Is this flowchart's logic correct? - new-operator

This is my flow chart for a clock
This clock is suppose to show time and reset when it turns 24 hours, may i know if all the shapes ive used in this flowchart is correct? thanks

It's wrong.
Because if sec not equal 60 you must increase sec and loop from begin

Related

Algorithm / data structure for rate of change calculation with limited memory

Certain sensors are to trigger a signal based on the rate of change of the value rather than a threshold.
For instance, heat detectors in fire alarms are supposed to trigger an alarm quicker if the rate of temperature rise is higher: A temperature rise of 1K/min should trigger an alarm after 30 minutes, a rise of 5K/min after 5 minutes and a rise of 30K/min after 30 seconds.
 
I am wondering how this is implemented in embedded systems, where resources are scares. Is there a clever data structure to minimize the data stored?
 
The naive approach would be to measure the temperature every 5 seconds or so and keep the data for 30 minutes. On these data one can calculate change rates over arbitrary time windows. But this requires a lot of memory.
 
I thought about small windows (e.g. 10 seconds) for which min and max are stored, but this would not save much memory.
 
From a mathematical point of view, the examples you have described can be greatly simplified:
1K/min for 30 mins equals a total change of 30K
5K/min for 5 mins equals a total change of 25K
Obviously there is some adjustment to be made because you have picked round numbers for the example, but it sounds like what you care about is having a single threshold for the total change. This makes sense because taking the integral of a differential results in just a delta.
However, if we disregard the numeric example and just focus on your original question then here are some answers:
First, it has already been mentioned in the comments that one byte every five seconds for half an hour is really not very much memory at all for almost any modern microcontroller, as long as you are able to keep your main RAM turned on between samples, which you usually can.
If however you need to discard the contents of RAM between samples to preserve battery life, then a simpler method is just to calculate one differential at a time.
In your example you want to have a much higher sample rate (every 5 seconds) than the time you wish to calculate the delta over (eg: 30 mins). You can reduce your storage needs to a single data point if you make your sample rate equal to your delta period. The single previous value could be stored in a small battery retained memory (eg: backup registers on STM32).
Obviously if you choose this approach you will have to compromise between accuracy and latency, but maybe 30 seconds would be a suitable timebase for your temperature alarm example.
You can also set several thresholds of K/sec, and then allocate counters to count how many consecutive times the each threshold has been exceeded. This requires only one extra integer per threshold.
In signal processing terms, the procedure you want to perform is:
Apply a low-pass filter to smooth quick variations in the temperature
Take the derivative of its output
The cut-off frequency of the filter would be set according to the time frame. There are 2 ways to do this.
You could apply a FIR (finite impulse response) filter, which is a weighted moving average over the time frame of interest. Naively, this requires a lot of memory, but it's not bad if you do a multi-stage decimation first to reduce your sample rate. It ends up being a little complicated, but you have fine control over the response.
You could apply in IIR (Infinite impulse response) filter, which utilizes feedback of the output. The exponential moving average is the simplest example of this. These filters require far less memory -- only a few samples' worth, but your control over the precise shape of the response is limited. A classic example like the Butterworth filter would probably be great for your application, though.

How to achieve iteration control in apache jmeter

I was working with IBM RPT, in RPT we can have iteration control, means you can execute definite number of loops for fixed time, e.g, I can have 30 loops (iterations) for 30 minutes. How can we achieve this scenario in jmeter?
You can use for that Constant Throughput Timer component.
This timer introduces variable pauses, calculated to keep the total throughput (in terms of samples per minute) as close as possible to a give figure
Or use ThroughputShapingTimer

Best algorithm for threshold identitication

Assume I have huge set of data about a system idle time.
Day 1 - 5 mins
Day 2 - 3 mins
Day 3 - 7 mins
...
Day 'n' - 'k' mins
We can assume that even though the idletime is random, the pattern repeats.
Using this as a training data, is it possible for me to identify the idle time behavior of the system. With that, can a abnormality be predicted
Which algorithm would best suit for this purpose
I tried to fit in regression, but it can just answer me " What is the expected idle time today "
But what I want to do is. When the idle time goes away from the pattern, it has to be detected.
Edit:
Or does it make sense to predict for the current day only. i.e Today the expected idle time is 'x' mins. Tomorrow it may differ
I would try a Fourier Transformation and have a look if your system behaves in a periodic way (this would mean there are some peaks in the frequency domain).
Than get rid of the frequencies with low values and use the rest to predict the system behavior in the future.
If the real behavior differs a lot from the prediction that is what you want to detect.
wikipedia: Fast Fourier Transformation

JavaScript/html time

I'm trying to convert the normal 24 hour system to a 20 hour system in JavaScript or html
there seems to be problems and I don't know how to fix them, the program code as a whole works ok but it's not accurate in the area of displaying the proper time
can someone help me.
24hrs per day to 20hrs
60 minutes per hour to 40 minutes per hour
60 seconds per minute to 80 seconds per minute
1000 milliseconds per second to 1350 milliseconds per second
I have been working with the code that is supposed to get the milliseconds from 1/1/1970 to make things hopefully simple but like I said the program isn't working quite right, I do have a table that lets me know what normal time would be at each changed hour but that's all the info I have
Check this Fiddle:
http://jsfiddle.net/z4s7j9vL/1/
My approach was to get the timestamp difference between the current time and midnight of the same day:
millis = ts - clone.getTime();
This way you get how many milliseconds have passed this day and you can do your conversion from there. This is limited to converting time only, but if months and years followed the same principles you could just convert the same way from the current timestamp.

Regrading simulation of bank-teller

we have a system, such as a bank, where customers arrive and wait on a
line until one of k tellers is available.Customer arrival is governed
by a probability distribution function, as is the service time (the
amount of time to be served once a teller is available). We are
interested in statistics such as how long on average a customer has to
wait or how long the line might be.
We can use the probability functions to generate an input stream
consisting of ordered pairs of arrival time and service time for each
customer, sorted by arrival time. We do not need to use the exact time
of day. Rather, we can use a quantum unit, which we will refer to as
a tick.
One way to do this simulation is to start a simulation clock at zero
ticks. We then advance the clock one tick at a time, checking to see
if there is an event. If there is, then we process the event(s) and
compile statistics. When there are no customers left in the input
stream and all the tellers are free, then the simulation is over.
The problem with this simulation strategy is that its running time
does not depend on the number of customers or events (there are two
events per customer), but instead depends on the number of ticks,
which is not really part of the input. To see why this is important,
suppose we changed the clock units to milliticks and multiplied all
the times in the input by 1,000. The result would be that the
simulation would take 1,000 times longer!
My question on above text is how author came in last paragraph what does author mean by " suppose we changed the clock units to milliticks and multiplied all the times in the input by 1,000. The result would be that the simulation would take 1,000 times longer!" ?
Thanks!
With this algorithm we have to check every tick. More ticks there are the more checks we carry out. For example if first customers arrives at 3rd tick, then we had to do 2 unnecessary checks. But if we would check every millitick then we would have to do 2999 unnecessary checks.
Because the checking is being carried out on a per tick basis if the number of ticks is multiplied by 1000 then there will be 1000 times more checks.
Imagine that you set an alarm so that you perform a task, like checking your email, every hour. This means you would check your email 24 times in day, assuming you didn't sleep. If you decide to change this alarm so that it goes off every minute you would now be checking your email 24*60 = 1440 times per day, where 24 is the number of times you were checking it before and 60 is the number of minutes in an hour.
This is exactly what happens in the simulation above, except rather than perform some action every time an alarm goes off, you just do all 1440 email checks as quickly as you can.

Resources