenario error message is successfully delivered to Messaging Gateway which initiated the flow ( caller ). However, ScatterGatherHandler thread remains in hanging state waiting for gatherer reply (I believe) which never arrives due to the exception within it. I.e each sequential call leaves one additional thread in "stuck" state and eventually Thread Pool runs out of available working threads.
My current Scatter Gather configuration:
#Bean
public MessageHandler distributor() {
RecipientListRouter router = new RecipientListRouter();
router.setChannels(Arrays.asList(Channel1(asyncExecutor()),Channel2(asyncExecutor()),Channel3(asyncExecutor())));
return router;
}
#Bean
public MessageHandler gatherer() {
AggregatingMessageHandler aggregatingMessageHandler = new AggregatingMessageHandler(
new TransactionAggregator(),
new SimpleMessageStore(),
new HeaderAttributeCorrelationStrategy("correlationID"),
new ExpressionEvaluatingReleaseStrategy("size() == 3"));
aggregatingMessageHandler.setExpireGroupsUponCompletion( true );
return aggregatingMessageHandler;
}
#Bean
#ServiceActivator(inputChannel = "validationOutputChannel")
public MessageHandler scatterGatherDistribution() {
ScatterGatherHandler handler = new ScatterGatherHandler(distributor(), gatherer());
handler.setErrorChannelName("scatterGatherErrorChannel");
return handler;
}
#Bean("taskExecutor")
#Primary
public TaskExecutor asyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(4);
executor.setMaxPoolSize(10);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("AsyncThread-");
executor.initialize();
return executor;
}
So far the only solution that I found is to add RequiresReply and GatherTimeout values for ScatterGatherHandler like below:
handler.setGatherTimeout(120000L);
handler.setRequiresReply(true);
This will produce an exception and release ScatterGatherHandler's thread to the pull after specified timeout value and after aggregator's exception is delivered to the messaging gateway. I can see following message in the log:
[AsyncThread-1] [WARN] [o.s.m.c.GenericMessagingTemplate$TemporaryReplyChannel:] [{}] - Reply message received but the receiving thread has already received a reply: ErrorMessage
Is there any other way to achieve this? My main goal is to make sure that I am not blocking any threads in case of exception is thrown within aggregator's aggregatePayloads method.
Thank you.
Technically this is really an expect behavior. See docs: https://docs.spring.io/spring-integration/docs/current/reference/html/message-routing.html#scatter-gather-error-handling
In this case a reasonable, finite gatherTimeout must be configured for the ScatterGatherHandler. Otherwise it is going to be blocked waiting for a reply from the gatherer forever, by default.
There is really no way to break expectations from the BlockingQueue.take() from that ScatterGatherHandler code.

