Is the compile time affect the app when deploying it? - performance

I'm curious to understand a phrase such as "At compile time however, x language is measurably slower than y language*". Does this mean compile time difference will make one language faster than the other at run-time or in other words when users use the app!
Both languages work on JVM.

It's impossible to be 100% sure without more info/context, but I'd say "No. Slow compile time doesn't mean slow run time."
Consider two compilers for the same language. One compiles very slowly because it produces heavily optimized code that actually runs faster than the code produced by the other (faster) compiler.

Related

Difference between compiled and interpreted languages?

What are the relative strengths and weaknesses of compiled and interpreted languages?
Neither approach has a clear advantage over the other - if one approach was always better, chances are that we'd start using it everywhere!
Generally speaking, compilers offer the following advantages:
Because they can see all the code up-front, they can perform a number of analyses and optimizations when generating code that makes the final version of the code executed faster than just interpreting each line individually.
Compilers can often generate low-level code that performs the equivalent of a high-level ideas like "dynamic dispatch" or "inheritance" in terms of memory lookups inside of tables. This means that the resulting programs need to remember less information about the original code, lowering the memory usage of the generated program.
Compiled code is generally faster than interpreted code because the instructions executed are usually just for the program itself, rather than the program itself plus the overhead from an interpreter.
Generally speaking, compilers have the following drawbacks:
Some language features, such as dynamic typing, are difficult to compile efficiently because the compiler can't predict what's going to happen until the program is actually run. This means that the compiler might not generate very good code.
Compilers generally have a long "start-up" time because of the cost of doing all the analysis that they do. This means that in settings like web browsers where it's important to load code fast, compilers might be slower because they optimize short code that won't be run many times.
Generally speaking, interpreters have the following advantages:
Because they can read the code as written and don't have to do expensive operations to generate or optimize code, they tend to start up faster than compilers.
Because interpreters can see what the program does as its running, interpreters can use a number of dynamic optimizations that compilers might not be able to see.
Generally speaking, interpreters have the following disadvantages:
Interpreters typically have higher memory usage than compilers because the interpreter needs to keep more information about the program available at runtime.
Interpreters typically spend some CPU time inside of the code for the interpreter, which can slow down the program being run.
Because interpreters and compilers have complementary strengths and weaknesses, it's becoming increasingly common for language runtimes to combine elements of both. Java's JVM is a good example of this - the Java code itself is compiled, and initially it's interpreted. The JVM can then find code that's run many, many times and compile it directly to machine code, meaning that "hot" code gets the benefits of compilation while "cold" code does not. The JVM can also perform a number of dynamic optimizations like inline caching to speed up performance in ways that compilers typically don't.
Many modern JavaScript implementations use similar tricks. Most JavaScript code is short and doesn't do all that much, so they typically start off using an interpreter. However, if it becomes clear that the code is being run repeatedly, many JS engines will compile the code - or at least, compile bits and pieces of it - and optimize it using standard techniques. The net result is that the code is fast at startup (useful for loading web pages quickly) but gets faster the more that it runs.
One last detail is that languages are not compiled or interpreted. Usually, C code is compiled, but there are C interpreters available that make it easier to debug or visualize the code that's being run (they're often used in introductory programming classes - or at least, they used to be.) JavaScript used to be thought of as an interpreted language until some JS engines started compiling it. Some Python implementations are purely interpreters, but you can get Python compilers that generate native code. Now, some languages are easier to compile or interpret than others, but there's nothing stopping you from making a compiler or interpreter for any particular programming language. There's a theoretical result called the Futamura projections that shows that anything that can be interpreted can be compiled, for example.
Because the Start up time it’s cheaper and you can read interpreters program as is makes it a no brainer to me for the interpreter

