How are should openGL matrices be created? Is there something wrong with my multiplication or order of translation/rotation? - matrix

So basically I'm trying to make a simple open gl 3D graphics engine using my own linear algebra to make projection and transformation matrices. OpenGL has a class called glUniformMatrix4fv() which I use to pass the matrices as a float[].
Here is my "Matrix" class to construct a float[] for that openGl method:
private float[] m= {
1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1
};
public Matrix() {}
public Matrix(float[] m) {
this.m=m;
}
//gets value at x,y coords of matrix
public float getValue(int x,int y) {
return m[y*4 + x];
}
//sets value of x,y coord to n
public void setValue(int x,int y,float n) {
m[y*4 + x]=n;
}
To construct a transformation for object translation and rotation I first create translation Matrix (s is for scale). Also a vertex is basically just a size 4 float array I have my Vector/vertex info in:
public Matrix createTranslationMatrix(Vertex pos,float s) {
Matrix m=new Matrix();
m.setValue(0,0,s);
m.setValue(1,1,s);
m.setValue(2,2,s);
m.setValue(3,0,pos.getValue(0));
m.setValue(3,1,pos.getValue(1));
m.setValue(3,2,pos.getValue(2));
return m;
}
Then I create a rotation matrix which is a combo of x, y, and z rotation of object around origin
public Matrix createRotationMatrix(Vertex rot) {
//if rotation is screwed up maybe mess around with order of these :)
Matrix rotX=createRotationMatrixX(rot.getValue(0));
Matrix rotY=createRotationMatrixY(rot.getValue(1));
Matrix rotZ=createRotationMatrixZ(rot.getValue(2));
Matrix returnValue=multiply(rotX,rotY);
returnValue=multiply(returnValue,rotZ);
return returnValue;
}
private Matrix createRotationMatrixX(float num) {
float n=num;
n=(float)Math.toRadians(n);
Matrix rot=new Matrix();
rot.setValue(1, 1, (float)Math.cos(n));
rot.setValue(1, 2, (float)Math.sin(n));
rot.setValue(2, 1, (float)-Math.sin(n));
rot.setValue(2, 2, (float)Math.cos(n));
return rot;
}
//rotation mat Y
private Matrix createRotationMatrixY(float num) {
float n=num;
n=(float)Math.toRadians(n);
Matrix rot=new Matrix();
rot.setValue(0, 0, (float)Math.cos(n));
rot.setValue(0, 2, (float)-Math.sin(n));
rot.setValue(2, 0, (float)Math.sin(n));
rot.setValue(2, 2, (float)Math.cos(n));
return rot;
}
//rotation mat Z
private Matrix createRotationMatrixZ(float num) {
float n=num;
n=(float)Math.toRadians(n);
Matrix rot=new Matrix();
rot.setValue(0, 0, (float)Math.cos(n));
rot.setValue(0, 1, (float)Math.sin(n));
rot.setValue(1, 0, (float)-Math.sin(n));
rot.setValue(1, 1, (float)Math.cos(n));
return rot;
}
I combine the translation and create my objectTransform float[] using a matrix with multiply(rotationMat,translationMat):
public Matrix multiply(Matrix a, Matrix b){
Matrix m=new Matrix();
for(int y=0;y<4;y++) {
for(int x=0;x<4;x++) {
//if this doesn't work maybe try switching x and y around?
m.setValue(x,y,a.getValue(x,0)*b.getValue(0,y) + a.getValue(x,1)*b.getValue(1,y) + a.getValue(x,2)*b.getValue(2,y) + a.getValue(x,3)*b.getValue(3, y));
}
}
return m;
}
And my code for my worldTransorm is defined from by combining a transformation with negative values for position and rotation (so it moves vertex and rotates opposite from camera position and rotation), then combinging rotation and transformation like so multiply(translationMat,rotationMat) , so it theoretically moves opposite camera pos, THEN rotates opposite camera rotation.
then I create my projection using this function:
public Matrix createProjectionMatrix(float fov, float aspectRatio, float near, float far) {
float fovRad=1/(float)Math.tan(Math.toRadians(fov*.5));
Matrix projection=new Matrix(base);
projection.setValue(0,0,aspectRatio*fovRad);
projection.setValue(1,1,fovRad);
projection.setValue(2,2,far/(far-near));
projection.setValue(2,3,(-far*near)/(far-near));
projection.setValue(3,2,1);
projection.setValue(3,3,0);
return projection;
}
I combine my projection , worldTransform, and objectTransform with my Vec3 position (vector with mesh coordinates I import). These are all multiplied together in my openGL shader class like so:
gl_Position=projection * worldTransform * objectTransform * vec4(position,1);
Write now if I back my camera up by 3, rotate it around with hopes of finding the "triangle" mesh I made
float[] verts= {
//top left tri
-.5f,-.5f,0,
0,.5f,0,
.5f,-.5f,0,
};
Then I get a really small pixel moving really fast accross my screen from top to bottom. I also have the object spinning, but that (if my code worked properly) shouldn't be an issue, but if I don't have the object spinning, then I don't see any pixel at all. So my thinking is the object transformation is applying like the world transormation should be working, moving the vertex by "translation" then rotating it, or the triangle is really small and not scaled properly (do I have to offset it somehow?), but then it shouldn't be flying off the screen repeatedly as if its rotating around the camera. I've tried switching multiplication of translation and rotation for both types of transforms, but either the triangle doesn't appear at all or I just see a teensy tiny little pixel, almost orbitting the camera at high speeds (when I should see just the triangle and camera rotating seperately)
I know its a lot to ask but what am I doing wrong? Do I need to transpose something? Is my projection matrix out of wack? I feel like everything should be right :(

Related

Monogame - Rotate Sprite around centre of screen and itself

I have a problem and although I serached everywhere I couldn't find a solution.
