Spring Integration - Scatter-Gather - spring-boot

I am using Spring Integration and Scatter Gather handler (https://docs.spring.io/spring-integration/docs/5.3.0.M1/reference/html/scatter-gather.html) in order to send 3 parallel requests (using ExecutorChannels) to external REST APIs and aggregate their response into one single message.
Everything works fine until exception is thrown within Aggregator's aggregatePayloads method (AggregatingMessageHandler). In this scenario error message is successfully delivered to Messaging Gateway which initiated the flow ( caller ). However, ScatterGatherHandler thread remains in hanging state waiting for gatherer reply (I believe) which never arrives due to the exception within it. I.e each sequential call leaves one additional thread in "stuck" state and eventually Thread Pool runs out of available working threads.
My current Scatter Gather configuration:
#Bean
public MessageHandler distributor() {
RecipientListRouter router = new RecipientListRouter();
router.setChannels(Arrays.asList(Channel1(asyncExecutor()),Channel2(asyncExecutor()),Channel3(asyncExecutor())));
return router;
}
#Bean
public MessageHandler gatherer() {
AggregatingMessageHandler aggregatingMessageHandler = new AggregatingMessageHandler(
new TransactionAggregator(),
new SimpleMessageStore(),
new HeaderAttributeCorrelationStrategy("correlationID"),
new ExpressionEvaluatingReleaseStrategy("size() == 3"));
aggregatingMessageHandler.setExpireGroupsUponCompletion( true );
return aggregatingMessageHandler;
}
#Bean
#ServiceActivator(inputChannel = "validationOutputChannel")
public MessageHandler scatterGatherDistribution() {
ScatterGatherHandler handler = new ScatterGatherHandler(distributor(), gatherer());
handler.setErrorChannelName("scatterGatherErrorChannel");
return handler;
}
#Bean("taskExecutor")
#Primary
public TaskExecutor asyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(4);
executor.setMaxPoolSize(10);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("AsyncThread-");
executor.initialize();
return executor;
}
So far the only solution that I found is to add RequiresReply and GatherTimeout values for ScatterGatherHandler like below:
handler.setGatherTimeout(120000L);
handler.setRequiresReply(true);
This will produce an exception and release ScatterGatherHandler's thread to the pull after specified timeout value and after aggregator's exception is delivered to the messaging gateway. I can see following message in the log:
[AsyncThread-1] [WARN] [o.s.m.c.GenericMessagingTemplate$TemporaryReplyChannel:] [{}] - Reply message received but the receiving thread has already received a reply: ErrorMessage
Is there any other way to achieve this? My main goal is to make sure that I am not blocking any threads in case of exception is thrown within aggregator's aggregatePayloads method.
Thank you.

Technically this is really an expect behavior. See docs: https://docs.spring.io/spring-integration/docs/current/reference/html/message-routing.html#scatter-gather-error-handling
In this case a reasonable, finite gatherTimeout must be configured for the ScatterGatherHandler. Otherwise it is going to be blocked waiting for a reply from the gatherer forever, by default.
There is really no way to break expectations from the BlockingQueue.take() from that ScatterGatherHandler code.

