Failed attempt at goto 10 in Processing - processing

I've tried a Goto 10 exercise on Processing and have no idea where is my mistake. The intent was to make a Goto 10 like scenario but there's something I'm missing. I believe the loop may be off.
//line size
int a = 15;
void setup(){
background(255);
size(500,500);
noLoop();
strokeWeight(2);
}
void draw(){
// Y
for(int lineY = 0; lineY < height/a; lineY++){
// X
for(int lineX = 0; lineX < width/a; lineX++){
float randomN = random(1);
pushMatrix();
if (randomN >= 0.5){
rotate(-90);
}
else {
rotate(-45);
}
line(0,0,a,0);
popMatrix();
translate(a, 0);
}
translate((-width), a);
}
}

The amount by which you're translating the x movements of each column don't add up to the full width of the sketch:
for(int lineX = 0; lineX < width/a; lineX++)
width/a will be 33.333 in your example (500 / 15). So you'll end up with 33 loops and 33 columns. But 33 columns * 15 px wide = 495 (not 500).
So when you try to translate back to the beginning of the new row with translate((-width), a); you're moving back a little bit too far each row (-500 instead of -495).
To fix it, make sure you only move back the distance that you moved forward while drawing the columns:
int numCols = floor(width/a); // calculate the number of columns
translate((-numCols * a), a); // move back the correct x distance

Related

How to set up if statements so that loop goes forward and then in reverse? Processing

int x = 31;
int y = 31;
int x_dir = 4;
int y_dir = 0;
void setup ()
{
size (800, 800);
}
void draw ()
{
background (150);
ellipse (x,y,60, 60);
if (x+30>=width)
{
x_dir =-4;
y_dir = 4;
}
if (y+30>=height)
{
x_dir=4;
y_dir = 0;
}
if (x+30>=width)
{
x_dir = -4;
}
x+=x_dir;
y+=y_dir;
println(x,y);
}
Hi,
I have to create this program in processing which produces an animation of a ball going in a Z pattern (top left to top right, diagonal top right to bottom left, and then straight from bottom left to bottom right) which then goes backwards along the same path it came.
While I have the code written out for the forward direction, I don't know what 2 if or else statements I need to write for the program so that based on one condition it goes forwards, and based on another condition it will go backwards, and it will continue doing so until it terminates.
If I am able to figure out which two if statements I need to write, all I need to do is copy and reverse the x_dir and y_dir signs on the forward loop.
There are a ton of different ways you can do this.
One approach is to keep track of which "mode" you're in. You could do this using an int variable that's 0 when you're on the first part of the path, 1 when you're on the second part of the path, etc. Then just use an if statement to decide what to do, how to move the ball, etc.
Here's an example:
int x = 31;
int y = 31;
int mode = 0;
void setup ()
{
size (800, 800);
}
void draw ()
{
background (150);
ellipse (x, y, 60, 60);
if (mode == 0) {
x = x + 4;
if (x+30>=width) {
mode = 1;
}
} else if (mode == 1) {
x = x - 4;
y = y + 4;
if (y+30>=height) {
mode = 2;
}
} else if (mode == 2) {
x = x + 4;
if (x+30>=width) {
mode = 3;
}
} else if (mode == 3) {
x = x - 4;
y = y - 4;
if (y-30 < 0) {
mode = 2;
}
}
}
Like I said, this is only one way to approach the problem, and there are some obvious improvements you could make. For example, you could store the movement speeds and the conditions that change the mode in an array (or better yet, in objects) and get rid of all of the if statements.