I have a stacked sprite and I'm rotating this sprite around the center of the screen. So I iterate over a list of sprites (stacked) and increase the y-coordinate by 2 every loop (rotation is increased step by step by 0.01f outside of the loop):
foreach(var s in stacked)
{
Vector2 origin = new Vector2(Basic.width / 2, Basic.height / 2);
Rectangle newPosition = new Rectangle(position.X, position.Y - y, position.Width, position.Height);
float angle = 0f;
Matrix transform = Matrix.CreateTranslation(-origin.X, -origin.Y, 0f) *
Matrix.CreateRotationZ(rotation) *
Matrix.CreateTranslation(origin.X, origin.Y, 0f);
Vector2 pos = new Vector2(newPosition.X, newPosition.Y);
pos = Vector2.Transform(pos, transform);
newPosition.X = (int)pos.X;
newPosition.Y = (int)pos.Y;
angle += rotation;
s.Draw(newPosition, origin, angle, Color.White);
y += 2;
}
This works fine. But now my problem. I want not only to rotate the sprite around the center of the screen but also around itself. How to achieve this? I can only set one origin and one rotation per Draw. I would like to rotate the sprite around the origin 'Basic.width / 2, Basic.height / 2' and while it rotates, around 'position.Width / 2, position.Height / 2'. With different rotation speed each. How is this possible?
Thank you in advance!
Just to be clear:
When using SpriteBatch.Draw() with origin and angle, there is only one rotation: the final angle of the sprite.
The other rotations are positional offsets.
The origin in the Draw() call is a translation, rotation, translate back. Your transform matrix shows this quite well:
Matrix transform = Matrix.CreateTranslation(-origin.X, -origin.Y, 0f) *
Matrix.CreateRotationZ(rotation) *
Matrix.CreateTranslation(origin.X, origin.Y, 0f);
//Class level variables:
float ScreenRotation, ScreenRotationSpeed;
float ObjectRotation, ObjectRotationSpeed;
Vector2 ScreenOrigin, SpriteOrigin;
// ...
// In constructor and resize events:
ScreenOrigin = new Vector2(Basic.width <<1, Basic.height <<1);
// shifts are faster for `int` type. If "Basic.width" is `float`:
//ScreenOrigin = new Vector2(Basic.width, Basic.height) * 0.5f;
// In Update():
ScreenRotation += ScreenRotationSpeed; // * gameTime.ElapsedGameTime.Seconds; // for FPS invariant speed where speed = 60 * single frame speed
ObjectRotation+= ObjectRotationSpeed;
//Calculate the screen center rotation once per step
Matrix baseTransform = Matrix.CreateTranslation(-ScreenOrigin.X, -ScreenOrigin.Y, 0f) *
Matrix.CreateRotationZ(ScreenRotation) *
Matrix.CreateTranslation(ScreenOrigin.X, ScreenOrigin.Y, 0f);
// In Draw() at the start of your code snippet posted:
// moved outside of the loop for a translationally invariant vertical y interpretation
// or move it inside the loop and apply -y to position.Y for an elliptical effect
Vector2 ObjectOrigin = new Vector2(position.X, position.Y);
Matrix transform = baseTransform *
Matrix.CreateTranslation(-ObjectOrigin.X, -ObjectOrigin.Y, 0f) *
Matrix.CreateRotationZ(ObjectRotation) *
Matrix.CreateTranslation(ObjectOrigin.X, ObjectOrigin.Y, 0f);
foreach(var s in stacked)
{
Vector2 pos = new Vector2(ObjectOrigin.X, ObjectOrigin.Y - y);
pos = Vector2.Transform(pos, transform);
float DrawAngle = ObjectRotation;
// or float DrawAngle = ScreenRotation;
// or float DrawAngle = ScreenRotation + ObjectRotation;
// or float DrawAngle = 0;
s.Draw(pos, SpriteOrigin, DrawAngle, Color.White);
}
I suggest moving the Draw() parameter away from destinationRectangle and use the Vector2 position directly with scaling. Rotations within square rectangles can differ up to SQRT(2) in aspect ratio, i.e. stretching/squashing. Using Vector2 incurs a cost of higher collision complexity.
I am sorry for the ors, but without complete knowledge of the problem...YMMV
In my 2D projects, I use the vector form of polar coordinates.
The Matrix class requires more calculations than the polar equivalents in 2D. Matrix operates in 3D, wasting cycles calculating Z components.
With normalized direction vectors (cos t,sin t) and a radius(vector length),in many cases I use Vector2.LengthSquared() to avoid the square root when possible.
The only time I have used Matrices in 2D is display projection matrix(entire SpriteBatch) and Mouse and TouchScreen input deprojection(times the inverse of the projection matrix)

Confusion about zFar and zNear plane offsets using glm::perspective

I have been using glm to help build a software rasterizer for self education. In my camera class I am using glm::lookat() to create my view matrix and glm::perspective() to create my perspective matrix.