Vert.x: how to process HttpRequest with a blocking operation

I've just started with Vert.x and would like to understand what is the right way of handling potentially long (blocking) operations as part of processing a REST HttpRequest. The application itself is a Spring app.
Here is a simplified REST service I have so far:
public class MainApp {
// instantiated by Spring
private AlertsRestService alertsRestService;
#PostConstruct
public void init() {
Vertx.vertx().deployVerticle(alertsRestService);
}
}
public class AlertsRestService extends AbstractVerticle {
// instantiated by Spring
private PostgresService pgService;
#Value("${rest.endpoint.port:8080}")
private int restEndpointPort;
#Override
public void start(Future<Void> futureStartResult) {
HttpServer server = vertx.createHttpServer();
Router router = Router.router(vertx);
//enable reading of the request body for all routes
router.route().handler(BodyHandler.create());
router.route(HttpMethod.GET, "/allDefinitions")
.handler(this::handleGetAllDefinitions);
server.requestHandler(router)
.listen(restEndpointPort,
result -> {
if (result.succeeded()) {
futureStartResult.complete();
} else {
futureStartResult.fail(result.cause());
}
}
);
}
private void handleGetAllDefinitions( RoutingContext routingContext) {
HttpServerResponse response = routingContext.response();
Collection<AlertDefinition> allDefinitions = null;
try {
allDefinitions = pgService.getAllDefinitions();
} catch (Exception e) {
response.setStatusCode(500).end(e.getMessage());
}
response.putHeader("content-type", "application/json")
.setStatusCode(200)
.end(Json.encodePrettily(allAlertDefinitions));
}
}
Spring config:
<bean id="alertsRestService" class="com.my.AlertsRestService"
p:pgService-ref="postgresService"
p:restEndpointPort="${rest.endpoint.port}"
/>
<bean id="mainApp" class="com.my.MainApp"
p:alertsRestService-ref="alertsRestService"
/>
Now the question is: how to properly handle the (blocking) call to my postgresService, which may take longer time if there are many items to get/return ?
After researching and looking at some examples, I see a few ways to do it, but I don't fully understand differences between them:
Option 1. convert my AlertsRestService into a Worker Verticle and use the worker thread pool:
public class MainApp {
private AlertsRestService alertsRestService;
#PostConstruct
public void init() {
DeploymentOptions options = new DeploymentOptions().setWorker(true);
Vertx.vertx().deployVerticle(alertsRestService, options);
}
}
What confuses me here is this statement from the Vert.x docs: "Worker verticle instances are never executed concurrently by Vert.x by more than one thread, but can [be] executed by different threads at different times"
Does it mean that all HTTP requests to my alertsRestService are going to be, effectively, throttled to be executed sequentially, by one thread at a time? That's not what I would like: this service is purely stateless and should be able to handle concurrent requests just fine ....
So, maybe I need to look at the next option:
Option 2. convert my service to be a multi-threaded Worker Verticle, by doing something similar to the example in the docs:
public class MainApp {
private AlertsRestService alertsRestService;
#PostConstruct
public void init() {
DeploymentOptions options = new DeploymentOptions()
.setWorker(true)
.setInstances(5) // matches the worker pool size below
.setWorkerPoolName("the-specific-pool")
.setWorkerPoolSize(5);
Vertx.vertx().deployVerticle(alertsRestService, options);
}
}
So, in this example - what exactly will be happening? As I understand, ".setInstances(5)" directive means that 5 instances of my 'alertsRestService' will be created. I configured this service as a Spring bean, with its dependencies wired in by the Spring framework. However, in this case, it seems to me the 5 instances are not going to be created by Spring, but rather by Vert.x - is that true? and how could I change that to use Spring instead?
Option 3. use the 'blockingHandler' for routing. The only change in the code would be in the AlertsRestService.start() method in how I define a handler for the router:
boolean ordered = false;
router.route(HttpMethod.GET, "/allDefinitions")
.blockingHandler(this::handleGetAllDefinitions, ordered);
As I understand, setting the 'ordered' parameter to TRUE means that the handler can be called concurrently. Does it mean this option is equivalent to the Option #2 with multi-threaded Worker Verticles?
What is the difference? that the async multi-threaded execution pertains to the one specific HTTP request only (the one for the /allDefinitions path) as opposed to the whole AlertsRestService Verticle?
Option 4. and the last option I found is to use the 'executeBlocking()' directive explicitly to run only the enclosed code in worker threads. I could not find many examples of how to do this with HTTP request handling, so below is my attempt - maybe incorrect. The difference here is only in the implementation of the handler method, handleGetAllAlertDefinitions() - but it is rather involved... :
private void handleGetAllAlertDefinitions(RoutingContext routingContext) {
vertx.executeBlocking(
fut -> { fut.complete( sendAsyncRequestToDB(routingContext)); },
false,
res -> { handleAsyncResponse(res, routingContext); }
);
}
public Collection<AlertDefinition> sendAsyncRequestToDB(RoutingContext routingContext) {
Collection<AlertDefinition> allAlertDefinitions = new LinkedList<>();
try {
alertDefinitionsDao.getAllAlertDefinitions();
} catch (Exception e) {
routingContext.response().setStatusCode(500)
.end(e.getMessage());
}
return allAlertDefinitions;
}
private void handleAsyncResponse(AsyncResult<Object> asyncResult, RoutingContext routingContext){
if(asyncResult.succeeded()){
try {
routingContext.response().putHeader("content-type", "application/json")
.setStatusCode(200)
.end(Json.encodePrettily(asyncResult.result()));
} catch(EncodeException e) {
routingContext.response().setStatusCode(500)
.end(e.getMessage());
}
} else {
routingContext.response().setStatusCode(500)
.end(asyncResult.cause());
}
}
How is this different form other options? And does Option 4 provide concurrent execution of the handler or single-threaded like in Option 1?
Finally, coming back to the original question: what is the most appropriate Option for handling longer-running operations when handling REST requests?
Sorry for such a long post.... :)
Thank you!
That's a big question, and I'm not sure I'll be able to address it fully. But let's try:
In Option #1 what it actually means is that you shouldn't use ThreadLocal in your worker verticles, if you use more than one worker of the same type. Using only one worker means that your requests will be serialised.
Option #2 is simply incorrect. You cannot use setInstances with instance of a class, only with it's name. You're correct, though, that if you choose to use name of the class, Vert.x will instantiate them.
Option #3 is less concurrent than using Workers, and shouldn't be used.
Option #4 executeBlocking is basically doing Option #3, and is also quite bad.

