understanding hough transform accumulator - hough-transform

I don't know if I am understanding things wrong or if it's something else.
This is how the hough transformation appears to me:
You just go over every pixel and calculate rho and theta with this formula:
r = x.cos(θ) + y.sin(θ)
Most people put this formula in a loop from 0->180 or 0-360.
why?
afterwards you put all the values in the accumulator.
But for some dark and mysterious reason, all the points from a same line
will give the same theta and r value.
How is this possible? I really don't get it.
I tried it, these were my results:
I Just put a straight black horizontal line on an image. The line was 10px long 1px high. So I applied the formula, but Instead of getting 1 place in my accumulator with value 10. I got 5 places with value 10, why?
this is my code if necessary:
int outputImage[400][400];
int accumulator[5000][5000]; //random size
int i,j;
int r,t;
int x1,y1,x2,y2;
/* PUT ALL VALUES IN ACCU */
for(i=0;i<imageSize[0];i++)
{
for( j=0;j<imageSize[1];j++)
{
if (inputImage[i][j] == 0x00) //just to test everything, formula only applied on the black line
{
for( t=0;t<180;t++)
{
r = i * cos(t) + j*sin(t);
accumulator[r][t] ++;
}
}
}
}
/*READ ACCU, and draw lines */
for (i=0; i<5000;i++)
{
for (j=0;j<5000;j++)
{
if(accumulator[i][j] >= 10) // If accu value >= tresholdvalue, I believe we have a line
{
x1 = accumulator[i][j] * i / (cos(accumulator[i][j] * j));
y1 = 0;
x2 = 0;
y2 = accumulator[i][j] * i / (sin(accumulator[i][j] * j));
// now i just need to draw all the lines between x1y1 and x2y2
}
}
}
Thanks!

Related

How to set up if statements so that loop goes forward and then in reverse? Processing

int x = 31;
int y = 31;
int x_dir = 4;
int y_dir = 0;
void setup ()
{
size (800, 800);
}
void draw ()
{
background (150);
ellipse (x,y,60, 60);
if (x+30>=width)
{
x_dir =-4;
y_dir = 4;
}
if (y+30>=height)
{
x_dir=4;
y_dir = 0;
}
if (x+30>=width)
{
x_dir = -4;
}
x+=x_dir;
y+=y_dir;
println(x,y);
}
Hi,
I have to create this program in processing which produces an animation of a ball going in a Z pattern (top left to top right, diagonal top right to bottom left, and then straight from bottom left to bottom right) which then goes backwards along the same path it came.
While I have the code written out for the forward direction, I don't know what 2 if or else statements I need to write for the program so that based on one condition it goes forwards, and based on another condition it will go backwards, and it will continue doing so until it terminates.
If I am able to figure out which two if statements I need to write, all I need to do is copy and reverse the x_dir and y_dir signs on the forward loop.
There are a ton of different ways you can do this.
One approach is to keep track of which "mode" you're in. You could do this using an int variable that's 0 when you're on the first part of the path, 1 when you're on the second part of the path, etc. Then just use an if statement to decide what to do, how to move the ball, etc.
Here's an example:
int x = 31;
int y = 31;
int mode = 0;
void setup ()
{
size (800, 800);
}
void draw ()
{
background (150);
ellipse (x, y, 60, 60);
if (mode == 0) {
x = x + 4;
if (x+30>=width) {
mode = 1;
}
} else if (mode == 1) {
x = x - 4;
y = y + 4;
if (y+30>=height) {
mode = 2;
}
} else if (mode == 2) {
x = x + 4;
if (x+30>=width) {
mode = 3;
}
} else if (mode == 3) {
x = x - 4;
y = y - 4;
if (y-30 < 0) {
mode = 2;
}
}
}
Like I said, this is only one way to approach the problem, and there are some obvious improvements you could make. For example, you could store the movement speeds and the conditions that change the mode in an array (or better yet, in objects) and get rid of all of the if statements.