I seem to be getting what I expect for my left, right top and bottom clipping planes. However, I seem to be either doing something wrong for my near/far planes of there is an error in my understanding. I have reached a point in which my "google-fu" has failed me.
Operating under the assumption that I am correctly extracting clip planes from my glm::perspective matrix, and using the general plane equation:
aX+bY+cZ+d = 0
I am getting strange d or "offset" values for my zNear and zFar planes.
It is my understanding that the d value is the value of which I would be shifting/translatin the point P0 of a plane along the normal vector.
They are 0.200200200 and -0.200200200 respectively. However, my normals are correct orientated at +1.0f and -1.f along the z-axis as expected for a plane perpendicular to my z basis vector.
So when testing a point such as the (0, 0, -5) world space against these planes, it is transformed by my view matrix to:
(0, 0, 5.81181192)
so testing it against these plane in a clip chain, said example vertex would be culled.
Here is the start of a camera class establishing the relevant matrices:
static constexpr glm::vec3 UPvec(0.f, 1.f, 0.f);
static constexpr auto zFar = 100.f;
static constexpr auto zNear = 0.1f;
Camera::Camera(glm::vec3 eye, glm::vec3 center, float fovY, float w, float h) :
viewMatrix{ glm::lookAt(eye, center, UPvec) },
perspectiveMatrix{ glm::perspective(glm::radians<float>(fovY), w/h, zNear, zFar) },
frustumLeftPlane {setPlane(0, 1)},
frustumRighPlane {setPlane(0, 0)},
frustumBottomPlane {setPlane(1, 1)},
frustumTopPlane {setPlane(1, 0)},
frstumNearPlane {setPlane(2, 0)},
frustumFarPlane {setPlane(2, 1)},
The frustum objects are based off the following struct:
struct Plane
{
glm::vec4 normal;
float offset;
};
I have extracted the 6 clipping planes from the perspective matrix as below:
Plane Camera::setPlane(const int& row, const bool& sign)
{
float temp[4]{};
Plane plane{};
if (sign == 0)
{
for (int i = 0; i < 4; ++i)
{
temp[i] = perspectiveMatrix[i][3] + perspectiveMatrix[i][row];
}
}
else
{
for (int i = 0; i < 4; ++i)
{
temp[i] = perspectiveMatrix[i][3] - perspectiveMatrix[i][row];
}
}
plane.normal.x = temp[0];
plane.normal.y = temp[1];
plane.normal.z = temp[2];
plane.normal.w = 0.f;
plane.offset = temp[3];
plane.normal = glm::normalize(plane.normal);
return plane;
}
Any help would be appreciated, as now I am at a loss.
Many thanks.
The d parameter of a plane equation describes how much the plane is offset from the origin along the plane normal. This also takes into account the length of the normal.
One can't just normalize the normal without also adjusting the d parameter since normalizing changes the length of the normal. If you want to normalize a plane equation then you also have to apply the division step to the d coordinate:
float normalLength = sqrt(temp[0] * temp[0] + temp[1] * temp[1] + temp[2] * temp[2]);
plane.normal.x = temp[0] / normalLength;
plane.normal.y = temp[1] / normalLength;
plane.normal.z = temp[2] / normalLength;
plane.normal.w = 0.f;
plane.offset = temp[3] / normalLength;
Side note 1: Usually, one would store the offset of a plane equation in the w-coordinate of a vec4 instead of a separate variable. The reason is that the typical operation you perform with it is a point to plane distance check like dist = n * x - d (for a given point x, normal n, offset d, * is dot product), which can then be written as dist = [n, d] * [x, -1].
Side note 2: Most software and also hardware rasterizer perform clipping after the projection step since it's cheaper and easier to implement.

Algorithm for connecting points in a graph with curved lines

I need to develop an algorithm that connects points in a non-linear way, that is, with smooth curves, as in the image below:
The problem is that I can not find the best solution, either using Bezier Curves, Polimonial Interpolation, Curve Adjustment, among others.
In short, I need a formula that interpolates the points according to the figure above, generating N intermediate points between one coordinate and another.
In the image above, the first coordinate (c1) is (x = 1, y = 220) and the second (c2) is (x = 2, y = 40).
So if I want to create for example 4 intermediate coordinates between c1 and c2 I will have to get an array (x, y) of 4 elements something like this:
    
[1.2, 180], [1.4, 140], [1.6, 120], [1.8, 80]
Would anyone have any ideas?
I think any Piecewise curve interpolation should do it. Here small C++ example:
//---------------------------------------------------------------------------
const int n=7; // points
const int n2=n+n;
float pnt[n2]= // points x,y ...