Questions about possible java(or other memory managed language) optimizations

From what I have read java (usually) seems to compile java to not very (is at all?) optimised java bytecode, leaving it to the jit to optimise. Is this true? And if it is has there been any exploration (possibly in alternative implementations) of getting the compiler to optimise the code so the jit has less work to do (is this possible)?
Also many people seem to have a dislike for native code generation (sometimes referred to as ahead of time compilation) for Java (and many other high level memory managed languages) , for many reasons such as loss of portability (and ect.) , but also partially because (at least for those languages that have a just in time compiler) the thinking goes that ahead of time compilation to machine code will miss the possible optimisations that can be done by a jit compiler and therefore may be slower in the long run.
This leads me to wonder whether anyone has ever tried to implement http://en.wikipedia.org/wiki/Profile-guided_optimization (compiling to a binary + some extras then running the program and analysing the runtime information of the test run to generate a hopefully more optimised binary for real world usage) for java/(other memory managed languages) and how this would compare to jit code? Anyone have a clue?
Personally, I think the big difference is not between JIT compiling and AOT compiling, but between class-compilation and whole-program optimization.
When you run javac, it only looks at a single .java file, compiling it into a single .class file. All the interface implementations and virtual methods and overrides are checked for validity but left unresolved (because it's impossible to know the true method invocation targets without analyzing the whole program).
The JVM uses "runtime loading and linking" to assemble all of your classes into a coherent program (and any class in your program can invoke specialized behavior to change the default loading/linking behavior).
But then, at runtime, the JVM can remove the vast majority of virtual methods. It can inline all of your getters and setters, turning them into raw fields. And when those raw fields are inlined, it can perform constant-propagation to further optimize the code. (At runtime, there's no such thing as a private field.) And if there's only one thread running, the JVM can eliminate all synchronization primitives.
To make a long story short, there are a lot of optimizations that aren't possible without analyzing the whole program, and the best time for doing whole program analysis is at runtime.
Profile-guided optimization has some caveats, one of them mentioned even in the Wiki article you linked. It's results are valid
for the given samples, representing how your code is actually used by the user or other code.
for the given platform (CPU, memory + other hardware, OS, whatever).
From the performance point of view there are quite big differences even among platforms that are usually considered (more or less) the same (e.g. compare a single core, old Athlon with 512M with a 6 core Intel with 8G, running on Linux, but with very different kernel versions).
for the given JVM and its config.
If any of these change then your profiling results (and the optimizations based on them) are not necessary valid any more. Most likely some of the optimizations will still have a beneficial effect, but some of them may turn out suboptimal (or even degrading performance).
As it was mentioned the JIT JVMs do something very similar to profiling, but they do it on the fly. It's also called 'hotspot', because it constantly monitors the executed code, looks for hot spots that are executed frequently and will try to optimize only those parts. At this point it will be able to exploit more knowledge about the code (knowing the context of it, how it is used by other classes, etc.) so - as mentioned by you and the other answers - it can do better optimizations as a static one. It will continue monitoring and if its needed it will do another turn of optimization later, this time trying even harder (looking for more, more expensive optimizations).
Working on the real life data (usage statistics + platform + config) it can avoid the caveats mentioned before.
The price of it is some additional time it needs to spend on "profiling" + JIT-ing. Most of the time its spent quite well.
I guess a profile-guided optimizer could still compete with it (or even beat it), but only in some special cases, if you can avoid the caveats:
you are quite sure that your samples represent the real life scenario well and they won't change too much during execution.
you know your target platform quite precisely and can do the profiling on it.
and of course you know/control the JVM and its config.
It will happen rarely and I guess in general JIT will give you better results, but I have no evidence for it.
Another possibility for getting value from the profile-guided optimization if you target a JVM that can't do JIT optimization (I think most small devices have such a JVM).
BTW one disadvantage mentioned in other answers would be quite easy to avoid: if static/profile guided optimization is slow (which is probably the case) then do it only for releases (or RCs going to testers) or during nightly builds (where time does not matter so much).
I think the much bigger problem would be to have good sample test cases. Creating and maintaining them is usually not easy and takes a lot of time. Especially if you want to be able to execute them automatically, which would be quite essential in this case.
The official Java Hot Spot compiler does "adaptive optimisation" at runtime, which is essentially the same as the profile-guided optimisation you mentioned. This has been a feature of at least this particular Java implementation for a long time.
The trade-off to performing more static analysis or optimisation passes up-front at compile time is essentially the (ever-diminishing) returns you get from this extra effort against the time it takes for the compiler to run. A compiler like MLton (for Standard ML) is a whole-program optimising compiler with a lot of static checks. It produces very good code, but becomes very, very slow on medium-to-large programs, even on a fast system.
So the Java approach seems to be to use JIT and adaptive optimisation as much as possible, with the initial compilation pass just producing an acceptable valid binary. The absolute opposite end is to use an approach like that of something like MLKit, which does a lot of static inference of regions and memory behaviour.