Simple image processing algorithm causes Processing to freeze

I've written an algorithm in Processing to do the following:
1. Instantiate a 94 x 2 int array
2. Load a jpg image of dimensions 500 x 500 pixels
3. Iterate over every pixel in the image and determine whether it is black or white then change a variable related to the array
4. Print the contents of the array
For some reason this algorithm freezes immediately. I've put print statements in that show me that it freezes before even attempting to load the image. This is especially confusing to me in light of the fact that I have written another very similar algorithm that executes without complications. The other algorithm reads an image, averages the color of each tile of whatever size is specified, and then prints rectangles over the region that was averaged with the average color, effectively pixelating the image. Both algorithms load an image and examine each of its pixels. The one in question is mostly different in that it doesn't draw anything. I was going to say that it was different for having an array but the pixelation algorithm holds all of the colors in a color array which should take up far more space than the int array.
From looking in my mac's console.app I see that there was originally this error: "java.lang.OutOfMemoryError: GC overhead limit exceeded". From other suggestions/sources on the web I tried bumping the memory allocation from 256mb to 4000mb (doing this felt meaningless because my analysis of the algorithms showed they should be the same complexity but I tried anyways). This did not stop freezing but changed the error to a combination of "JavaNativeFoundation error occurred obtaining Java exception description" and "java.lang.OutOfMemoryError: Java heap space".
Then I tried pointing processing to my local jdk with the hope of utilizing the 64 bit jdk over processing's built in 32 bit jdk. From within Processing.app/Contents I executed the following commands:
mv Java java-old
ln -s /Library/Java/JavaVirtualMachines/jdk1.7.0_79.jdk Java
Processing would not start after this attempt with the following error populating my console:
"com.apple.xpc.launchd[1]: (org.processing.app.160672[13559]) Service exited with abnormal code: 1"
Below is my code:
First the noncompliant algorithm
int squareSize=50;
int numRows = 10;
int numCols = 10;
PFont myFont;
PImage img;
//33-126
void setup(){
size(500,500);
count();
}
void count(){
ellipseMode(RADIUS);
int[][] asciiArea = new int[94][2];
println("hello?");
img=loadImage("countingPicture.jpg");
println("image loaded");
for(int i=0; i<(500/squareSize); i++){
for(int j=0; j<(500/squareSize); j++){
int currentValue=i+j*numCols;
if(currentValue+33>126){
break;
}
println(i+", "+j);
asciiArea[currentValue][0]=currentValue+33;
asciiArea[currentValue][1]=determineTextArea(i,j,squareSize);
//fill(color(255,0,0));
//ellipse(i*squareSize,j*squareSize,3,3);
}
}
println("done calculating");
displayArrayContents(asciiArea);
}
int determineTextArea(int i, int j, int squareSize){
int textArea = 0;
double n=0.0;
while(n < squareSize*squareSize){
n+=1.0;
int xOffset = (int)(n%((double)squareSize));
int yOffset = (int)(n/((double)squareSize));
color c = img.get(i*squareSize+xOffset, j*squareSize+yOffset);
if(red(c)!=255 || green(c)!=255 || blue(c)!=255){
println(red(c)+" "+green(c)+" "+blue(c));
textArea++;
}
}
return textArea;
}
void displayArrayContents(int[][] arr){
int i=0;
println("\n now arrays");
while(i<94){
println(arr[i][0]+" "+arr[i][1]);
}
}
The pixelation algorithm that works:
PImage img;
int direction = 1;
float signal;
int squareSize = 5;
int wideness = 500;
int highness = 420;
int xDimension = wideness/squareSize;
int yDimension= highness/squareSize;
void setup() {
size(1500, 420);
noFill();
stroke(255);
frameRate(30);
img = loadImage("imageIn.jpg");
color[][] colors = new color[xDimension][yDimension];
for(int drawingNo=0; drawingNo < 3; drawingNo++){
for(int i=0; i<xDimension; i++){
for(int j=0; j<yDimension; j++){
double average = 0;
double n=0.0;
while(n < squareSize*squareSize){
n+=1.0;
int xOffset = (int)(n%((double)squareSize));
int yOffset = (int)(n/((double)squareSize));
color c = img.get(i*squareSize+xOffset, j*squareSize+yOffset);
float cube = red(c)*red(c) + green(c)*green(c) + blue(c)*blue(c);
double grayValue = (int)(sqrt(cube)*(255.0/441.0));
double nAsDouble = (double)n;
average=(grayValue + (n-1.0)*average)/n;
average=(grayValue/n)+((n-1.0)/(n))*average;
}
//average=discretize(average);
println(i+" "+j+" "+average);
colors[i][j]=color((int)average);
fill(colors[i][j]);
if(drawingNo==0){ //stroke(colors[i][j]); }
stroke(210);}
if(drawingNo==1){ stroke(150); }
if(drawingNo==2){ stroke(90); }
//stroke(colors[i][j]);
rect(drawingNo*wideness+i*squareSize,j*squareSize,squareSize,squareSize);
}
}
}
save("imageOut.jpg");
}
You're entering an infinite loop, which makes the println() statements unreliable. Fix the infinite loop, and your print statements will work again.
Look at this while loop:
while(i<94){
println(arr[i][0]+" "+arr[i][1]);
}
When will i ever become >= 94?
You never increment i, so its value is always 0. You can prove this by adding a println() statement inside the while loop:
while(i<94){
println("i: " + i);
println(arr[i][0]+" "+arr[i][1]);
}
You probably wanted to increment i inside the while loop. Or just use a for loop instead.