{
1.0, 220.0,
2.0, 40.0,
3.0,-130.0,
4.0,-170.0,
5.0,- 40.0,
6.0, 90.0,
7.0, 110.0,
};
//---------------------------------------------------------------------------
void getpnt(float *p,float t) // t = <0,n-1>
{
int i,ii;
float *p0,*p1,*p2,*p3,a0,a1,a2,a3,d1,d2,tt,ttt;
// handle t out of range
if (t<= 0.0f){ p[0]=pnt[0]; p[1]=pnt[1]; return; }
if (t>=float(n-1)){ p[0]=pnt[n2-2]; p[1]=pnt[n2-1]; return; }
// select patch
i=floor(t); // start point of patch
t-=i; // parameter <0,1>
i<<=1; tt=t*t; ttt=tt*t;
// control points
ii=i-2; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p0=pnt+ii;
ii=i ; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p1=pnt+ii;
ii=i+2; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p2=pnt+ii;
ii=i+4; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p3=pnt+ii;
// loop all dimensions
for (i=0;i<2;i++)
{
// compute polynomial coeficients
d1=0.5*(p2[i]-p0[i]);
d2=0.5*(p3[i]-p1[i]);
a0=p1[i];
a1=d1;
a2=(3.0*(p2[i]-p1[i]))-(2.0*d1)-d2;
a3=d1+d2+(2.0*(-p2[i]+p1[i]));
// compute point coordinate
p[i]=a0+(a1*t)+(a2*tt)+(a3*ttt);
}
}
//---------------------------------------------------------------------------
void gl_draw()
{
glClearColor(1.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
// set 2D view
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(1.0/5.0,1.0/500.0,1.0);
glTranslatef(-4.0,0.0,0.0);
// render lines
glColor3f(1.0,0.0,0.0);
glBegin(GL_LINE_STRIP);
float p[2],t;
for (t=0.0;t<=float(n-1);t+=0.1f)
{
getpnt(p,t);
glVertex2fv(p);
}
glEnd();
// render points
glPointSize(4.0);
glColor3f(0.0,0.0,1.0);
glBegin(GL_POINTS);
for (int i=0;i<n2;i+=2) glVertex2fv(pnt+i);
glEnd();
glPointSize(1.0);
glFinish();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
Here preview:
As you can see it is simple you just need n control points pnt (I extracted from your graph) and just interpolate ... The getpnt functions will compute any point on the curve addressed by parameter t=<0,n-1>. Internally it just select which cubic patch to use and compute as single cubic curve. In gl_draw you can see how to use it to obtain the points in between.
As your control points are uniformly distributed on the x axis:
x = <1,7>
t = <0,6>
I can write:
x = t+1
t = x-1
so you can compute any point for any x too...
The shape does not match your graph perfectly because the selected control points are not the correct ones. Any local minimum/maximum should be a control point and sometimes is safer to use also inflex points too. The starting and ending shape of the curve suggest hidden starting and ending control point which is not showed on the graph. You can use any number of points you need but beware if you break the x uniform distribution then you lose the ability to compute t from x directly!
As we do not know how the graph was created we can only guess ...

Get rotation about y-axis from rotation matrix

i can't figure out how to extract the rotation around the global y-axis from the model matrix of my object.
I have the current model matrix from my object as an glm::mat4 and i need to cancel out the rotation around the y-axis.
Are there any functions in glm i haven't noticed?
You have to convert the rotation part of the matrix to Euler angles. It is not a trivial operation. I don't know if "glm" have a function for that, but there is a code (other methods may exists) to convert rotation part of a 4x4 matrix to X, Y and Z Euler angles:
function Matrix4ToEuler(OutEuler, InMatrix4)
{
let cy = Math.sqrt(InMatrix4[0] * InMatrix4[0] + InMatrix4[1] * InMatrix4[1]);
if(cy > 0.001) {
OutEuler.x = Math.atan2(InMatrix4[6], InMatrix4[10]);
OutEuler.y = Math.atan2(-InMatrix4[2], cy);
OutEuler.z = Math.atan2(InMatrix4[1], InMatrix4[0]);
} else {
OutEuler.x = Math.atan2(-InMatrix4[9], InMatrix4[5]);
OutEuler.y = Math.atan2(-InMatrix4[2], cy);
OutEuler.z = 0;
}
}

Mathematically producing sphere-shaped hexagonal grid

I am trying to create a shape similar to this, hexagons with 12 pentagons, at an arbitrary size.
(Image Source)
The only thing is, I have absolutely no idea what kind of code would be needed to generate it!
The goal is to be able to take a point in 3D space and convert it to a position coordinate on the grid, or vice versa and take a grid position and get the relevant vertices for drawing the mesh.
I don't even know how one would store the grid positions for this. Does each "triagle section" between 3 pentagons get their own set of 2D coordinates?
I will most likely be using C# for this, but I am more interested in which algorithms to use for this and an explanation of how they would work, rather than someone just giving me a piece of code.
The shape you have is one of so called "Goldberg polyhedra", is also a geodesic polyhedra.
The (rather elegant) algorithm to generate this (and many many more) can be succinctly encoded in something called a Conway Polyhedron Notation.
The construction is easy to follow step by step, you can click the images below to get a live preview.
The polyhedron you are looking for can be generated from an icosahedron -- Initialise a mesh with an icosahedron.
We apply a "Truncate" operation (Conway notation t) to the mesh (the sperical mapping of this one is a football).
We apply the "Dual" operator (Conway notation d).
We apply a "Truncate" operation again. At this point the recipe is tdtI (read from right!). You can already see where this is going.
Apply steps 3 & 4 repeatedly until you are satisfied.
For example below is the mesh for dtdtdtdtI.