improper mandelbrot set output plotting

i am trying to write a code to display Mandelbrot set for the numbers between
(-3,-3) to (2,2) on my terminal.
The main function generates & feeds a complex number to analyze function.
The analyze function returns character "*" for the complex number Z within the set and "." for the numbers which lie outside the set.
The code:
#define MAX_A 2 // upperbound on real
#define MAX_B 2 // upper bound on imaginary
#define MIN_A -3 // lowerbnd on real
#define MIN_B -3 // lower bound on imaginary
#define NX 300 // no. of points along x
#define NY 200 // no. of points along y
#define max_its 50
int analyze(double real,double imag);
void main()
{
double a,b;
int x,x_arr,y,y_arr;
int array[NX][NY];
int res;
for(y=NY-1,x_arr=0;y>=0;y--,x_arr++)
{
for(x=0,y_arr++;x<=NX-1;x++,y_arr++)
{
a= MIN_A+ ( x/( (double)NX-1)*(MAX_A-MIN_A) );
b= MIN_B+ ( y/( (double)NY-1 )*(MAX_B-MIN_B) );
//printf("%f+i%f ",a,b);
res=analyze(a,b);
if(res>49)
array[x][y]=42;
else
array[x][y]=46;
}
// printf("\n");
}
for(y=0;y<NY;y++)
{
for(x=0;x<NX;x++)
printf("%2c",array[x][y]);
printf("\n");
}
}
The analyze function accepts the coordinate on imaginary plane ;
and computes (Z^2)+Z 50 times ; and while computing if the complex number explodes, then function returns immidiately else the function returns after finishing 50 iterations;
int analyze(double real,double imag)
{
int iter=0;
double r=4.0;
while(iter<50)
{
if ( r < ( (real*real) + (imag*imag) ) )
{
return iter;
}
real= ( (real*real) - (imag*imag) + real);
imag= ( (2*real*imag)+ imag);
iter++;
}
return iter;
}
So, i am analyzing 60000 (NX * NY) numbers & displaying it on the terminal
considering 3:2 ratio (300,200) , i even tried 4:3 (NX:NY) , but the output remains same and the generated shape is not even close to the mandlebrot set :
hence, the output appears inverted ,
i browsed & came across lines like:
(x - 400) / ZOOM;
(y - 300) / ZOOM;
on many mandelbrot codes , but i am unable to understand how this line may rectify my output.
i guess i am having trouble in mapping output to the terminal!
(LB_Real,UB_Imag) --- (UB_Real,UB_Imag)
| |
(LB_Real,LB_Imag) --- (UB_Real,LB_Imag)
Any Hint/help will be very useful
The Mandelbrot recurrence is zn+1 = zn2 + c.
Here's your implementation:
real= ( (real*real) - (imag*imag) + real);
imag= ( (2*real*imag)+ imag);
Problem 1. You're updating real to its next value before you've used the old value to compute the new imag.
Problem 2. Assuming you fix problem 1, you're computing zn+1 = zn2 + zn.
Here's how I'd do it using double:
int analyze(double cr, double ci) {
double zr = 0, zi = 0;
int r;
for (r = 0; (r < 50) && (zr*zr + zi*zi < 4.0); ++r) {
double zr1 = zr*zr - zi*zi + cr;
double zi1 = 2 * zr * zi + ci;
zr = zr1;
zi = zi1;
}
return r;
}
But it's easier to understand if you use the standard C99 support for complex numbers:
#include <complex.h>
int analyze(double cr, double ci) {
double complex c = cr + ci * I;
double complex z = 0;
int r;
for (r = 0; (r < 50) && (cabs(z) < 2); ++r) {
z = z * z + c;
}
return r;
}

Rotated rectangle rasterisation algorithm

In a nutshell: I want to do a non-approximate version of Bresenham's line algorithm, but for a rectangle rather than a line, and whose points aren't necessarily aligned to the grid.