How does Go compile so quickly?

I've Googled and poked around the Go website, but I can't find an explanation for Go's extraordinary build times. Are they products of the language features (or lack thereof), a highly optimized compiler, or something else? I'm not trying to promote Go; I'm just curious.
Dependency analysis.
The Go FAQ used to contain the following sentence:
Go provides a model for software
construction that makes dependency
analysis easy and avoids much of the
overhead of C-style include files and
libraries.
While the phrase is not in the FAQ anymore, this topic is elaborated upon in the talk Go at Google, which compares the dependency analysis approach of C/C++ and Go.
That is the main reason for fast compilation. And this is by design.
I think it's not that Go compilers are fast, it's that other compilers are slow.
C and C++ compilers have to parse enormous amounts of headers - for example, compiling C++ "hello world" requires compiling 18k lines of code, which is almost half a megabyte of sources!
$ cpp hello.cpp | wc
18364 40513 433334
Java and C# compilers run in a VM, which means that before they can compile anything, the operating system has to load the whole VM, then they have to be JIT-compiled from bytecode to native code, all of which takes some time.
Speed of compilation depends on several factors.
Some languages are designed to be compiled fast. For example, Pascal was designed to be compiled using a single-pass compiler.
Compilers itself can be optimized too. For example, the Turbo Pascal compiler was written in hand-optimized assembler, which, combined with the language design, resulted in a really fast compiler working on 286-class hardware. I think that even now, modern Pascal compilers (e.g. FreePascal) are faster than Go compilers.
There are multiple reasons why the Go compiler is much faster than most C/C++ compilers:
Top reason: Most C/C++ compilers exhibit exceptionally bad designs (from compilation speed perspective). Also, from compilation speed perspective, some parts of the C/C++ ecosystem (such as editors in which programmers are writing their code) aren't designed with speed-of-compilation in mind.
Top reason: Fast compilation speed was a conscious choice in the Go compiler and also in the Go language
The Go compiler has a simpler optimizer than C/C++ compilers
Unlike C++, Go has no templates and no inline functions. This means that Go doesn't need to perform any template or function instantiation.
The Go compiler generates low-level assembly code sooner and the optimizer works on the assembly code, while in a typical C/C++ compiler the optimization passes work on an internal representation of the original source code. The extra overhead in the C/C++ compiler comes from the fact that the internal representation needs to be generated.
Final linking (5l/6l/8l) of a Go program can be slower than linking a C/C++ program, because the Go compiler is going through all of the used assembly code and maybe it is also doing other extra actions that C/C++ linkers aren't doing
Some C/C++ compilers (GCC) generate instructions in text form (to be passed to the assembler), while the Go compiler generates instructions in binary form. Extra work (but not much) needs to be done in order to transform the text into binary.
The Go compiler targets only a small number of CPU architectures, while the GCC compiler targets a large number of CPUs
Compilers which were designed with the goal of high compilation speed, such as Jikes, are fast. On a 2GHz CPU, Jikes can compile 20000+ lines of Java code per second (and the incremental mode of compilation is even more efficient).
Compilation efficiency was a major design goal:
Finally, it is intended to be fast: it should take at most a few seconds to build a large executable on a single computer. To meet these goals required addressing a number of linguistic issues: an expressive but lightweight type system; concurrency and garbage collection; rigid dependency specification; and so on. FAQ
The language FAQ is pretty interesting in regards to specific language features relating to parsing:
Second, the language has been designed to be easy to analyze and can be parsed without a symbol table.
While most of the above is true, there is one very important point that was not really mentionend: Dependency management.
Go only needs to include the packages that you are importing directly (as those already imported what they need). This is in stark contrast to C/C++, where every single file starts including x headers, which include y headers etc. Bottom line: Go's compiling takes linear time w.r.t to the number of imported packages, where C/C++ take exponential time.
A good test for the translation efficiency of a compiler is self-compilation: how long does it take a given compiler to compile itself? For C++ it takes a very long time (hours?). By comparison, a Pascal/Modula-2/Oberon compiler would compile itself in less than one second on a modern machine [1].
Go has been inspired by these languages, but some of the main reasons for this efficiency include:
A clearly defined syntax that is mathematically sound, for efficient scanning and parsing.
A type-safe and statically-compiled language that uses separate compilation with dependency and type checking across module boundaries, to avoid unnecessary re-reading of header files and re-compiling of other modules - as opposed to independent compilation like in C/C++ where no such cross-module checks are performed by the compiler (hence the need to re-read all those header files over and over again, even for a simple one-line "hello world" program).
An efficient compiler implementation (e.g. single-pass, recursive-descent top-down parsing) - which of course is greatly helped by points 1 and 2 above.