Find the maximum height they can make by standing on each other?

Weights of n men and their strengths (max weight they can carry) are given. Height of all are same and given. Find the maximum height they can make by standing on each other?
That means, you have to place them by taking maximum number of men from them, such that no men is carrying weight more than his strength.
This question is bugging me. First I thought using greedy, by taking person of maximum strength first, but it is not giving correct answer. Then I tried to solve it, like knapsack, which is also not right. I am not able to come up with an efficient algorithm. Can anyone help?
First of all sorry by my english :)
Here is one way that you can think as a way to solve the problem.
Ok if you can supposed that each floor absorbs the whole weight in a uniform form, ( I mean there are no restriction like "one man can carry only the weight of two mens" or somethin like that..).
We will start with an hypothetical structure which has one man for each floor, and with that structure we will start to check the restrictions and arrange people.
We will check the lowest floor (first floor), and we will ask: Can this floor handle the weight of all the higher floors?
If the answer is no, we remove one men from the top of the tower and we add it to this floor, and we check again the weight condition on this floor.
If the answer is yes, we pass to check the next floor.
After that we will have an structure which meet the requirements.
And the C# code:
int amountOfMens = n;
float weight = w;
float strength = s;
float height = h;
int []mensInEachFloor;
public void MyAlg()
{
mensInEachFloor = new int[ amountOfMens ]; // the max height that we can achieve is the max amount of mens.
for(int i=0; i < mensInEachFloor.Length; i++ )
{
// we put one men on each floor, just to check if the highest heigth is achivable
mensInEachFloor[i] = 1;
}
// now we start to use our algorithm
// for each floor:
for(int i = 0; i < mensInEachFloor.Length; i++ )
{
// for each floor we will work on it until supports its designed weight
bool floorOk = false;
while(! floorOk)
{
// we check if the weigth of all the higher floors can be supported by this level
float weightToBeSupported = TotalWeightOfHigherFloors(i+1);
float weightThatCanBeSupported = WeightHandledByFloor(i);
if( weightToBeSupported > weightThatCanBeSupported )
{
// Remove one men from the top
RemoveOneManFromHighestFloor();
// add one men to this floor to help with the weight
AddOneManToFloor(i);
}
else
{
// we are ok on this floor :)
floorOk = true;
}
}
}
Debug.Log("The total heigth of the tower is : " + GetTowerHeight() );
}
private float TotalWeightOfHigherFloors(int startingFloor)
{
float totalWeight = 0;
for(int i= startingFloor; i< mensInEachFloor.Length; i++ )
{
totalWeight += mensInEachFloor[i] * weight;
}
return totalWeight;
}
private float WeightHandledByFloor(int floor)
{
return mensInEachFloor[floor] * strength;
}
private void RemoveOneManFromHighestFloor()
{
// we start to see from the top..
for(int i = mensInEachFloor.Length - 1 ; i >= 0; i-- )
{
// if on this floor are one or more mens..
if(mensInEachFloor[i] != 0)
{
// we remove from the floor
mensInEachFloor[i] = mensInEachFloor[i] - 1;
// and we are done
break;
}
}
}
private void AddOneManToFloor(int floor)
{
// Add one man to the selected floor
mensInEachFloor[floor] = mensInEachFloor[floor] + 1;
}
private float GetTowerHeight()
{
// We will count the number of floors with mens on it
float amountOfFloors = 0;
for(int i= 0; i< mensInEachFloor.Length; i++ )
{
// If there are more than zero mens
if( mensInEachFloor[i] > 0 )
{
// it means that it is a valid floor
amountOfFloors++;
}
}
// number of floors times height
return amountOfFloors * height;
}
Cheers !