Given a square grid, and a rectangle comprising four non-grid-aligned points, I want to find a list of all grid squares that are covered, partially or completely, by the rectangle.
Bresenham's line algorithm is approximate – not all partially covered squares are identified. I'm looking for a "perfect" algorithm, that has no false positives or negatives.
It's an old question, but I have solved this issue (C++)
https://github.com/feelinfine/tracer
Maybe it will be usefull for someone
(sorry for my poor english)
Single line tracing
template <typename PointType>
std::set<V2i> trace_line(const PointType& _start_point, const PointType& _end_point, size_t _cell_size)
{
auto point_to_grid_fnc = [_cell_size](const auto& _point)
{
return V2i(std::floor((double)_point.x / _cell_size), std::floor((double)_point.y / _cell_size));
};
V2i start_cell = point_to_grid_fnc(_start_point);
V2i last_cell = point_to_grid_fnc(_end_point);
PointType direction = _end_point - _start_point;
//Moving direction (cells)
int step_x = (direction.x >= 0) ? 1 : -1;
int step_y = (direction.y >= 0) ? 1 : -1;
//Normalize vector
double hypot = std::hypot(direction.x, direction.y);
V2d norm_direction(direction.x / hypot, direction.y / hypot);
//Distance to the nearest square side
double near_x = (step_x >= 0) ? (start_cell.x + 1)*_cell_size - _start_point.x : _start_point.x - (start_cell.x*_cell_size);
double near_y = (step_y >= 0) ? (start_cell.y + 1)*_cell_size - _start_point.y : _start_point.y - (start_cell.y*_cell_size);
//How far along the ray we must move to cross the first vertical (ray_step_to_vside) / or horizontal (ray_step_to_hside) grid line
double ray_step_to_vside = (norm_direction.x != 0) ? near_x / norm_direction.x : std::numeric_limits<double>::max();
double ray_step_to_hside = (norm_direction.y != 0) ? near_y / norm_direction.y : std::numeric_limits<double>::max();
//How far along the ray we must move for horizontal (dx)/ or vertical (dy) component of such movement to equal the cell size
double dx = (norm_direction.x != 0) ? _cell_size / norm_direction.x : std::numeric_limits<double>::max();
double dy = (norm_direction.y != 0) ? _cell_size / norm_direction.y : std::numeric_limits<double>::max();
//Tracing loop
std::set<V2i> cells;
cells.insert(start_cell);
V2i current_cell = start_cell;
size_t grid_bound_x = std::abs(last_cell.x - start_cell.x);
size_t grid_bound_y = std::abs(last_cell.y - start_cell.y);
size_t counter = 0;
while (counter != (grid_bound_x + grid_bound_y))
{
if (std::abs(ray_step_to_vside) < std::abs(ray_step_to_hside))
{
ray_step_to_vside = ray_step_to_vside + dx; //to the next vertical grid line
current_cell.x = current_cell.x + step_x;
}
else
{
ray_step_to_hside = ray_step_to_hside + dy;//to the next horizontal grid line
current_cell.y = current_cell.y + step_y;
}
++counter;
cells.insert(current_cell);
};
return cells;
}
Get all cells
template <typename Container>
std::set<V2i> pick_cells(Container&& _points, size_t _cell_size)
{
if (_points.size() < 2 || _cell_size <= 0)
return std::set<V2i>();
Container points = std::forward<Container>(_points);
auto add_to_set = [](auto& _set, const auto& _to_append)
{
_set.insert(std::cbegin(_to_append), std::cend(_to_append));
};
//Outline
std::set<V2i> cells;
/*
for (auto it = std::begin(_points); it != std::prev(std::end(_points)); ++it)
add_to_set(cells, trace_line(*it, *std::next(it), _cell_size));
add_to_set(cells, trace_line(_points.back(), _points.front(), _cell_size));
*/
//Maybe this code works faster
std::vector<std::future<std::set<V2i> > > results;