Related

Difference between DirectChannel and FluxMessageChannel

I was reading about Spring Integration's FluxMessageChannel here and here, but I still don't understand exactly what are the differences between using a DirectChannel and FluxMessageChannel when using Project Reactor. Since the DirectChannel is stateless and controlled by its pollers, I'd expect the FluxMessageChannel to not be needed. I'm trying to understand when exactly should I use each and why, when speaking on Reactive Streams applications that are implemented with Spring Integration.
I currently have a reactive project that uses DirectChannel, and it seems to work fine, even the documentation says:
the flow behavior is changed from an imperative push model to a reactive pull model
I'd like to understand when to use each of the channels and what is the exact difference when working with Reactive Streams.
The DirectChannel does not have any poller and its implementation is very simple: as long as a message is sent to it, the handler is called. In the same caller's thread:
public class DirectChannel extends AbstractSubscribableChannel {
private final UnicastingDispatcher dispatcher = new UnicastingDispatcher();
private volatile Integer maxSubscribers;
/**
* Create a channel with default {#link RoundRobinLoadBalancingStrategy}.
*/
public DirectChannel() {
this(new RoundRobinLoadBalancingStrategy());
}
Where that UnicastingDispatcher is:
public final boolean dispatch(final Message<?> message) {
if (this.executor != null) {
Runnable task = createMessageHandlingTask(message);
this.executor.execute(task);
return true;
}
return this.doDispatch(message);
}
(There is no executor option for the DirectChannel)
private boolean doDispatch(Message<?> message) {
if (tryOptimizedDispatch(message)) {
return true;
}
...
protected boolean tryOptimizedDispatch(Message<?> message) {
MessageHandler handler = this.theOneHandler;
if (handler != null) {
try {
handler.handleMessage(message);
return true;
}
catch (Exception e) {
throw IntegrationUtils.wrapInDeliveryExceptionIfNecessary(message,
() -> "Dispatcher failed to deliver Message", e);
}
}
return false;
}
That's why I call it " imperative push model". The caller is this case is going to wait until the handler finishes its job. And if you have a big flow, everything is going to be stopped in the sender thread until a sent message has reached the end of the flow of direct channels. In two simple words: the publisher is in charge for the whole execution and it is blocked in this case. You haven't faced any problems with your solution based on the DirectChannel just because you didn't use reactive non-blocking threads yet like Netty in WebFlux or MongoDB reactive driver.
The FluxMessageChannel was really designed for Reactive Streams purposes where the subscriber is in charge for handling a message which it pulls from the Flux on demand. This way just after sending the publisher is free to do anything else. Just because it is already a subscriber responsibility to handle the message.
I would say it is definitely OK to use DirectChannel as long as your handlers are not blocking. As long as they are blocking you should go with FluxMessageChannel. Although don't forget that there are other channel types for different tasks: https://docs.spring.io/spring-integration/docs/current/reference/html/core.html#channel-implementations

