Mathematica - extracting upper bound envelope of of listplot - wolfram-mathematica

I have an unstructured dataset "nm", excel file in the link below.
https://www.dropbox.com/s/k7sdblxg4txjvj8/nm.xls?dl=0
it looks like that in a Mathematica list plot 1.
Could You please help me extracting upper bound envelope of this dataset, similar to the red line marked in picture 2? By extracting an envelope I mean to make another list "nm2" that for a given n produces a maximum m? I need another list "nm2" because then i need to work with it in excel.
Best Regards,
BG

Using a technique found here : obtain all boundary points on a convex hull
data = Import["nm.xls"];
chr = ConvexHullRegion[data];
sr = SignedRegionDistance[chr];
dist = sr /# data;
points = Extract[data, Position[dist, 0.]];
{maxx, maxy} = Max /# Transpose[data];
minx = First[FirstCase[points, {_, maxy}]];
miny = Last[FirstCase[points, {maxx, _}]];
arc = Select[points, First[#] >= minx && Last[#] >= miny &];
f = Interpolation[arc];
Show[ListPlot[data], Plot[f[x], {x, minx, maxx},
PlotStyle -> {Thick, Red}]]

Related

Area under a curve in Mathematica

Problem:
I have a two separated list of values, X={x1,x2....x2059} and Y={Y1,Y2....Y2059}. Using the Mathematica function "Transpose" i can obtain a new list Z = {{x1,y1},{x2,y2},...{x2059,y2059}}. Using ListLinePlot[Z] i made the plot.
Now, the problem is: How i can calculate the area under the plotted curve. I can't use NIntegrate, or Integrate. Can I use the interpolation function? how?
Even using the Trapezoidal Rule (implemente by me) i didn't obtain a good resul.
The data comes from an Load-deformation plot. This means that for the first half part of the data, the curve growth. From the second part of data the curve come back to zero (close to zero). In particular, X = deformation and Y=Load.
(*create a simulation for your points*)
npts = 2058;
x = Sort#RandomReal[100, npts];
y = Join[Sort#RandomReal[100, npts/2], Reverse#Sort#RandomReal[100, npts/2]];
f = Interpolation[Transpose#{x, y}, InterpolationOrder -> 1];
(*Plot and Integrate*)
Plot[f[t], {t, Min#x, Max#x}, Filling -> Axis]
NIntegrate[f[t], {t, Min#x, Max#x}, Method -> "LocalAdaptive"]
answer:
(* 5006.01 *)

Parametrizing 3D geometry for shape optimization

I am trying to parametrize a 3D geometry for shape optimization. The structure looks like the following. Another real example is here.
Currently I am using BSplines to create the lower part and using symmetry to create the whole down part of the foil. Here is what I get.
Now I have many control points to take care in order to run a shape optimization. I also don't know how to join the upper part with the bottom hydrofoil part in a sensible way. I don't know how to design a good middle part of the foil (fat nose part of the foil) where the upper part is linked to. I also need to accompany a flap with in the geometry.
Please offer some suggestion for parametrization of such a surface so that we can manipulate the geometry from MMA. The less control points are there better the situation is for optimization. May be combination of some analytic function in 3D. But I doubt if that is possible.
BR
I think you have two choices: 1) create the second part of the geometry and then write a face-face intersection algorithm to merge them. 2) create the second part of the geometry and write two functions that return -1 if a query point is inside the geometry and +1 if it is out side (other values will do). Then use RegionPlot3D[ f1[x,y,z]<0 || f2[x,y,z]<0,....]. The idea is the to extract the GraphicsComplex and use that. The question is going to be how well you can approximate the corners with that. Here is an illustration of what I mean.
if1[x_, y_, z_] := If[x^2 + y^2 + z^2 <= 1, -1, 1]
if2[x_, y_, z_] := If[(x - 1)^2 + y^2 <= 1 && -1.5 <= z <= 1.5, -1, 1]
res = RegionPlot3D[
if1[x, y, z] < 0 || if2[x, y, z] < 0, {x, -2, 2}, {y, -2,
2}, {z, -2, 2}, PlotPoints -> 100, Boxed -> False, Axes -> False]
Then extract the coords and the polygons.
coords = res[[1, 1]];
poly = Cases[res[[1]], _Polygon, Infinity];
Graphics3D[GraphicsComplex[coords, poly], Boxed -> False]
Hope this helps.