using PointType = decltype(points.cbegin())::value_type;
for (auto it = points.cbegin(); it != std::prev(points.cend()); ++it)
results.push_back(std::async(trace_line<PointType>, *it, *std::next(it), _cell_size));
results.push_back(std::async(trace_line<PointType>, points.back(), points.front(), _cell_size));
for (auto& it : results)
add_to_set(cells, it.get());
//Inner
std::set<V2i> to_add;
int last_x = cells.begin()->x;
int counter = cells.begin()->y;
for (auto& it : cells)
{
if (last_x != it.x)
{
counter = it.y;
last_x = it.x;
}
if (it.y > counter)
{
for (int i = counter; i < it.y; ++i)
to_add.insert(V2i(it.x, i));
}
++counter;
}
add_to_set(cells, to_add);
return cells;
}
Types
template <typename _T>
struct V2
{
_T x, y;
V2(_T _x = 0, _T _y = 0) : x(_x), y(_y)
{
};
V2 operator-(const V2& _rhs) const
{
return V2(x - _rhs.x, y - _rhs.y);
}
bool operator==(const V2& _rhs) const
{
return (x == _rhs.x) && (y == _rhs.y);
}
//for std::set sorting
bool operator<(const V2& _rhs) const
{
return (x == _rhs.x) ? (y < _rhs.y) : (x < _rhs.x);
}
};
using V2d = V2<double>;
using V2i = V2<int>;
Usage
std::vector<V2d> points = { {200, 200}, {400, 400}, {500,100} };
size_t cell_size = 30;
auto cells = pick_cells(points, cell_size);
for (auto& it : cells)
... //do something with cells
You can use a scanline approach. The rectangle is a closed convex polygon, so it is sufficient to store the leftmost and rightmost pixel for each horizontal scanline. (And the top and bottom scanlines, too.)
The Bresenham algorithm tries to draw a thin, visually pleasing line without adjacent cells in the smaller dimension. We need an algorithm that visits each cell that the edges of the polygon pass through. The basic idea is to find the starting cell (x, y) for each edge and then to adjust x whenever the edge intersects a vertical border and to adjust y when it intersects a horizontal border.
We can represent the intersections by means of a normalised coordinate s that travels along the edge and that is 0.0 at the first node n1 and 1.0 at the second node n2.
var x = Math.floor(n1.x / cellsize);
var y = Math.floor(n1.y / cellsize);
var s = 0;
The vertical insersections can the be represented as equidistant steps of with dsx from an initial sx.
var dx = n2.x - n1.x;
var sx = 10; // default value > 1.0
// first intersection
if (dx < 0) sx = (cellsize * x - n1.x) / dx;
if (dx > 0) sx = (cellsize * (x + 1) - n1.x) / dx;
var dsx = (dx != 0) ? grid / Math.abs(dx) : 0;
Likewise for the horizontal intersecions. A default value greater than 1.0 catches the cases of horizontal and vertical lines. Add the first point to the scanline data:
add(scan, x, y);
Then we can visit the next adjacent cell by looking at the next intersection with the smallest s.
while (sx <= 1 || sy <= 1) {
if (sx < sy) {
sx += dsx;
if (dx > 0) x++; else x--;
} else {
sy += dsy;
if (dy > 0) y++; else y--;
}
add(scan, x, y);
}
Do this for all four edges and with the same scanline data. Then fill all cells:
for (var y in scan) {
var x = scan[y].min;
var xend = scan[y].max + 1;
while (x < xend) {
// do something with cell (x, y)
x++;
}
}
(I have only skimmed the links MBo provided. It seems that the approach presented in that paper is essentially the same as mine. If so, please excuse the redundant answer, but after working this out I thought I could as well post it.)
This is sub-optimal but might give a general idea.
First off treat the special case of the rectangle being aligned horizontally or vertically separately. This is pretty easy to test for and make the rest simpler.