These principles have already been known and fully implemented in the 1970s and 1980s in languages like Mesa, Ada, Modula-2/Oberon and several others, and are only now (in the 2010s) finding their way into modern languages like Go (Google), Swift (Apple), C# (Microsoft) and several others.
Let's hope that this will soon be the norm and not the exception. To get there, two things need to happen:
First, software platform providers such as Google, Microsoft and Apple should start by encouraging application developers to use the new compilation methodology, while enabling them to re-use their existing code base. This is what Apple is now trying to do with the Swift programming language, which can co-exist with Objective-C (since it uses the same runtime environment).
Second, the underlying software platforms themselves should eventually be re-written over time using these principles, while simultaneously redesigning the module hierarchy in the process to make them less monolithic. This is of course a mammoth task and may well take the better part of a decade (if they are courageous enough to actually do it - which I am not at all sure in the case of Google).
In any case, it's the platform that drives language adoption, and not the other way around.
References:
[1] http://www.inf.ethz.ch/personal/wirth/ProjectOberon/PO.System.pdf, page 6: "The compiler compiles itself in about 3 seconds". This quote is for a low cost Xilinx Spartan-3 FPGA development board running at a clock frequency of 25 MHz and featuring 1 MByte of main memory. From this one can easily extrapolate to "less than 1 second" for a modern processor running at a clock frequency well above 1 GHz and several GBytes of main memory (i.e. several orders of magnitude more powerful than the Xilinx Spartan-3 FPGA board), even when taking I/O speeds into account. Already back in 1990 when Oberon was run on a 25MHz NS32X32 processor with 2-4 MBytes of main memory, the compiler compiled itself in just a few seconds. The notion of actually waiting for the compiler to finish a compilation cycle was completely unknown to Oberon programmers even back then. For typical programs, it always took more time to remove the finger from the mouse button that triggered the compile command than to wait for the compiler to complete the compilation just triggered. It was truly instant gratification, with near-zero wait times. And the quality of the produced code, even though not always completely on par with the best compilers available back then, was remarkably good for most tasks and quite acceptable in general.
Go was designed to be fast, and it shows.
Dependency Management: no header file, you just need to look at the packages that are directly imported (no need to worry about what they import) thus you have linear dependencies.
Grammar: the grammar of the language is simple, thus easily parsed. Although the number of features is reduced, thus the compiler code itself is tight (few paths).
No overload allowed: you see a symbol, you know which method it refers to.
It's trivially possible to compile Go in parallel because each package can be compiled independently.
Note that Go isn't the only language with such features (modules are the norm in modern languages), but they did it well.
Quoting from the book "The Go Programming Language" by Alan Donovan and Brian Kernighan:
Go compilation is notably faster than most other compiled languages, even when building from scratch. There are three main reasons for the compiler’s speed. First, all imports must be explicitly listed at the beginning of each source file, so the compiler does not have to read and process an entire file to determine its dependencies. Second, the dependencies of a package form a directed acyclic graph, and because there are no cycles, packages can be compiled separately and perhaps in parallel. Finally, the object file for a compiled Go package records export information not just for the package itself, but for its dependencies too. When compiling a package, the compiler must read one object file for each import but need not look beyond these files.
The basic idea of compilation is actually very simple. A recursive-descent parser, in principle, can run at I/O bound speed. Code generation is basically a very simple process. A symbol table and basic type system is not something that requires a lot of computation.
However, it is not hard to slow down a compiler.
If there is a preprocessor phase, with multi-level include directives, macro definitions, and conditional compilation, as useful as those things are, it is not hard to load it down. (For one example, I'm thinking of the Windows and MFC header files.) That is why precompiled headers are necessary.
In terms of optimizing the generated code, there is no limit to how much processing can be added to that phase.
Simply ( in my own words ), because the syntax is very easy ( to analyze and to parse )
For instance, no type inheritance means, not problematic analysis to find out if the new type follows the rules imposed by the base type.
For instance in this code example: "interfaces" the compiler doesn't go and check if the intended type implement the given interface while analyzing that type. Only until it's used ( and IF it is used ) the check is performed.
Other example, the compiler tells you if you're declaring a variable and not using it ( or if you are supposed to hold a return value and you're not )
The following doesn't compile:
package main
func main() {
var a int
a = 0
}
notused.go:3: a declared and not used
This kinds of enforcements and principles make the resulting code safer, and the compiler doesn't have to perform extra validations that the programmer can do.
At large all these details make a language easier to parse which result in fast compilations.
Again, in my own words.
Go imports dependencies once for all files, so the import time doesn't increase exponentially with project size.
Simpler linguistics means interpreting them takes less computing.
What else?