This is quite easy to implement. I would suggest using a datastructure that makes it easy to traverse the neighbourhood give a vertex, edge etc. such as winged-edge or half-edge datastructures for your mesh. You only need to implement truncate and dual operators for the shape you are looking for.
First some analysis of the image in the question: the spherical triangle spanned by neighbouring pentagon centers seems to be equilateral. When five equilateral triangles meet in one corner and cover the whole sphere, this can only be the configuration induced by a icosahedron. So there are 12 pentagons and 20 patches of a triangular cutout of a hexongal mesh mapped to the sphere.
So this is a way to construct such a hexagonal grid on the sphere:
Create triangular cutout of hexagonal grid: a fixed triangle (I chose (-0.5,0),(0.5,0),(0,sqrt(3)/2) ) gets superimposed a hexagonal grid with desired resolution n s.t. the triangle corners coincide with hexagon centers, see the examples for n = 0,1,2,20:
Compute corners of icosahedron and define the 20 triangular faces of it (see code below). The corners of the icosahedron define the centers of the pentagons, the faces of the icosahedron define the patches of the mapped hexagonal grids. (The icosahedron gives the finest regular division of the sphere surface into triangles, i.e. a division into congruent equilateral triangles. Other such divisions can be derived from a tetrahedron or an octahedron; then at the corners of the triangles one will have triangles or squares, resp. Furthermore the fewer and bigger triangles would make the inevitable distortion in any mapping of a planar mesh onto a curved surface more visible. So choosing the icosahedron as a basis for the triangular patches helps minimizing the distortion of the hexagons.)
Map triangular cutout of hexagonal grid to spherical triangles corresponding to icosaeder faces: a double-slerp based on barycentric coordinates does the trick. Below is an illustration of the mapping of a triangular cutout of a hexagonal grid with resolution n = 10 onto one spherical triangle (defined by one face of an icosaeder), and an illustration of mapping the grid onto all these spherical triangles covering the whole sphere (different colors for different mappings):
Here is Python code to generate the corners (coordinates) and triangles (point indices) of an icosahedron:
from math import sin,cos,acos,sqrt,pi
s,c = 2/sqrt(5),1/sqrt(5)
topPoints = [(0,0,1)] + [(s*cos(i*2*pi/5.), s*sin(i*2*pi/5.), c) for i in range(5)]
bottomPoints = [(-x,y,-z) for (x,y,z) in topPoints]
icoPoints = topPoints + bottomPoints
icoTriangs = [(0,i+1,(i+1)%5+1) for i in range(5)] +\
[(6,i+7,(i+1)%5+7) for i in range(5)] +\
[(i+1,(i+1)%5+1,(7-i)%5+7) for i in range(5)] +\
[(i+1,(7-i)%5+7,(8-i)%5+7) for i in range(5)]
And here is the Python code to map (points of) the fixed triangle to a spherical triangle using a double slerp:
# barycentric coords for triangle (-0.5,0),(0.5,0),(0,sqrt(3)/2)
def barycentricCoords(p):
x,y = p
# l3*sqrt(3)/2 = y
l3 = y*2./sqrt(3.)
# l1 + l2 + l3 = 1
# 0.5*(l2 - l1) = x
l2 = x + 0.5*(1 - l3)
l1 = 1 - l2 - l3
return l1,l2,l3
from math import atan2
def scalProd(p1,p2):
return sum([p1[i]*p2[i] for i in range(len(p1))])
# uniform interpolation of arc defined by p0, p1 (around origin)
# t=0 -> p0, t=1 -> p1
def slerp(p0,p1,t):
assert abs(scalProd(p0,p0) - scalProd(p1,p1)) < 1e-7
ang0Cos = scalProd(p0,p1)/scalProd(p0,p0)
ang0Sin = sqrt(1 - ang0Cos*ang0Cos)
ang0 = atan2(ang0Sin,ang0Cos)
l0 = sin((1-t)*ang0)
l1 = sin(t *ang0)
return tuple([(l0*p0[i] + l1*p1[i])/ang0Sin for i in range(len(p0))])
# map 2D point p to spherical triangle s1,s2,s3 (3D vectors of equal length)
def mapGridpoint2Sphere(p,s1,s2,s3):
l1,l2,l3 = barycentricCoords(p)
if abs(l3-1) < 1e-10: return s3
l2s = l2/(l1+l2)
p12 = slerp(s1,s2,l2s)
return slerp(p12,s3,l3)
[Complete re-edit 18.10.2017]
the geometry storage is on you. Either you store it in some kind of Mesh or you generate it on the fly. I prefer to store it. In form of 2 tables. One holding all the vertexes (no duplicates) and the other holding 6 indexes of used points per each hex you got and some aditional info like spherical position to ease up the post processing.
Now how to generate this:
create hex triangle
the size should be radius of your sphere. do not include the corner hexess and also skip last line of the triangle (on both radial and axial so there is 1 hex gap between neighbor triangles on sphere) as that would overlap when joining out triangle segments.
convert 60deg hexagon triangle to 72deg pie
so simply convert to polar coordiantes (radius,angle), center triangle around 0 deg. Then multiply radius by cos(angle)/cos(30); which will convert triangle into Pie. And then rescale angle with ratio 72/60. That will make our triangle joinable...
copy&rotate triangle to fill 5 segments of pentagon
easy just rotate the points of first triangle and store as new one.
compute z
based on this Hexagonal tilling of hemi-sphere you can convert distance in 2D map into arc-length to limit the distortions as much a s possible.