Spring Batch Parallel processing with JMS

I implemented a spring batch project that reads from a weblogic Jms queue (Custom Item Reader not message driven), then pass the Jms message data to an item writer (chunk = 1) where i call some APIs and write in DataBase.
However, i am trying to implement parallel Jms processing, reading in parallel Jms messages and passing them to the writer without waiting for the previous processes to complete.
I’ve used a DefaultMessageListenerContainer in a previous project and it offers a parallel consuming of jms messages, but in this project i have to use the spring batch framework.
I tried using the easiest solution (multi-threaded step) but it
didn’t work , JmsException : "invalid blocking receive when another
receive is in progress" which means probably that my reader is
statefull.
I thought about using remote partitioning but then i have to read all
messages and put the data into step execution contexts before calling
the slave steps, which isn't really efficient if dealing with a large
number of messages.
I looked a little bit into remote chunking, i understand that it passes data via queue channels, but i can't seem to find the utility in reading from a Jms and putting messages in a local queue for slave workers.
How can I approach this?
My code:
#Bean
Step step1() {
return steps.get("step1").<Message, DetectionIncoherenceLiqJmsOut>chunk(1)
.reader(reader()).processor(processor()).writer(writer())
.listener(stepListener()).build();
}
#Bean
Job job(#Qualifier("step1") Step step1) {
return jobs.get("job").start(step1).build();
}
Jms Code :
#Override
public void initQueueConnection() throws NamingException, JMSException {
Hashtable<String, String> properties = new Hashtable<String, String>();
properties.put(Context.INITIAL_CONTEXT_FACTORY, env.getProperty(WebLogicConstant.JNDI_FACTORY));
properties.put(Context.PROVIDER_URL, env.getProperty(WebLogicConstant.JMS_WEBLOGIC_URL_RECEIVE));
InitialContext vInitialContext = new InitialContext(properties);
QueueConnectionFactory vQueueConnectionFactory = (QueueConnectionFactory) vInitialContext
.lookup(env.getProperty(WebLogicConstant.JMS_FACTORY_RECEIVE));
vQueueConnection = vQueueConnectionFactory.createQueueConnection();
vQueueConnection.start();
vQueueSession = vQueueConnection.createQueueSession(false, 0);
Queue vQueue = (Queue) vInitialContext.lookup(env.getProperty(WebLogicConstant.JMS_QUEUE_RECEIVE));
consumer = vQueueSession.createConsumer(vQueue, "JMSCorrelationID IS NOT NULL");
}
#Override
public Message receiveMessages() throws NamingException, JMSException {
return consumer.receive(20000);
}
Item reader :
#Override
public Message read() throws Exception {
return jmsServiceReceiver.receiveMessages();
}
Thanks ! i'll appreciate the help :)
There's a BatchMessageListenerContainer in the spring-batch-infrastructure-tests sub project.
https://github.com/spring-projects/spring-batch/blob/d8fc58338d3b059b67b5f777adc132d2564d7402/spring-batch-infrastructure-tests/src/main/java/org/springframework/batch/container/jms/BatchMessageListenerContainer.java
Message listener container adapted for intercepting the message reception with advice provided through configuration.
To enable batching of messages in a single transaction, use the TransactionInterceptor and the RepeatOperationsInterceptor in the advice chain (with or without a transaction manager set in the base class). Instead of receiving a single message and processing it, the container will then use a RepeatOperations to receive multiple messages in the same thread. Use with a RepeatOperations and a transaction interceptor. If the transaction interceptor uses XA then use an XA connection factory, or else the TransactionAwareConnectionFactoryProxy to synchronize the JMS session with the ongoing transaction (opening up the possibility of duplicate messages after a failure). In the latter case you will not need to provide a transaction manager in the base class - it only gets on the way and prevents the JMS session from synchronizing with the database transaction.
Perhaps you could adapt it for your use case.
I was able to do so with a multithreaded step :
// Jobs et Steps
#Bean
Step stepDetectionIncoherencesLiq(#Autowired StepBuilderFactory steps) {
int threadSize = Integer.parseInt(env.getProperty(PropertyConstant.THREAD_POOL_SIZE));
return steps.get("stepDetectionIncoherencesLiq").<Message, DetectionIncoherenceLiqJmsOut>chunk(1)
.reader(reader()).processor(processor()).writer(writer())
.readerIsTransactionalQueue()
.faultTolerant()
.taskExecutor(taskExecutor())
.throttleLimit(threadSize)
.listener(stepListener())
.build();
}
And a jmsItemReader with jmsTemplate instead of creating session and connections explicitly, it manages connections so i dont have the jms exception anymore:( JmsException : "invalid blocking receive when another receive is in progress" )
#Bean
public JmsItemReader<Message> reader() {
JmsItemReader<Message> itemReader = new JmsItemReader<>();
itemReader.setItemType(Message.class);
itemReader.setJmsTemplate(jmsTemplate());
return itemReader;
}

Spring handling RabbitMQ messages concurrently

I am fairly new to message-handling with Spring, so bear with me.
I would like my RabbitMQ message-handler to handle messages concurrently in several threads.
#Component
public class ConsumerService {
#RabbitListener(queues = {"q"})
public void messageHandler(#Payload M msg) {
System.out.println(msg);
}
}
...
#Configuration
#Import({MessageConverterConfiguration.class, ConsumerService.class})
public class ConsumerConfiguration {
#Autowired
private ConnectionFactory connectionFactory;
#Bean
public List<Declarable> declarations() {
return Arrays.asList(
new DirectExchange("e", true, false),
new Queue("q", true, false, false),
new Binding("q", Binding.DestinationType.QUEUE, "e", "q", null)
);
}
#Bean
public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory(MessageConverter contentTypeConverter, SimpleRabbitListenerContainerFactoryConfigurer configurer) {
SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();
factory.setConcurrentConsumers(10);
configurer.configure(factory, connectionFactory);
factory.setMessageConverter(contentTypeConverter);
return factory;
}
}
In my small test there are 4 messages on queue "q". I get to process them all. That is fine. But I get to process them one by one. If I set a breakpoint in "ConsumerService.messageHandler" (essentially delaying the completion of handling a message) I would like to end up having 4 threads in that breakpoint. But I never have more than one thread. As soon as I let it run to complete handling of a message, the next message gets to be handled. What do I need to do to handle the messages concurrently?
There are two ways of achieving this
Either use a threadpool to handle messae processing at your consumer.
Or, create multiple consumer.
I saw you are using concurrentConsumers property to automatically handling of creating multiple consumers by Spring AMQP. Try setting the PrefetchCount to 1 and set MaxConcurrentConsumers also.
Most probably you already have four messages in queues and as default value of Prefetch Count is large only one consumer is consuming all the messages present on queue.
Sorry, I forgot to write that I got it working. Essentially what I have now is:
...
factory.setConcurrentConsumers(10);
factory.setMaxConcurrentConsumers(20);
factory.setConsecutiveActiveTrigger(1);
factory.setConsecutiveIdleTrigger(1);
factory.setPrefetchCount(100);
...
I do believe with concurrentConsumers alone it will actually eventually (under enough load) handle messages in parallel. Problem was that I had only 4 messages in my little test, and it will never bother to activate more than one consumer(-thread) for that. Setting consecutiveActiveTrigger to 1 helps here. Guess prefetchCount also has something to say. Anyway, case closed.