Why are Interpreted Languages Slow?

I was reading about the pros and cons of interpreted languages, and one of the most common cons is the slowness, but why are programs in interpreted languages slow?
Native programs runs using instructions written for the processor they run on.
Interpreted languages are just that, "interpreted". Some other form of instruction is read, and interpreted, by a runtime, which in turn executes native machine instructions.
Think of it this way. If you can talk in your native language to someone, that would generally work faster than having an interpreter having to translate your language into some other language for the listener to understand.
Note that what I am describing above is for when a language is running in an interpreter. There are interpreters for many languages that there is also native linkers for that build native machine instructions. The speed reduction (however the size of that might be) only applies to the interpreted context.
So, it is slightly incorrect to say that the language is slow, rather it is the context in which it is running that is slow.
C# is not an interpreted language, even though it employs an intermediate language (IL), this is JITted to native instructions before being executed, so it has some of the same speed reduction, but not all of it, but I'd bet that if you built a fully fledged interpreter for C# or C++, it would run slower as well.
And just to be clear, when I say "slow", that is of course a relative term.
All answers seem to miss the real important point here. It's the detail how "interpreted" code is implemented.
Interpreted script languages are slower because their method, object and global variable space model is dynamic. In my opinion this is the real definition of of script language not the fact that it is interpreted. This requires many extra hash-table lookups on each access to a variable or method call. And its the main reason why they are all terrible at multithreading and using a GIL (Global Interpreter Lock). This lookups is where most of the time is spent. It is a painful random memory lookup, which really hurts when you get a L1/L2 cache-miss.
Google's Javascript Core8 is so fast and targeting almost C speed for a simple optimization: they take the object data model as fixed and create internal code to access it like the data structure of a native compiled program. When a new variable or method is added or removed then the whole compiled code is discarded and compiled again.
The technique is well explained in the Deutsch/Schiffman paper "Efficient Implementation of the Smalltalk-80 System".
The question why php, python and ruby aren't doing this is pretty simple to answer: the technique is extremely complicated to implement.
And only Google has the money to pay for JavaScript because a fast browser-based JavaScript interpreter is their fundamental need of their billion dollar business model.
Think of the interpeter as an emulator for a machine you don't happen to have
The short answer is that the compiled languages are executed by machine instructions whereas the interpreted ones are executed by a program (written in a compiled language) that reads either the source or a bytecode and then essentially emulates a hypothetical machine that would have run the program directly if the machine existed.
Think of the interpreted runtime as an emulator for a machine that you don't happen to actually have around at the moment.
This is obviously complicated by the JIT (Just In Time) compilers that Java, C#, and others have. In theory, they are just as good as "AOT" ("At One Time") compilers but in practice those languages run slower and are handicapped by needing to have the compiler around using up memory and time at the program's runtime. But if you say any of that here on SO be prepared to attract rabid JIT defenders who insist that there is no theoretical difference between JIT and AOT. If you ask them if Java and C# are as fast as C and C++, then they start making excuses and kind of calm down a little. :-)