Create matrix out of list with mathematica

I have a problem which I try to solve with mathematica.
I am having a list with x and y coordinates from a position measurement (and also with z values of the quantity which was measured at each point). So, my list starts with
list={{-762.369,109.998,0.915951},{-772.412,109.993,0.923894},{-777.39, 109.998, 0.918108},...} (x,y,z).
Out of some reasons, I have to fill all these x,y, and z-values into a matrix. That would be easy if I have for each y-coordinate the same amount of x-coordinates (lets say 80), then I could use Partition[list,80] which produces a matrix with 80 columns (and some rows whose number is given by the number of y-coordinates with the same value).
Unfortunately, it is not so easy, the number of x-coordinates for each y is not strictly constant, as can be seen from the attached ListPlot.
Can anybody give me some suggestions, how I could fill each point of this plot / each x-y-(and z-) coordinate of my list into a matrix?
To explain better what I want to have, I indicated in the attached picture a matrix. There one can see that almost every point of my plot would fall into a cell of a matrix, only some cells would stay empty.
I used in the plot the color red for the points whose x coordinates are ascending in my list and blue for the points whose x coordinate are descending in my list (the positions are measured along a meander line). Perhaps this kind of order can be useful to solve to problem...
Here a link to my coordinates, perhaps this helps.
Well, I hope I explained my question well enough. I would appreciate every help much!
The basic idea behind this solution is:
all points seem to lie on a lattice, but it's not precisely a square lattice (it's slanted)
so let's find the basis vectors of the lattice, then all (most?) points will be approximate integer linear combinations of the basis vectors
the integer "coordinates" of the points along the basis vectors will be the matrix indices for the OP's matrix
(The OP emailed me the datafile. It consists of {x,y} point coordinates.)
Read in the data:
data = Import["xy.txt", "Table"];
Find the nearest 4 points to each point, and notice that they lie about distance 5 away both horizontally and vertically:
nf = Nearest[data];
In:= # - data[[100]] & /# nf[data[[100]], 5]
Out= {{0., 0.}, {-4.995, 0.}, {5.003, 0.001}, {-0.021, 5.003}, {0.204, -4.999}}
ListPlot[nf[data[[100]], 5], PlotStyle -> Red,
PlotMarkers -> Automatic, AspectRatio -> Automatic]
Generate the difference vectors between close points and keep only those that are about length 5:
vv = Select[
Join ## Table[(# - data[[k]] & /# nf[data[[k]], 5]), {k, 1, Length[data]}],
4.9 < Norm[#] < 5.1 &
];
Average the vectors out by directions they can point to, and keep two "good" ones (pointing "up" or to the "right").
In:= Mean /# GatherBy[vv, Round[ArcTan ## #, 0.25] &]
Out= {{0.0701994, -4.99814}, {-5.00094, 0.000923234}, {5.00061, -4.51807*10^-6},
{-4.99907, -0.004153}, {-0.0667469, 4.9983}, {-0.29147, 4.98216}}
In:= {u1, u2} = %[[{3, 5}]]
Out= {{5.00061, -4.51807*10^-6}, {-0.0667469, 4.9983}}
Use one random point as the point of origin, so the coordinates along the basis vectors u1 and u2 will be integers:
translatedData = data[[100]] - # & /# data;
Let's find the integer coordinates and see how good they are (how far they are from actual integers):
In:= integerIndices = LinearSolve[Transpose[{u1, u2}], #] & /# translatedData ;
In:= Max[Abs[integerIndices - Round[integerIndices]]]
Out= 0.104237
In:= ListPlot[{integerIndices, Round[integerIndices]}, PlotStyle -> {Black, Red}]
All points lie close to the integer approximations.
Offset the integer coordinates so they're all positive and can be used as matrix indices, then gather the elements into a matrix. I put the coordinates in a point object in order not to confuse SparseArray:
offset = Min /# Transpose[Round[integerIndices]]
offset = {1, 1} - offset
result =
SparseArray[
Thread[(# + offset & /# Round[integerIndices]) -> point ### data]]
result = Normal[result] /. {point -> List, 0 -> Null}
And we finally have a matrix result where each element is a coordinate-pair! (I was sloppy doing 0 -> Null here to mark missing elements: it's important that data contained no exact 0s.)
MatrixForm[result[[1 ;; 10, 1 ;; 5]]]
EDIT
Just for fun, let's look at the deviations of points from the precise integer lattice sites:
lattice = #1 u1 + #2 u2 & ### Round[integerIndices];
delta = translatedData - lattice;
delta = # - Mean[delta] & /# delta;
ListVectorPlot[Transpose[{lattice, delta}, {2, 1, 3}], VectorPoints -> 30]