You can represent the rectangle as a set of 4 inequalities a1 x + b1 y >= c1 a1 x + b1 y <= c2 a3 x + b3 y >= c3 a3 x + b3 y <= c4 as the edges of the rectangles are parallel some of the constants are the same. You also have (up to a multiple) a3=b1 and b3=-a1. You can multiply each inequality by a common factor so you are working with integers.
Now consider each scan line with a fixed value of y.
For each value of y find the four points where the lines intersect the scan line. That is find the solution with each line above. A little bit of logic will find the minimum and maximum values of x. Plot all pixels between these values.
You condition that you want all partially covered squares makes things a little trickier. You can solve this by considering two adjacent scan lines. You want to plot the points between the minimum x for both lines and the maximum for the both lines. If say
a1 x+b1 y>=c is the inequality for the bottom left line in the figure. You want the find the largest x such that a1 x + b1 y < c this will be floor((c-b1 y)/a1) call this minx(y) also find minx(y+1) and the left hand point will be the minimum of these two values.
There is many easy optimisation you can find the y-values of the top and bottom corners reducing the range of y-values to test. You should only need to test two side. For each end point of each line there is one multiplication, one subtraction and one division. The division is the slowest part I think about 4 time slower than other ops. You might be able to remove this with a Bresenham or DDA algorithms others have mentioned.
There is method of Amanatides and Woo to enumerate all intersected cells
A Fast Voxel Traversal Algorithm for Ray Tracing.
Here is practical implementation.
As side effect for you - you'll get points of intersection with grid lines - it may be useful if you need areas of partially covered cells (for antialiasing etc).

Bresenham line algorithm - where does the decision parameter come from?

void line()
{
int x1 = 10, y1 = 10, x2 = 300, y2 = 500 , x, y;
int dx, dy, //deltas
e; // decision parameter
glClear(GL_COLOR_BUFFER_BIT);
glColor3f( 1 ,0, 0);
setPixel(x1, y1); //plot first point
// difference between starting and ending points
dx = x2 - x1;
dy = y2 - y1;
e = 2 * dy - dx;
x = x1; y = y1;
for(int k = 0; k < dx - 1; ++k)
{
if(e < 0)
{
//next pixel: (x+1, y)
e = e + 2*dy;
}
else
{
//next pixel: (x+1, y+1)
e = e + 2*dy - 2*dx;
++y;
}
++x;
setPixel(x, y);
}
glFlush();
}
Where does the e = 2*dy - dx come from? Why do we increase it by 2*dy or 2*dy - 2*dx?
Bresenham's algorithm uses only integer arithmetic. The key idea is to minimize the calculations for incremental evaluation of the line equation.
The algorithm is really simple. Let's start with the line equation
f(x) = y = a*x +b
(and assume 0 <= a < 1 for now).
When we go one pixel to the right, we get:
f(x+1) = a * (x+1) + b = f(x) + a
But both a and y will not be integers for the typical line.
So let's just introduce an "error". We always go to the right neighbor. In doing so, we make an error of a by not going up. If our error is above half a pixel (0.5), we go up (and hence decrease the error value by a pixel again)
float e=a;
float y=y1;
int x=x1;
while(x<=x2) {
SetPixel(x,y);
x++;
if (e > 0.5) {
y++;
e=e+a-1;
} else {
e=e+a;
}
}
(Note that we already set the error e to a initially and not to zero, because we always make the decision after the pixel is drawn, and we don't need to check the condition before drawing the very first pixel because that one is always exactly on the line.)
Now, we have come close. But there are two things which prevent us from using integers: the 0.5 and a which is dy/dx. But: we can scale the error value (and the condition) by an arbitray factor, without changing anything. Think about it: we've measured the error in pixels so far (because that seems intuitive at first), but this algorithm could use any arbitrary unit for the error value - half pixels, double pixels, pi pixels.
So let's just scale it by 2*dx to get rid of both fractions in the formula above! (In a way, they key trick here is that the "unit" in which we measure the error value is just not constant in the algorithm, but a function of the line).
int e=2*dy;
int y=y1;
int x=x1;
while(x<=x2) {
SetPixel(x,y);
x++;
if (e > dx) {
y++;
e=e+2*dy - 2*dx;
} else {
e=e+2*dy;
}
}
Now, we have what we want: only integers.