Run task in background using deferredResult in Spring without frozen browser as client

I have implemented a simple Rest service by which I'd like to test deferredResult from Spring. While am I getting texts in that order:
TEST
TEST 1
TEST AFTER DEFERRED RESULT
I am very interested why in a browser (client) I need to wait that 8 seconds. Isn't that deferedResult shouldn't be non-blocking and run a task in the background? If no, how to create a rest service which will be non-blocking and run tasks in the background without using Java 9 and reactive streams?
#RestController("/")
public class Controller {
#GetMapping
public DeferredResult<Person> test() {
System.out.println("TEST");
DeferredResult<Person> result = new DeferredResult<>();
CompletableFuture.supplyAsync(this::test1)
.whenCompleteAsync((res, throwable) -> {
System.out.println("TEST AFTER DEFERRED RESULT");
result.setResult(res);
});
System.out.println("TEST 1");
return result;
}
private Person test1() {
try {
Thread.sleep(8000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new Person("michal", 20);
}
}
class Person implements Serializable {
private String name;
private int age;
}
DeferredResult is a holder for a WebRequest to allow the serving thread to release and serve another incoming HTTP request instead of waiting for the current one's result. After setResult or setError methods will be invoked - Spring will release that stored WebRequest and your client will receive the response.
DeferredResult holder is a Spring Framework abstraction for Non-blocking IO threading.
Deferred result abstraction has nothing with background tasks. Calling it without threading abstractions will cause the expected same thread execution. Your test1 method is running in the background because of CompletableFuture.supplyAsync method invocation that gives the execution to common pool.
The result is returned in 8 seconds because the whenCompleteAsync passed callback will be called only after test1 method will return.
You cannot receive the result immediately when your "service call logic" takes 8 seconds despite you are performing it in the background. If you want to release the HTTP request - just return an available proper object (it could contain a UUID, for example, to fetch the created person later) or nothing from the controller method. You can try to GET your created user after N seconds. There are specific HTTP response codes (202 ACCEPTED), that means the serverside is processing the request. Finally just GET your created object.
The second approach (if you should notify your clientside - but I will not recommend you to do it if this is the only reason) - you can use WebSockets to notify the clientside and message with it.