However when I tried it (example below) the hexagons are a bit distorted so the depth and scaling needs some tweaking. Or post processing latter.
copy the half sphere to form a sphere
simply copy the points/hexes and negate z axis (or rotate by 180 deg if you want to preserve winding).
add equator and all of the missing pentagons and hexes
You should use the coordinates of the neighboring hexes so no more distortion and overlaps are added to the grid. Here preview:
Blue is starting triangle. Darker blue are its copies. Red are pole pentagons. Dark green is the equator, Lighter green are the join lines between triangles. In Yellowish are the missing equator hexagons near Dark Orange pentagons.
Here simple C++ OpenGL example (made from the linked answer in #4):
//$$---- Form CPP ----
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "win_main.h"
#include "gl/OpenGL3D_double.cpp"
#include "PolyLine.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TMain *Main;
OpenGLscreen scr;
bool _redraw=true;
double animx= 0.0,danimx=0.0;
double animy= 0.0,danimy=0.0;
//---------------------------------------------------------------------------
PointTab pnt; // (x,y,z)
struct _hexagon
{
int ix[6]; // index of 6 points, last point duplicate for pentagon
int a,b; // spherical coordinate
DWORD col; // color
// inline
_hexagon() {}
_hexagon(_hexagon& a) { *this=a; }
~_hexagon() {}
_hexagon* operator = (const _hexagon *a) { *this=*a; return this; }
//_hexagon* operator = (const _hexagon &a) { ...copy... return this; }
};
List<_hexagon> hex;
//---------------------------------------------------------------------------
// https://stackoverflow.com/a/46787885/2521214
//---------------------------------------------------------------------------
void hex_sphere(int N,double R)
{
const double c=cos(60.0*deg);
const double s=sin(60.0*deg);
const double sy= R/(N+N-2);
const double sz=sy/s;
const double sx=sz*c;
const double sz2=0.5*sz;
const int na=5*(N-2);
const int nb= N;
const int b0= N;
double *q,p[3],ang,len,l,l0,ll;
int i,j,n,a,b,ix;
_hexagon h,*ph;
hex.allocate(na*nb);
hex.num=0;
pnt.reset3D(N*N);
b=0; a=0; ix=0;
// generate triangle hex grid
h.col=0x00804000;
for (b=1;b<N-1;b++) // skip first line b=0
for (a=1;a<b;a++) // skip first and last line
{
p[0]=double(a )*(sx+sz);
p[1]=double(b-(a>>1))*(sy*2.0);
p[2]=0.0;
if (int(a&1)!=0) p[1]-=sy;
ix=pnt.add(p[0]+sz2+sx,p[1] ,p[2]); h.ix[0]=ix; // 2 1
ix=pnt.add(p[0]+sz2 ,p[1]+sy,p[2]); h.ix[1]=ix; // 3 0
ix=pnt.add(p[0]-sz2 ,p[1]+sy,p[2]); h.ix[2]=ix; // 4 5
ix=pnt.add(p[0]-sz2-sx,p[1] ,p[2]); h.ix[3]=ix;
ix=pnt.add(p[0]-sz2 ,p[1]-sy,p[2]); h.ix[4]=ix;
ix=pnt.add(p[0]+sz2 ,p[1]-sy,p[2]); h.ix[5]=ix;
h.a=a;
h.b=N-1-b;
hex.add(h);
} n=hex.num; // remember number of hexs for the first triangle
// distort points to match area
for (ix=0;ix<pnt.nn;ix+=3)
{
// point pointer
q=pnt.pnt.dat+ix;
// convert to polar coordinates
ang=atan2(q[1],q[0]);
len=vector_len(q);
// match area of pentagon (72deg) triangle as we got hexagon (60deg) triangle
ang-=60.0*deg; // rotate so center of generated triangle is angle 0deg
while (ang>+60.0*deg) ang-=pi2;
while (ang<-60.0*deg) ang+=pi2;
len*=cos(ang)/cos(30.0*deg); // scale radius so triangle converts to pie
ang*=72.0/60.0; // scale up angle so rotated triangles merge
// convert back to cartesian
q[0]=len*cos(ang);
q[1]=len*sin(ang);
}
// copy and rotate the triangle to cover pentagon
h.col=0x00404000;
for (ang=72.0*deg,a=1;a<5;a++,ang+=72.0*deg)
for (ph=hex.dat,i=0;i<n;i++,ph++)
{
for (j=0;j<6;j++)
{
vector_copy(p,pnt.pnt.dat+ph->ix[j]);
rotate2d(-ang,p[0],p[1]);
h.ix[j]=pnt.add(p[0],p[1],p[2]);
}
h.a=ph->a+(a*(N-2));
h.b=ph->b;
hex.add(h);
}
// compute z