(One thing to note here, though: by going from float to int, we automatically "snap-in" the line's endpoints to integer coordinates - having integer endpoints is some precondition for (and limitation of) the Bresenham algorithm).
There is one additional trick: the condition contains a variable. It would be even more efficient, if we would test against a constant, and ideally against zero (since branching depending just on the sign or zero flags saves us a compare operation). And we can achive this, by just shifiting our error values. In the same way as before, not only the scale of the error value cane be chosen arbitrarily, but also origin.
Since we test for e > dx currently, shifting the error by -dx will allow us to test against 0 (and 0 now means what dx meant before, namely 0.5 pixels). This shift only affects the initial value of e, and the condition, all the increments stay the same as before:
int e=2*dy-dx;
int y=y1;
int x=x1;
while(x<=x2) {
SetPixel(x,y);
x++;
if (e > 0) {
y++;
e=e+2*dy - 2*dx;
} else {
e=e+2*dy;
}
}
Voila, the 2*dy-dx term has suddenly emerged... ;)
The term 2dy-dx comes after we fill xk =yk=0 in the formula (2dy•xk-2dx•yk+2dy+(2b-1)) because for the first parameter we assume the starting point of line lies at origin i.e (0,0).
And b is constant so it is ignored.
Try it by yourself.

Find local maxima in grayscale image using OpenCV

Does anybody know how to find the local maxima in a grayscale IPL_DEPTH_8U image using OpenCV? HarrisCorner mentions something like that but I'm actually not interested in corners ...
Thanks!
A pixel is considered a local maximum if it is equal to the maximum value in a 'local' neighborhood. The function below captures this property in two lines of code.
To deal with pixels on 'plateaus' (value equal to their neighborhood) one can use the local minimum property, since plateaus pixels are equal to their local minimum. The rest of the code filters out those pixels.
void non_maxima_suppression(const cv::Mat& image, cv::Mat& mask, bool remove_plateaus) {
// find pixels that are equal to the local neighborhood not maximum (including 'plateaus')
cv::dilate(image, mask, cv::Mat());
cv::compare(image, mask, mask, cv::CMP_GE);
// optionally filter out pixels that are equal to the local minimum ('plateaus')
if (remove_plateaus) {
cv::Mat non_plateau_mask;
cv::erode(image, non_plateau_mask, cv::Mat());
cv::compare(image, non_plateau_mask, non_plateau_mask, cv::CMP_GT);
cv::bitwise_and(mask, non_plateau_mask, mask);
}
}
Here's a simple trick. The idea is to dilate with a kernel that contains a hole in the center. After the dilate operation, each pixel is replaced with the maximum of it's neighbors (using a 5 by 5 neighborhood in this example), excluding the original pixel.
Mat1b kernelLM(Size(5, 5), 1u);
kernelLM.at<uchar>(2, 2) = 0u;
Mat imageLM;
dilate(image, imageLM, kernelLM);
Mat1b localMaxima = (image > imageLM);
Actually after I posted the code above I wrote a better and very very faster one ..
The code above suffers even for a 640x480 picture..
I optimized it and now it is very very fast even for 1600x1200 pic.