Spring Boot with CXF Client Race Condition/Connection Timeout

I have a CXF client configured in my Spring Boot app like so:
#Bean
public ConsumerSupportService consumerSupportService() {
JaxWsProxyFactoryBean jaxWsProxyFactoryBean = new JaxWsProxyFactoryBean();
jaxWsProxyFactoryBean.setServiceClass(ConsumerSupportService.class);
jaxWsProxyFactoryBean.setAddress("https://www.someservice.com/service?wsdl");
jaxWsProxyFactoryBean.setBindingId(SOAPBinding.SOAP12HTTP_BINDING);
WSAddressingFeature wsAddressingFeature = new WSAddressingFeature();
wsAddressingFeature.setAddressingRequired(true);
jaxWsProxyFactoryBean.getFeatures().add(wsAddressingFeature);
ConsumerSupportService service = (ConsumerSupportService) jaxWsProxyFactoryBean.create();
Client client = ClientProxy.getClient(service);
AddressingProperties addressingProperties = new AddressingProperties();
AttributedURIType to = new AttributedURIType();
to.setValue(applicationProperties.getWex().getServices().getConsumersupport().getTo());
addressingProperties.setTo(to);
AttributedURIType action = new AttributedURIType();
action.setValue("http://serviceaction/SearchConsumer");
addressingProperties.setAction(action);
client.getRequestContext().put("javax.xml.ws.addressing.context", addressingProperties);
setClientTimeout(client);
return service;
}
private void setClientTimeout(Client client) {
HTTPConduit conduit = (HTTPConduit) client.getConduit();
HTTPClientPolicy policy = new HTTPClientPolicy();
policy.setConnectionTimeout(applicationProperties.getWex().getServices().getClient().getConnectionTimeout());
policy.setReceiveTimeout(applicationProperties.getWex().getServices().getClient().getReceiveTimeout());
conduit.setClient(policy);
}
This same service bean is accessed by two different threads in the same application sequence. If I execute this particular sequence 10 times in a row, I will get a connection timeout from the service call at least 3 times. What I'm seeing is:
Caused by: java.io.IOException: Timed out waiting for response to operation {http://theservice.com}SearchConsumer.
at org.apache.cxf.endpoint.ClientImpl.waitResponse(ClientImpl.java:685) ~[cxf-core-3.2.0.jar:3.2.0]
at org.apache.cxf.endpoint.ClientImpl.processResult(ClientImpl.java:608) ~[cxf-core-3.2.0.jar:3.2.0]
If I change the sequence such that one of the threads does not call this service, then the error goes away. So, it seems like there's some sort of a race condition happening here. If I look at the logs in our proxy manager for this service, I can see that both of the service calls do return a response very quickly, but the second service call seems to get stuck somewhere in the code and never actually lets go of the connection until the timeout value is reached. I've been trying to track down the cause of this for quite a while, but have been unsuccessful.
I've read some mixed opinions as to whether or not CXF client proxies are thread-safe, but I was under the impression that they were. If this actually not the case, and I should be creating a new client proxy for each invocation, or use a pool of proxies?
Turns out that it is an issue with the proxy not being thread-safe. What I wound up doing was leveraging a solution kind of like one posted at the bottom of this post: Is this JAX-WS client call thread safe? - I created a pool for the proxies and I use that to access proxies from multiple threads in a thread-safe manner. This seems to work out pretty well.
public class JaxWSServiceProxyPool<T> extends GenericObjectPool<T> {
JaxWSServiceProxyPool(Supplier<T> factory, GenericObjectPoolConfig poolConfig) {
super(new BasePooledObjectFactory<T>() {
#Override
public T create() throws Exception {
return factory.get();
}
#Override
public PooledObject<T> wrap(T t) {
return new DefaultPooledObject<>(t);
}
}, poolConfig != null ? poolConfig : new GenericObjectPoolConfig());
}
}
I then created a simple "registry" class to keep references to various pools.
#Component
public class JaxWSServiceProxyPoolRegistry {
private static final Map<Class, JaxWSServiceProxyPool> registry = new HashMap<>();
public synchronized <T> void register(Class<T> serviceTypeClass, Supplier<T> factory, GenericObjectPoolConfig poolConfig) {
Assert.notNull(serviceTypeClass);
Assert.notNull(factory);
if (!registry.containsKey(serviceTypeClass)) {
registry.put(serviceTypeClass, new JaxWSServiceProxyPool<>(factory, poolConfig));
}
}
public <T> void register(Class<T> serviceTypeClass, Supplier<T> factory) {
register(serviceTypeClass, factory, null);
}
#SuppressWarnings("unchecked")
public <T> JaxWSServiceProxyPool<T> getServiceProxyPool(Class<T> serviceTypeClass) {
Assert.notNull(serviceTypeClass);
return registry.get(serviceTypeClass);
}
}
To use it, I did:
JaxWSServiceProxyPoolRegistry jaxWSServiceProxyPoolRegistry = new JaxWSServiceProxyPoolRegistry();
jaxWSServiceProxyPoolRegistry.register(ConsumerSupportService.class,
this::buildConsumerSupportServiceClient,
getConsumerSupportServicePoolConfig());
Where buildConsumerSupportServiceClient uses a JaxWsProxyFactoryBean to build up the client.
To retrieve an instance from the pool I inject my registry class and then do:
JaxWSServiceProxyPool<ConsumerSupportService> consumerSupportServiceJaxWSServiceProxyPool = jaxWSServiceProxyPoolRegistry.getServiceProxyPool(ConsumerSupportService.class);
And then borrow/return the object from/to the pool as necessary.
This seems to work well so far. I've executed some fairly heavy load tests against it and it's held up.

Resources