for (q=pnt.pnt.dat,ix=0;ix<pnt.nn;ix+=pnt.dn,q+=pnt.dn)
{
q[2]=0.0;
ang=vector_len(q)*0.5*pi/R;
q[2]=R*cos(ang);
ll=fabs(R*sin(ang)/sqrt((q[0]*q[0])+(q[1]*q[1])));
q[0]*=ll;
q[1]*=ll;
}
// copy and mirror the other half-sphere
n=hex.num;
for (ph=hex.dat,i=0;i<n;i++,ph++)
{
for (j=0;j<6;j++)
{
vector_copy(p,pnt.pnt.dat+ph->ix[j]);
p[2]=-p[2];
h.ix[j]=pnt.add(p[0],p[1],p[2]);
}
h.a= ph->a;
h.b=-ph->b;
hex.add(h);
}
// create index search table
int i0,i1,j0,j1,a0,a1,ii[5];
int **ab=new int*[na];
for (a=0;a<na;a++)
{
ab[a]=new int[nb+nb+1];
for (b=-nb;b<=nb;b++) ab[a][b0+b]=-1;
}
n=hex.num;
for (ph=hex.dat,i=0;i<n;i++,ph++) ab[ph->a][b0+ph->b]=i;
// add join ring
h.col=0x00408000;
for (a=0;a<na;a++)
{
h.a=a;
h.b=0;
a0=a;
a1=a+1; if (a1>=na) a1-=na;
i0=ab[a0][b0+1];
i1=ab[a1][b0+1];
j0=ab[a0][b0-1];
j1=ab[a1][b0-1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i1].ix[1];
h.ix[1]=hex[i0].ix[0];
h.ix[2]=hex[i0].ix[1];
h.ix[3]=hex[j0].ix[1];
h.ix[4]=hex[j0].ix[0];
h.ix[5]=hex[j1].ix[1];
hex.add(h);
ab[h.a][b0+h.b]=hex.num-1;
}
}
// add 2x5 join lines
h.col=0x00008040;
for (a=0;a<na;a+=N-2)
for (b=1;b<N-3;b++)
{
// +b hemisphere
h.a= a;
h.b=+b;
a0=a-b; if (a0< 0) a0+=na; i0=ab[a0][b0+b+0];
a0--; if (a0< 0) a0+=na; i1=ab[a0][b0+b+1];
a1=a+1; if (a1>=na) a1-=na; j0=ab[a1][b0+b+0];
j1=ab[a1][b0+b+1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i0].ix[5];
h.ix[1]=hex[i0].ix[4];
h.ix[2]=hex[i1].ix[5];
h.ix[3]=hex[j1].ix[3];
h.ix[4]=hex[j0].ix[4];
h.ix[5]=hex[j0].ix[3];
hex.add(h);
}
// -b hemisphere
h.a= a;
h.b=-b;
a0=a-b; if (a0< 0) a0+=na; i0=ab[a0][b0-b+0];
a0--; if (a0< 0) a0+=na; i1=ab[a0][b0-b-1];
a1=a+1; if (a1>=na) a1-=na; j0=ab[a1][b0-b+0];
j1=ab[a1][b0-b-1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i0].ix[5];
h.ix[1]=hex[i0].ix[4];
h.ix[2]=hex[i1].ix[5];
h.ix[3]=hex[j1].ix[3];
h.ix[4]=hex[j0].ix[4];
h.ix[5]=hex[j0].ix[3];
hex.add(h);
}
}
// add pentagons at poles
_hexagon h0,h1;
h0.col=0x00000080;
h0.a=0; h0.b=N-1; h1=h0; h1.b=-h1.b;
p[2]=sqrt((R*R)-(sz*sz));
for (ang=0.0,a=0;a<5;a++,ang+=72.0*deg)
{
p[0]=2.0*sz*cos(ang);
p[1]=2.0*sz*sin(ang);
h0.ix[a]=pnt.add(p[0],p[1],+p[2]);
h1.ix[a]=pnt.add(p[0],p[1],-p[2]);
}
h0.ix[5]=h0.ix[4]; hex.add(h0);
h1.ix[5]=h1.ix[4]; hex.add(h1);
// add 5 missing hexagons at poles
h.col=0x00600060;
for (ph=&h0,b=N-3,h.b=N-2,i=0;i<2;i++,b=-b,ph=&h1,h.b=-h.b)
{
a = 1; if (a>=na) a-=na; ii[0]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[1]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[2]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[3]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[4]=ab[a][b0+b];
for (j=0;j<5;j++)
{
h.a=((4+j)%5)*(N-2)+1;
h.ix[0]=ph->ix[ (5-j)%5 ];
h.ix[1]=ph->ix[ (6-j)%5 ];
h.ix[2]=hex[ii[(j+4)%5]].ix[4];
h.ix[3]=hex[ii[(j+4)%5]].ix[5];
h.ix[4]=hex[ii[ j ]].ix[3];
h.ix[5]=hex[ii[ j ]].ix[4];
hex.add(h);
}
}
// add 2*5 pentagons and 2*5 missing hexagons at equator
h0.a=0; h0.b=N-1; h1=h0; h1.b=-h1.b;
for (ang=36.0*deg,a=0;a<na;a+=N-2,ang-=72.0*deg)
{
p[0]=R*cos(ang);
p[1]=R*sin(ang);
p[2]=sz;
i0=pnt.add(p[0],p[1],+p[2]);
i1=pnt.add(p[0],p[1],-p[2]);
a0=a-1;if (a0< 0) a0+=na;
a1=a+1;if (a1>=na) a1-=na;
ii[0]=ab[a0][b0-1]; ii[2]=ab[a1][b0-1];
ii[1]=ab[a0][b0+1]; ii[3]=ab[a1][b0+1];
// hexagons
h.col=0x00008080;
h.a=a; h.b=0;
h.ix[0]=hex[ii[0]].ix[0];
h.ix[1]=hex[ii[0]].ix[1];
h.ix[2]=hex[ii[1]].ix[1];
h.ix[3]=hex[ii[1]].ix[0];
h.ix[4]=i0;
h.ix[5]=i1;
hex.add(h);
h.a=a; h.b=0;
h.ix[0]=hex[ii[2]].ix[2];
h.ix[1]=hex[ii[2]].ix[1];
h.ix[2]=hex[ii[3]].ix[1];
h.ix[3]=hex[ii[3]].ix[2];
h.ix[4]=i0;
h.ix[5]=i1;
hex.add(h);
// pentagons
h.col=0x000040A0;
h.a=a; h.b=0;
h.ix[0]=hex[ii[0]].ix[0];
h.ix[1]=hex[ii[0]].ix[5];