Here is the code :
void localMaxima(cv::Mat src,cv::Mat &dst,int squareSize)
{
if (squareSize==0)
{
dst = src.clone();
return;
}
Mat m0;
dst = src.clone();
Point maxLoc(0,0);
//1.Be sure to have at least 3x3 for at least looking at 1 pixel close neighbours
// Also the window must be <odd>x<odd>
SANITYCHECK(squareSize,3,1);
int sqrCenter = (squareSize-1)/2;
//2.Create the localWindow mask to get things done faster
// When we find a local maxima we will multiply the subwindow with this MASK
// So that we will not search for those 0 values again and again
Mat localWindowMask = Mat::zeros(Size(squareSize,squareSize),CV_8U);//boolean
localWindowMask.at<unsigned char>(sqrCenter,sqrCenter)=1;
//3.Find the threshold value to threshold the image
//this function here returns the peak of histogram of picture
//the picture is a thresholded picture it will have a lot of zero values in it
//so that the second boolean variable says :
// (boolean) ? "return peak even if it is at 0" : "return peak discarding 0"
int thrshld = maxUsedValInHistogramData(dst,false);
threshold(dst,m0,thrshld,1,THRESH_BINARY);
//4.Now delete all thresholded values from picture
dst = dst.mul(m0);
//put the src in the middle of the big array
for (int row=sqrCenter;row<dst.size().height-sqrCenter;row++)
for (int col=sqrCenter;col<dst.size().width-sqrCenter;col++)
{
//1.if the value is zero it can not be a local maxima
if (dst.at<unsigned char>(row,col)==0)
continue;
//2.the value at (row,col) is not 0 so it can be a local maxima point
m0 = dst.colRange(col-sqrCenter,col+sqrCenter+1).rowRange(row-sqrCenter,row+sqrCenter+1);
minMaxLoc(m0,NULL,NULL,NULL,&maxLoc);
//if the maximum location of this subWindow is at center
//it means we found the local maxima
//so we should delete the surrounding values which lies in the subWindow area
//hence we will not try to find if a point is at localMaxima when already found a neighbour was
if ((maxLoc.x==sqrCenter)&&(maxLoc.y==sqrCenter))
{
m0 = m0.mul(localWindowMask);
//we can skip the values that we already made 0 by the above function
col+=sqrCenter;
}
}
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
The first question to answer would be what is "local" in your opinion. The answer may well be a square window (say 3x3 or 5x5) or circular window of a certain radius. You can then scan over the entire image with the window centered at each pixel and pick the highest value in the window.
See this for how to access pixel values in OpenCV.
This is very fast method. It stored founded maxima in a vector of
Points.
vector <Point> GetLocalMaxima(const cv::Mat Src,int MatchingSize, int Threshold, int GaussKernel )
{
vector <Point> vMaxLoc(0);
if ((MatchingSize % 2 == 0) || (GaussKernel % 2 == 0)) // MatchingSize and GaussKernel have to be "odd" and > 0
{
return vMaxLoc;
}
vMaxLoc.reserve(100); // Reserve place for fast access
Mat ProcessImg = Src.clone();
int W = Src.cols;
int H = Src.rows;
int SearchWidth = W - MatchingSize;
int SearchHeight = H - MatchingSize;
int MatchingSquareCenter = MatchingSize/2;
if(GaussKernel > 1) // If You need a smoothing
{
GaussianBlur(ProcessImg,ProcessImg,Size(GaussKernel,GaussKernel),0,0,4);
}
uchar* pProcess = (uchar *) ProcessImg.data; // The pointer to image Data
int Shift = MatchingSquareCenter * ( W + 1);
int k = 0;
for(int y=0; y < SearchHeight; ++y)
{
int m = k + Shift;
for(int x=0;x < SearchWidth ; ++x)
{
if (pProcess[m++] >= Threshold)
{
Point LocMax;
Mat mROI(ProcessImg, Rect(x,y,MatchingSize,MatchingSize));
minMaxLoc(mROI,NULL,NULL,NULL,&LocMax);
if (LocMax.x == MatchingSquareCenter && LocMax.y == MatchingSquareCenter)
{
vMaxLoc.push_back(Point( x+LocMax.x,y + LocMax.y ));
// imshow("W1",mROI);cvWaitKey(0); //For gebug
}
}
}
k += W;
}
return vMaxLoc;
}
Found a simple solution.