Plot images as axis labels in MATLAB

I am plotting a 7x7 pixel 'image' in MATLAB, using the imagesc command:
imagesc(conf_matrix, [0 1]);
This represents a confusion matrix, between seven different objects. I have a thumbnail picture of each of the seven objects that I would like to use as the axes tick labels. Is there an easy way to do this?
I don't know an easy way. The axes properties XtickLabel which determines the labels, can only be strings.
If you want a not-so-easy way, you could do something in the spirit of the following non-complete (in the sense of a non-complete solution) code, creating one label:
h = imagesc(rand(7,7));
axh = gca;
figh = gcf;
xticks = get(gca,'xtick');
yticks = get(gca,'ytick');
set(gca,'XTickLabel','');
set(gca,'YTickLabel','');
pos = get(axh,'position'); % position of current axes in parent figure
pic = imread('coins.png');
x = pos(1);
y = pos(2);
dlta = (pos(3)-pos(1)) / length(xticks); % square size in units of parant figure
% create image label
lblAx = axes('parent',figh,'position',[x+dlta/4,y-dlta/2,dlta/2,dlta/2]);
imagesc(pic,'parent',lblAx)
axis(lblAx,'off')
One problem is that the label will have the same colormap of the original image.
#Itmar Katz gives a solution very close to what I want to do, which I've marked as 'accepted'. In the meantime, I made this dirty solution using subplots, which I've given here for completeness. It only works up to a certain size input matrix though, and only displays well when the figure is square.
conf_mat = randn(5);
A = imread('peppers.png');
tick_images = {A, A, A, A, A};
n = length(conf_mat) + 1;
% plotting axis labels at left and top
for i = 1:(n-1)
subplot(n, n, i + 1);
imshow(tick_images{i});
subplot(n, n, i * n + 1);
imshow(tick_images{i});
end
% generating logical array for where the confusion matrix should be
idx = 1:(n*n);
idx(1:n) = 0;
idx(mod(idx, n)==1) = 0;
% plotting the confusion matrix
subplot(n, n, find(idx~=0));
imshow(conf_mat);
axis image
colormap(gray)