understanding hough transform accumulator

I don't know if I am understanding things wrong or if it's something else.
This is how the hough transformation appears to me:
You just go over every pixel and calculate rho and theta with this formula:
r = x.cos(θ) + y.sin(θ)
Most people put this formula in a loop from 0->180 or 0-360.
why?
afterwards you put all the values in the accumulator.
But for some dark and mysterious reason, all the points from a same line
will give the same theta and r value.
How is this possible? I really don't get it.
I tried it, these were my results:
I Just put a straight black horizontal line on an image. The line was 10px long 1px high. So I applied the formula, but Instead of getting 1 place in my accumulator with value 10. I got 5 places with value 10, why?
this is my code if necessary:
int outputImage[400][400];
int accumulator[5000][5000]; //random size
int i,j;
int r,t;
int x1,y1,x2,y2;
/* PUT ALL VALUES IN ACCU */
for(i=0;i<imageSize[0];i++)
{
for( j=0;j<imageSize[1];j++)
{
if (inputImage[i][j] == 0x00) //just to test everything, formula only applied on the black line
{
for( t=0;t<180;t++)
{
r = i * cos(t) + j*sin(t);
accumulator[r][t] ++;
}
}
}
}
/*READ ACCU, and draw lines */
for (i=0; i<5000;i++)
{
for (j=0;j<5000;j++)
{
if(accumulator[i][j] >= 10) // If accu value >= tresholdvalue, I believe we have a line
{
x1 = accumulator[i][j] * i / (cos(accumulator[i][j] * j));
y1 = 0;
x2 = 0;
y2 = accumulator[i][j] * i / (sin(accumulator[i][j] * j));
// now i just need to draw all the lines between x1y1 and x2y2
}
}
}
Thanks!