In this example, if you are trying to find 2 results of a matchTemplate function with a minimum distance from each other.
cv::Mat result;
matchTemplate(search, target, result, CV_TM_SQDIFF_NORMED);
float score1;
cv::Point displacement1 = MinMax(result, score1);
cv::circle(result, cv::Point(displacement1.x+result.cols/2 , displacement1.y+result.rows/2), 10, cv::Scalar(0), CV_FILLED, 8, 0);
float score2;
cv::Point displacement2 = MinMax(result, score2);
where
cv::Point MinMax(cv::Mat &result, float &score)
{
double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc.x = minLoc.x - result.cols/2;
matchLoc.y = minLoc.y - result.rows/2;
return minVal;
}
The process is:
Find global Minimum using minMaxLoc
Draw a filled white circle around global minimum using min distance between minima as radius
Find another minimum
The the scores can be compared to each other to determine, for example, the certainty of the match,
To find more than just the global minimum and maximum try using this function from skimage:
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
You can parameterize the minimum distance between peaks, too. And more. To find minima, use negated values (take care of the array type though, 255-image could do the trick).
You can go over each pixel and test if it is a local maxima. Here is how I would do it.
The input is assumed to be type CV_32FC1
#include <vector>//std::vector
#include <algorithm>//std::sort
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
//structure for maximal values including position
struct SRegionalMaxPoint
{
SRegionalMaxPoint():
values(-FLT_MAX),
row(-1),
col(-1)
{}
float values;
int row;
int col;
//ascending order
bool operator()(const SRegionalMaxPoint& a, const SRegionalMaxPoint& b)
{
return a.values < b.values;
}
};
//checks if pixel is local max
bool isRegionalMax(const float* im_ptr, const int& cols )
{
float center = *im_ptr;
bool is_regional_max = true;
im_ptr -= (cols + 1);
for (int ii = 0; ii < 3; ++ii, im_ptr+= (cols-3))
{
for (int jj = 0; jj < 3; ++jj, im_ptr++)
{
if (ii != 1 || jj != 1)
{
is_regional_max &= (center > *im_ptr);
}
}
}
return is_regional_max;
}
void imregionalmax(
const cv::Mat& input,
std::vector<SRegionalMaxPoint>& buffer)
{
//find local max - top maxima
static const int margin = 1;
const int rows = input.rows;
const int cols = input.cols;
for (int i = margin; i < rows - margin; ++i)
{
const float* im_ptr = input.ptr<float>(i, margin);
for (int j = margin; j < cols - margin; ++j, im_ptr++)
{
//Check if pixel is local maximum
if ( isRegionalMax(im_ptr, cols ) )
{
cv::Rect roi = cv::Rect(j - margin, i - margin, 3, 3);
cv::Mat subMat = input(roi);
float val = *im_ptr;
//replace smallest value in buffer
if ( val > buffer[0].values )
{
buffer[0].values = val;
buffer[0].row = i;
buffer[0].col = j;
std::sort(buffer.begin(), buffer.end(), SRegionalMaxPoint());
}
}
}
}
}
For testing the code you can try this:
cv::Mat temp = cv::Mat::zeros(15, 15, CV_32FC1);
temp.at<float>(7, 7) = 1;
temp.at<float>(3, 5) = 6;
temp.at<float>(8, 10) = 4;
temp.at<float>(11, 13) = 7;
temp.at<float>(10, 3) = 8;
temp.at<float>(7, 13) = 3;
vector<SRegionalMaxPoint> buffer_(5);
imregionalmax(temp, buffer_);
cv::Mat debug;
cv::cvtColor(temp, debug, cv::COLOR_GRAY2BGR);
for (auto it = buffer_.begin(); it != buffer_.end(); ++it)
{
circle(debug, cv::Point(it->col, it->row), 1, cv::Scalar(0, 255, 0));
}
This solution does not take plateaus into account so it is not exactly the same as matlab's imregionalmax()
I think you want to use the
MinMaxLoc(arr, mask=NULL)-> (minVal, maxVal, minLoc, maxLoc)
Finds global minimum and maximum in array or subarray
function on you image

Resources