How to set a Message Handler programmatically in Spring Cloud AWS SQS?

maybe someone has an idea to my following problem:
I am currently on a project, where i want to use the AWS SQS with Spring Cloud integration. For the receiver part i want to provide a API, where a user can register a "message handler" on a queue, which is an interface and will contain the user's business logic, e.g.
MyAwsSqsReceiver receiver = new MyAwsSqsReceiver();
receiver.register("a-queue-name", new MessageHandler(){
#Override
public void handle(String message){
//... business logic for the received message
}
});
I found examples, e.g.
https://codemason.me/2016/03/12/amazon-aws-sqs-with-spring-cloud/
and read the docu
http://cloud.spring.io/spring-cloud-aws/spring-cloud-aws.html#_sqs_support
But the only thing i found there to "connect" a functionality for processing a incoming message is a annotation on a method, e.g. #SqsListener or #MessageMapping.
These annotations are fixed to a certain queue-name, though. So now i am at a loss, how to dynamically "connect" my provided "MessageHandler" (from my API) to the incoming message for the specified queuename.
In the Config the example there is a SimpleMessageListenerContainer, which gets a QueueMessageHandler set, but this QueueMessageHandler does not seem
to be the right place to set my handler or to override its methods and provide my own subclass of QueueMessageHandler.
I already did something like this with the Spring Amqp integration and RabbitMq and thought, that it would be also similar here with AWS SQS.
Does anyone have an idea, how to accomplish this?
thx + bye,
Ximon
EDIT:
I found, that Spring JMS could actually do that, e.g. www.javacodegeeks.com/2016/02/aws-sqs-spring-jms-integration.html. Does anybody know, what consequences using JMS protocol has here, good or bad?
I am facing the same issue.
I am trying to go in an unusual way where I set up an Aws client bean at build time and then instead of using sqslistener annotation to consume from the specific queue I use the scheduled annotation which I can programmatically pool (each 10 secs in my case) from which queue I want to consume.
I did the example that iterates over queues defined in properties and then consumes from each one.
Client Bean:
#Bean
#Primary
public AmazonSQSAsync awsSqsClient() {
return AmazonSQSAsyncClientBuilder
.standard()
.withRegion(Regions.EU_WEST_1.getName())
.build();
}
Consumer:
// injected in the constructor
private final AmazonSQSAsync awsSqsClient;
#Scheduled(fixedDelay = 10000)
public void pool() {
properties.getSqsQueues()
.forEach(queue -> {
val receiveMessageRequest = new ReceiveMessageRequest(queue)
.withWaitTimeSeconds(10)
.withMaxNumberOfMessages(10);
// reading the messages
val result = awsSqsClient.receiveMessage(receiveMessageRequest);
val sqsMessages = result.getMessages();
log.info("Received Message on queue {}: message = {}", queue, sqsMessages.toString());
// deleting the messages
sqsMessages.forEach(message -> {
val deleteMessageRequest = new DeleteMessageRequest(queue, message.getReceiptHandle());
awsSqsClient.deleteMessage(deleteMessageRequest);
});
});
}
Just to clarify, in my case, I need multiple queues, one for each tenant, with the queue URL for each one passed in a property file. Of course, in your case, you could get the queue names from another source, maybe a ThreadLocal which has the queues you have created in runtime.
If you wish, you can also try the JMS approach where you create message consumers and add a listener to each one you wish (See the doc Aws Jms documentation).
When we do Spring and SQS we use the spring-cloud-starter-aws-messaging.
Then just create a Listener class
#Component
public class MyListener {
#SQSListener(value="myqueue")
public void listen(MyMessageType message) {
//process the message
}
}