Find local maxima in grayscale image using OpenCV

Does anybody know how to find the local maxima in a grayscale IPL_DEPTH_8U image using OpenCV? HarrisCorner mentions something like that but I'm actually not interested in corners ...
Thanks!
A pixel is considered a local maximum if it is equal to the maximum value in a 'local' neighborhood. The function below captures this property in two lines of code.
To deal with pixels on 'plateaus' (value equal to their neighborhood) one can use the local minimum property, since plateaus pixels are equal to their local minimum. The rest of the code filters out those pixels.
void non_maxima_suppression(const cv::Mat& image, cv::Mat& mask, bool remove_plateaus) {
// find pixels that are equal to the local neighborhood not maximum (including 'plateaus')
cv::dilate(image, mask, cv::Mat());
cv::compare(image, mask, mask, cv::CMP_GE);
// optionally filter out pixels that are equal to the local minimum ('plateaus')
if (remove_plateaus) {
cv::Mat non_plateau_mask;
cv::erode(image, non_plateau_mask, cv::Mat());
cv::compare(image, non_plateau_mask, non_plateau_mask, cv::CMP_GT);
cv::bitwise_and(mask, non_plateau_mask, mask);
}
}
Here's a simple trick. The idea is to dilate with a kernel that contains a hole in the center. After the dilate operation, each pixel is replaced with the maximum of it's neighbors (using a 5 by 5 neighborhood in this example), excluding the original pixel.
Mat1b kernelLM(Size(5, 5), 1u);
kernelLM.at<uchar>(2, 2) = 0u;
Mat imageLM;
dilate(image, imageLM, kernelLM);
Mat1b localMaxima = (image > imageLM);
Actually after I posted the code above I wrote a better and very very faster one ..
The code above suffers even for a 640x480 picture..
I optimized it and now it is very very fast even for 1600x1200 pic.
Here is the code :
void localMaxima(cv::Mat src,cv::Mat &dst,int squareSize)
{
if (squareSize==0)
{
dst = src.clone();
return;
}
Mat m0;
dst = src.clone();
Point maxLoc(0,0);
//1.Be sure to have at least 3x3 for at least looking at 1 pixel close neighbours
// Also the window must be <odd>x<odd>
SANITYCHECK(squareSize,3,1);
int sqrCenter = (squareSize-1)/2;
//2.Create the localWindow mask to get things done faster
// When we find a local maxima we will multiply the subwindow with this MASK
// So that we will not search for those 0 values again and again
Mat localWindowMask = Mat::zeros(Size(squareSize,squareSize),CV_8U);//boolean
localWindowMask.at<unsigned char>(sqrCenter,sqrCenter)=1;
//3.Find the threshold value to threshold the image
//this function here returns the peak of histogram of picture
//the picture is a thresholded picture it will have a lot of zero values in it
//so that the second boolean variable says :
// (boolean) ? "return peak even if it is at 0" : "return peak discarding 0"
int thrshld = maxUsedValInHistogramData(dst,false);
threshold(dst,m0,thrshld,1,THRESH_BINARY);
//4.Now delete all thresholded values from picture
dst = dst.mul(m0);
//put the src in the middle of the big array
for (int row=sqrCenter;row<dst.size().height-sqrCenter;row++)
for (int col=sqrCenter;col<dst.size().width-sqrCenter;col++)
{
//1.if the value is zero it can not be a local maxima
if (dst.at<unsigned char>(row,col)==0)
continue;
//2.the value at (row,col) is not 0 so it can be a local maxima point
m0 = dst.colRange(col-sqrCenter,col+sqrCenter+1).rowRange(row-sqrCenter,row+sqrCenter+1);
minMaxLoc(m0,NULL,NULL,NULL,&maxLoc);
//if the maximum location of this subWindow is at center
//it means we found the local maxima
//so we should delete the surrounding values which lies in the subWindow area
//hence we will not try to find if a point is at localMaxima when already found a neighbour was
if ((maxLoc.x==sqrCenter)&&(maxLoc.y==sqrCenter))
{
m0 = m0.mul(localWindowMask);
//we can skip the values that we already made 0 by the above function
col+=sqrCenter;
}
}
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
The first question to answer would be what is "local" in your opinion. The answer may well be a square window (say 3x3 or 5x5) or circular window of a certain radius. You can then scan over the entire image with the window centered at each pixel and pick the highest value in the window.
See this for how to access pixel values in OpenCV.
This is very fast method. It stored founded maxima in a vector of
Points.
vector <Point> GetLocalMaxima(const cv::Mat Src,int MatchingSize, int Threshold, int GaussKernel )
{
vector <Point> vMaxLoc(0);
if ((MatchingSize % 2 == 0) || (GaussKernel % 2 == 0)) // MatchingSize and GaussKernel have to be "odd" and > 0
{
return vMaxLoc;
}