3D Least Squares Plane

What's the algorithm for computing a least squares plane in (x, y, z) space, given a set of 3D data points? In other words, if I had a bunch of points like (1, 2, 3), (4, 5, 6), (7, 8, 9), etc., how would one go about calculating the best fit plane f(x, y) = ax + by + c? What's the algorithm for getting a, b, and c out of a set of 3D points?
If you have n data points (x[i], y[i], z[i]), compute the 3x3 symmetric matrix A whose entries are:
sum_i x[i]*x[i], sum_i x[i]*y[i], sum_i x[i]
sum_i x[i]*y[i], sum_i y[i]*y[i], sum_i y[i]
sum_i x[i], sum_i y[i], n
Also compute the 3 element vector b:
{sum_i x[i]*z[i], sum_i y[i]*z[i], sum_i z[i]}
Then solve Ax = b for the given A and b. The three components of the solution vector are the coefficients to the least-square fit plane {a,b,c}.
Note that this is the "ordinary least squares" fit, which is appropriate only when z is expected to be a linear function of x and y. If you are looking more generally for a "best fit plane" in 3-space, you may want to learn about "geometric" least squares.
Note also that this will fail if your points are in a line, as your example points are.
The equation for a plane is: ax + by + c = z. So set up matrices like this with all your data:
x_0 y_0 1
A = x_1 y_1 1
...
x_n y_n 1
And
a
x = b
c
And
z_0
B = z_1
...
z_n
In other words: Ax = B. Now solve for x which are your coefficients. But since (I assume) you have more than 3 points, the system is over-determined so you need to use the left pseudo inverse. So the answer is:
a
b = (A^T A)^-1 A^T B
c
And here is some simple Python code with an example:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET = 5
EXTENTS = 5
NOISE = 5
# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
zs.append(xs[i]*TARGET_X_SLOPE + \
ys[i]*TARGET_y_SLOPE + \
TARGET_OFFSET + np.random.normal(scale=NOISE))
# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')
# do fit
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
print("solution:")
print("%f x + %f y + %f = z" % (fit[0], fit[1], fit[2]))
print("errors:")
print(errors)
print("residual:")
print(residual)
# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
for c in range(X.shape[1]):
Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
unless someone tells me how to type equations here, let me just write down the final computations you have to do:
first, given points r_i \n \R, i=1..N, calculate the center of mass of all points:
r_G = \frac{\sum_{i=1}^N r_i}{N}
then, calculate the normal vector n, that together with the base vector r_G defines the plane by calculating the 3x3 matrix A as
A = \sum_{i=1}^N (r_i - r_G)(r_i - r_G)^T
with this matrix, the normal vector n is now given by the eigenvector of A corresponding to the minimal eigenvalue of A.
To find out about the eigenvector/eigenvalue pairs, use any linear algebra library of your choice.
This solution is based on the Rayleight-Ritz Theorem for the Hermitian matrix A.
See 'Least Squares Fitting of Data' by David Eberly for how I came up with this one to minimize the geometric fit (orthogonal distance from points to the plane).
bool Geom_utils::Fit_plane_direct(const arma::mat& pts_in, Plane& plane_out)
{
bool success(false);
int K(pts_in.n_cols);
if(pts_in.n_rows == 3 && K > 2) // check for bad sizing and indeterminate case
{
plane_out._p_3 = (1.0/static_cast<double>(K))*arma::sum(pts_in,1);
arma::mat A(pts_in);
A.each_col() -= plane_out._p_3; //[x1-p, x2-p, ..., xk-p]
arma::mat33 M(A*A.t());
arma::vec3 D;
arma::mat33 V;
if(arma::eig_sym(D,V,M))
{
// diagonalization succeeded
plane_out._n_3 = V.col(0); // in ascending order by default
if(plane_out._n_3(2) < 0)
{
plane_out._n_3 = -plane_out._n_3; // upward pointing
}
success = true;
}
}
return success;
}
Timed at 37 micro seconds fitting a plane to 1000 points (Windows 7, i7, 32bit program)
This reduces to the Total Least Squares problem, that can be solved using SVD decomposition.
C++ code using OpenCV:
float fitPlaneToSetOfPoints(const std::vector<cv::Point3f> &pts, cv::Point3f &p0, cv::Vec3f &nml) {
const int SCALAR_TYPE = CV_32F;
typedef float ScalarType;
// Calculate centroid
p0 = cv::Point3f(0,0,0);
for (int i = 0; i < pts.size(); ++i)
p0 = p0 + conv<cv::Vec3f>(pts[i]);
p0 *= 1.0/pts.size();
// Compose data matrix subtracting the centroid from each point
cv::Mat Q(pts.size(), 3, SCALAR_TYPE);
for (int i = 0; i < pts.size(); ++i) {
Q.at<ScalarType>(i,0) = pts[i].x - p0.x;
Q.at<ScalarType>(i,1) = pts[i].y - p0.y;
Q.at<ScalarType>(i,2) = pts[i].z - p0.z;
}
// Compute SVD decomposition and the Total Least Squares solution, which is the eigenvector corresponding to the least eigenvalue
cv::SVD svd(Q, cv::SVD::MODIFY_A|cv::SVD::FULL_UV);
nml = svd.vt.row(2);
// Calculate the actual RMS error
float err = 0;
for (int i = 0; i < pts.size(); ++i)
err += powf(nml.dot(pts[i] - p0), 2);
err = sqrtf(err / pts.size());
return err;
}
As with any least-squares approach, you proceed like this:
Before you start coding
Write down an equation for a plane in some parameterization, say 0 = ax + by + z + d in thee parameters (a, b, d).
Find an expression D(\vec{v};a, b, d) for the distance from an arbitrary point \vec{v}.
Write down the sum S = \sigma_i=0,n D^2(\vec{x}_i), and simplify until it is expressed in terms of simple sums of the components of v like \sigma v_x, \sigma v_y^2, \sigma v_x*v_z ...
Write down the per parameter minimization expressions dS/dx_0 = 0, dS/dy_0 = 0 ... which gives you a set of three equations in three parameters and the sums from the previous step.