Stomp over websocket using Spring and sockJS message lost

On the client side javascript I have
stomp.subscribe("/topic/path", function (message) {
console.info("message received");
});
And on the server side
public class Controller {
private final MessageSendingOperations<String> messagingTemplate;
@Autowired
public Controller(MessageSendingOperations<String> messagingTemplate) {
this.messagingTemplate = messagingTemplate;
}
#SubscribeMapping("/topic/path")
public void subscribe() {
LOGGER.info("before send");
messagingTemplate.convertAndSend(/topic/path, "msg");
}
}
From this setup, I am occasionally (around once in 30 page refreshes) experiencing message dropping, which means I can see neither "message received" msg on the client side nor the websocket traffic from Chrome debugging tool.
"before send" is always logged on the server side.
This looks like that the MessageSendingOperations is not ready when I call it in the subscribe() method. (if I put Thread.sleep(50); before calling messagingTemplate.convertAndSend the problem would disappear (or much less likely to be reproduced))
I wonder if anyone experienced the same before and if there is an event that can tell me MessageSendingOperations is ready or not.
The issue you are facing is laying in the nature of clientInboundChannel which is ExecutorSubscribableChannel by default.
It has 3 subscribers:
0 = {SimpleBrokerMessageHandler#5276} "SimpleBroker[DefaultSubscriptionRegistry[cache[0 destination(s)], registry[0 sessions]]]"
1 = {UserDestinationMessageHandler#5277} "UserDestinationMessageHandler[DefaultUserDestinationResolver[prefix=/user/]]"
2 = {SimpAnnotationMethodMessageHandler#5278} "SimpAnnotationMethodMessageHandler[prefixes=[/app/]]"
which are invoked within taskExecutor, hence asynchronously.
The first one here (SimpleBrokerMessageHandler (or StompBrokerRelayMessageHandler) if you use broker-relay) is responsible to register subscription for the topic.
Your messagingTemplate.convertAndSend(/topic/path, "msg") operation may be performed before the subscription registration for that WebSocket session, because they are performed in the separate threads. Hence the Broker handler doesn't know you to send the message to the session.
The #SubscribeMapping can be configured on method with return, where the result of this method will be sent as a reply to that subscription function on the client.
HTH
Here is my solution. It is along the same lines. Added a ExecutorChannelInterceptor and published a custom SubscriptionSubscribedEvent. The key is to publish the event after the message has been handled by AbstractBrokerMessageHandler which means the subscription has been registered with the broker.
#Override
public void configureClientInboundChannel(ChannelRegistration registration) {
registration.interceptors(new ExecutorChannelInterceptorAdapter() {
#Override
public void afterMessageHandled(Message<?> message, MessageChannel channel, MessageHandler handler, Exception ex) {
SimpMessageHeaderAccessor accessor = SimpMessageHeaderAccessor.wrap(message);
if (accessor.getMessageType() == SimpMessageType.SUBSCRIBE && handler instanceof AbstractBrokerMessageHandler) {
/*
* Publish a new session subscribed event AFTER the client
* has been subscribed to the broker. Before spring was
* publishing the event after receiving the message but not
* necessarily after the subscription occurred. There was a
* race condition because the subscription was being done on
* a separate thread.
*/
applicationEventPublisher.publishEvent(new SessionSubscribedEvent(this, message));
}
}
});
}
A little late but I thought I'd add my solution. I was having the same problem with the subscription not being registered before I was sending data through the messaging template. This issue happened rarely and unpredictable because of the race with the DefaultSubscriptionRegistry.
Unfortunately, I could not just use the return method of the #SubscriptionMapping because we were using a custom object mapper that changed dynamically based on the type of user (attribute filtering essentially).
I searched through the Spring code and found SubscriptionMethodReturnValueHandler was responsible for sending the return value of subscription mappings and had a different messagingTemplate than the autowired SimpMessagingTemplate of my async controller!!
So the solution was autowiring MessageChannel clientOutboundChannel into my async controller and using that to create a SimpMessagingTemplate. (You can't directly wire it in because you'll just get the template going to the broker).
In subscription methods, I then used the direct template while in other methods I used the template that went to the broker.

Resources