h.ix[2]=hex[ii[2]].ix[3];
h.ix[3]=hex[ii[2]].ix[2];
h.ix[4]=i1;
h.ix[5]=i1;
hex.add(h);
h.a=a; h.b=0;
h.ix[0]=hex[ii[1]].ix[0];
h.ix[1]=hex[ii[1]].ix[5];
h.ix[2]=hex[ii[3]].ix[3];
h.ix[3]=hex[ii[3]].ix[2];
h.ix[4]=i0;
h.ix[5]=i0;
hex.add(h);
}
// release index search table
for (a=0;a<na;a++) delete[] ab[a];
delete[] ab;
}
//---------------------------------------------------------------------------
void hex_draw(GLuint style) // draw hex
{
int i,j;
_hexagon *h;
for (h=hex.dat,i=0;i<hex.num;i++,h++)
{
if (style==GL_POLYGON) glColor4ubv((BYTE*)&h->col);
glBegin(style);
for (j=0;j<6;j++) glVertex3dv(pnt.pnt.dat+h->ix[j]);
glEnd();
}
if (0)
if (style==GL_POLYGON)
{
scr.text_init_pixel(0.1,-0.2);
glColor3f(1.0,1.0,1.0);
for (h=hex.dat,i=0;i<hex.num;i++,h++)
if (abs(h->b)<2)
{
double p[3];
vector_ld(p,0.0,0.0,0.0);
for (j=0;j<6;j++)
vector_add(p,p,pnt.pnt.dat+h->ix[j]);
vector_mul(p,p,1.0/6.0);
scr.text(p[0],p[1],p[2],AnsiString().sprintf("%i,%i",h->a,h->b));
}
scr.text_exit_pixel();
}
}
//---------------------------------------------------------------------------
void TMain::draw()
{
scr.cls();
int x,y;
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-5.0);
glRotated(animx,1.0,0.0,0.0);
glRotated(animy,0.0,1.0,0.0);
hex_draw(GL_POLYGON);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-5.0+0.01);
glRotated(animx,1.0,0.0,0.0);
glRotated(animy,0.0,1.0,0.0);
glColor3f(1.0,1.0,1.0);
glLineWidth(2);
hex_draw(GL_LINE_LOOP);
glCirclexy(0.0,0.0,0.0,1.5);
glLineWidth(1);
scr.exe();
scr.rfs();
}
//---------------------------------------------------------------------------
__fastcall TMain::TMain(TComponent* Owner) : TForm(Owner)
{
scr.init(this);
hex_sphere(10,1.5);
_redraw=true;
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormDestroy(TObject *Sender)
{
scr.exit();
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormPaint(TObject *Sender)
{
_redraw=true;
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormResize(TObject *Sender)
{
scr.resize();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60,float(scr.xs)/float(scr.ys),0.1,100.0);
_redraw=true;
}
//-----------------------------------------------------------------------
void __fastcall TMain::Timer1Timer(TObject *Sender)
{
animx+=danimx; if (animx>=360.0) animx-=360.0; _redraw=true;
animy+=danimy; if (animy>=360.0) animy-=360.0; _redraw=true;
if (_redraw) { draw(); _redraw=false; }
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormKeyDown(TObject *Sender, WORD &Key, TShiftState Shift)
{
Caption=Key;
if (Key==40){ animx+=2.0; _redraw=true; }
if (Key==38){ animx-=2.0; _redraw=true; }
if (Key==39){ animy+=2.0; _redraw=true; }
if (Key==37){ animy-=2.0; _redraw=true; }
}
//---------------------------------------------------------------------------
I know it is a bit of a index mess and also winding rule is not guaranteed as I was too lazy to made uniform indexing. Beware the a indexes of each hex are not linear and if you want to use them to map to 2D map you would need to recompute it using atan2 on x,y of its center point position.
Here previews:
Still some distortions are present. They are caused by fact that we using 5 triangles to connect at equator (so connection is guaranteed). That means the circumference is 5*R instead of 6.28*R. How ever this can be still improved by a field simulation. Just take all the points and add retractive forces based on their distance and bound to sphere surface. Run simulation and when the oscillations lower below threshold you got your sphere grid ...
Another option would be find out some equation to remap the grid points (similarly what I done for triangle to pie conversion) that would have better results.

Resources