Solve this set of equations for the parameters.
(or for simple cases, just look up the form). Using a symbolic algebra package (like Mathematica) could make you life much easier.
The coding
Write code to form the needed sums and find the parameters from the last set above.
Alternatives
Note that if you actually had only three points, you'd be better just finding the plane that goes through them.
Also, if the analytic solution in unfeasible (not the case for a plane, but possible in general) you can do steps 1 and 2, and use a Monte Carlo minimizer on the sum in step 3.
CGAL::linear_least_squares_fitting_3
Function linear_least_squares_fitting_3 computes the best fitting 3D
line or plane (in the least squares sense) of a set of 3D objects such
as points, segments, triangles, spheres, balls, cuboids or tetrahedra.
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Principal_component_analysis_ref/Function_linear_least_squares_fitting_3.html
It sounds like all you want to do is linear regression with 2 regressors. The wikipedia page on the subject should tell you all you need to know and then some.
All you'll have to do is to solve the system of equations.
If those are your points:
(1, 2, 3), (4, 5, 6), (7, 8, 9)
That gives you the equations:
3=a*1 + b*2 + c
6=a*4 + b*5 + c
9=a*7 + b*8 + c
So your question actually should be: How do I solve a system of equations?
Therefore I recommend reading this SO question.
If I've misunderstood your question let us know.
EDIT:
Ignore my answer as you probably meant something else.
We first present a linear least-squares plane fitting method that minimizes the residuals between the estimated normal vector and provided points.
Recall that the equation for a plane passing through origin is Ax + By + Cz = 0, where (x, y, z) can be any point on the plane and (A, B, C) is the normal vector perpendicular to this plane.
The equation for a general plane (that may or may not pass through origin) is Ax + By + Cz + D = 0, where the additional coefficient D represents how far the plane is away from the origin, along the direction of the normal vector of the plane. [Note that in this equation (A, B, C) forms a unit normal vector.]
Now, we can apply a trick here and fit the plane using only provided point coordinates. Divide both sides by D and rearrange this term to the right-hand side. This leads to A/D x + B/D y + C/D z = -1. [Note that in this equation (A/D, B/D, C/D) forms a normal vector with length 1/D.]
We can set up a system of linear equations accordingly, and then solve it by an Eigen solver in C++ as follows.
// Example for 5 points
Eigen::Matrix<double, 5, 3> matA; // row: 5 points; column: xyz coordinates
Eigen::Matrix<double, 5, 1> matB = -1 * Eigen::Matrix<double, 5, 1>::Ones();
// Find the plane normal
Eigen::Vector3d normal = matA.colPivHouseholderQr().solve(matB);
// Check if the fitting is healthy
double D = 1 / normal.norm();
normal.normalize(); // normal is a unit vector from now on
bool planeValid = true;
for (int i = 0; i < 5; ++i) { // compare Ax + By + Cz + D with 0.2 (ideally Ax + By + Cz + D = 0)
if ( fabs( normal(0)*matA(i, 0) + normal(1)*matA(i, 1) + normal(2)*matA(i, 2) + D) > 0.2) {
planeValid = false; // 0.2 is an experimental threshold; can be tuned
break;
}
}
We then discuss its equivalence to the typical SVD-based method and their comparison.
The aforementioned linear least-squares (LLS) method fits the general plane equation Ax + By + Cz + D = 0, whereas the SVD-based method replaces D with D = - (Ax0 + By0 + Cz0) and fits the plane equation A(x-x0) + B(y-y0) + C(z-z0) = 0, where (x0, y0, z0) is the mean of all points that serves as the origin of the new local coordinate frame.
Comparison between two methods:
The LLS fitting method is much faster than the SVD-based method, and is suitable for use when points are known to be roughly in a plane shape.
The SVD-based method is more numerically stable when the plane is far away from origin, because the LLS method would require more digits after decimal to be stored and processed in such cases.
The LLS method can detect outliers by checking the dot product residual between each point and the estimated normal vector, whereas the SVD-based method can detect outliers by checking if the smallest eigenvalue of the covariance matrix is significantly smaller than the two larger eigenvalues (i.e. checking the shape of the covariance matrix).
We finally provide a test case in C++ and MATLAB.
// Test case in C++ (using LLS fitting method)
matA(0,0) = 5.4637; matA(0,1) = 10.3354; matA(0,2) = 2.7203;
matA(1,0) = 5.8038; matA(1,1) = 10.2393; matA(1,2) = 2.7354;
matA(2,0) = 5.8565; matA(2,1) = 10.2520; matA(2,2) = 2.3138;
matA(3,0) = 6.0405; matA(3,1) = 10.1836; matA(3,2) = 2.3218;
matA(4,0) = 5.5537; matA(4,1) = 10.3349; matA(4,2) = 1.8796;
// With this sample data, LLS fitting method can produce the following result
// fitted normal vector = (-0.0231143, -0.0838307, -0.00266429)
// unit normal vector = (-0.265682, -0.963574, -0.0306241)
// D = 11.4943
% Test case in MATLAB (using SVD-based method)
points = [5.4637 10.3354 2.7203;
5.8038 10.2393 2.7354;
5.8565 10.2520 2.3138;
6.0405 10.1836 2.3218;
5.5537 10.3349 1.8796]
covariance = cov(points)
[V, D] = eig(covariance)
normal = V(:, 1) % pick the eigenvector that corresponds to the smallest eigenvalue
% normal = (0.2655, 0.9636, 0.0306)

Resources