vMaxLoc.reserve(100); // Reserve place for fast access
Mat ProcessImg = Src.clone();
int W = Src.cols;
int H = Src.rows;
int SearchWidth = W - MatchingSize;
int SearchHeight = H - MatchingSize;
int MatchingSquareCenter = MatchingSize/2;
if(GaussKernel > 1) // If You need a smoothing
{
GaussianBlur(ProcessImg,ProcessImg,Size(GaussKernel,GaussKernel),0,0,4);
}
uchar* pProcess = (uchar *) ProcessImg.data; // The pointer to image Data
int Shift = MatchingSquareCenter * ( W + 1);
int k = 0;
for(int y=0; y < SearchHeight; ++y)
{
int m = k + Shift;
for(int x=0;x < SearchWidth ; ++x)
{
if (pProcess[m++] >= Threshold)
{
Point LocMax;
Mat mROI(ProcessImg, Rect(x,y,MatchingSize,MatchingSize));
minMaxLoc(mROI,NULL,NULL,NULL,&LocMax);
if (LocMax.x == MatchingSquareCenter && LocMax.y == MatchingSquareCenter)
{
vMaxLoc.push_back(Point( x+LocMax.x,y + LocMax.y ));
// imshow("W1",mROI);cvWaitKey(0); //For gebug
}
}
}
k += W;
}
return vMaxLoc;
}
Found a simple solution.
In this example, if you are trying to find 2 results of a matchTemplate function with a minimum distance from each other.
cv::Mat result;
matchTemplate(search, target, result, CV_TM_SQDIFF_NORMED);
float score1;
cv::Point displacement1 = MinMax(result, score1);
cv::circle(result, cv::Point(displacement1.x+result.cols/2 , displacement1.y+result.rows/2), 10, cv::Scalar(0), CV_FILLED, 8, 0);
float score2;
cv::Point displacement2 = MinMax(result, score2);
where
cv::Point MinMax(cv::Mat &result, float &score)
{
double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc.x = minLoc.x - result.cols/2;
matchLoc.y = minLoc.y - result.rows/2;
return minVal;
}
The process is:
Find global Minimum using minMaxLoc
Draw a filled white circle around global minimum using min distance between minima as radius
Find another minimum
The the scores can be compared to each other to determine, for example, the certainty of the match,
To find more than just the global minimum and maximum try using this function from skimage:
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
You can parameterize the minimum distance between peaks, too. And more. To find minima, use negated values (take care of the array type though, 255-image could do the trick).
You can go over each pixel and test if it is a local maxima. Here is how I would do it.
The input is assumed to be type CV_32FC1
#include <vector>//std::vector
#include <algorithm>//std::sort
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
//structure for maximal values including position
struct SRegionalMaxPoint
{
SRegionalMaxPoint():
values(-FLT_MAX),
row(-1),
col(-1)
{}
float values;
int row;
int col;
//ascending order
bool operator()(const SRegionalMaxPoint& a, const SRegionalMaxPoint& b)
{
return a.values < b.values;
}
};
//checks if pixel is local max
bool isRegionalMax(const float* im_ptr, const int& cols )
{
float center = *im_ptr;
bool is_regional_max = true;
im_ptr -= (cols + 1);
for (int ii = 0; ii < 3; ++ii, im_ptr+= (cols-3))
{
for (int jj = 0; jj < 3; ++jj, im_ptr++)
{
if (ii != 1 || jj != 1)
{
is_regional_max &= (center > *im_ptr);
}
}
}
return is_regional_max;
}
void imregionalmax(
const cv::Mat& input,
std::vector<SRegionalMaxPoint>& buffer)
{
//find local max - top maxima
static const int margin = 1;
const int rows = input.rows;
const int cols = input.cols;
for (int i = margin; i < rows - margin; ++i)
{
const float* im_ptr = input.ptr<float>(i, margin);
for (int j = margin; j < cols - margin; ++j, im_ptr++)
{
//Check if pixel is local maximum
if ( isRegionalMax(im_ptr, cols ) )
{
cv::Rect roi = cv::Rect(j - margin, i - margin, 3, 3);
cv::Mat subMat = input(roi);
float val = *im_ptr;
//replace smallest value in buffer
if ( val > buffer[0].values )
{
buffer[0].values = val;
buffer[0].row = i;
buffer[0].col = j;
std::sort(buffer.begin(), buffer.end(), SRegionalMaxPoint());
}
}
}
}
}
For testing the code you can try this:
cv::Mat temp = cv::Mat::zeros(15, 15, CV_32FC1);
temp.at<float>(7, 7) = 1;
temp.at<float>(3, 5) = 6;
temp.at<float>(8, 10) = 4;
temp.at<float>(11, 13) = 7;
temp.at<float>(10, 3) = 8;
temp.at<float>(7, 13) = 3;
vector<SRegionalMaxPoint> buffer_(5);
imregionalmax(temp, buffer_);
cv::Mat debug;
cv::cvtColor(temp, debug, cv::COLOR_GRAY2BGR);
for (auto it = buffer_.begin(); it != buffer_.end(); ++it)
{
circle(debug, cv::Point(it->col, it->row), 1, cv::Scalar(0, 255, 0));
}
This solution does not take plateaus into account so it is not exactly the same as matlab's imregionalmax()
I think you want to use the
MinMaxLoc(arr, mask=NULL)-> (minVal, maxVal, minLoc, maxLoc)
Finds global minimum and maximum in array or subarray
function on you image

Resources