So, C++ totally rules in games where the maximum amount of available computing can always be put to use.
On the desktop and web, information-oriented tasks are often done by languages with more abstraction or at least less compilation, because the computers are very fast and the problems are not computationally intensive, so we can spend some time on goals like time-to-market, programmer productivity, reliable memory-safe environments, dynamic modularity, and other powerful tools.
This is a good question, but should be formulated a little different in my opinion, for example: "Why are interpreted languages slower than compiled languages?"
I think it is a common misconception that interpreted languages are slow per se. Interpreted languages are not slow, but, depending on the use case, might be slower than the compiled version. In most cases interpreted languages are actually fast enough!
"Fast enough", plus the increase in productivity from using a language like Python over, for example, C should be justification enough to consider an interpreted language. Also, you can always replace certain parts of your interpreted program with a fast C implementation, if you really need speed. But then again, measure first and determine if speed is really the problem, then optimize.
In addition to the other answers there's optimization: when you're compiling a programme, you don't usually care how long it takes to compile - the compiler has lots of time to optimize your code. When you're interpreting code, it has to be done very quickly so some of the more clever optimizations might not be able to be made.
Loop a 100 times, the contents of the loop are interpreted 100 times into low level code.
Not cached, not reused, not optimised.
In simple terms, a compiler interprets once into low level code
Edit, after comments:
JIT is compiled code, not interpreted. It's just compiled later not up-front
I refer to the classical definition, not modern practical implementations
A simple question, without any real simple answer. The bottom line is that all computers really "understand" is binary instructions, which is what "fast" languages like C are compiled into.
Then there are virtual machines, which understand different binary instructions (like Java and .NET) but those have to be translated on the fly to machine instructions by a Just-In-Compiler (JIT). That is almost as fast (even faster in some specific cases because the JIT has more information than a static compiler on how the code is being used.)
Then there are interpreted languages, which usually also have their own intermediate binary instructions, but the interpreter functions much like a loop with a large switch statement in it with a case for every instruction, and how to execute it. This level of abstraction over the underlying machine code is slow. There are more instructions involved, long chains of function calls in the interpreter to do even simple things, and it can be argued that the memory and cache aren't used as effectively as a result.
But interpreted languages are often fast enough for the purposes for which they're used. Web applications are invariably bound by IO (usually database access) which is an order of magnitude slower than any interpreter.
From about.com:
An Interpreted language is processed
at runtime. Every line is read,
analysed, and executed. Having to
reprocess a line every time in a loop
is what makes interpreted languages so
slow. This overhead means that
interpreted code runs between 5 - 10
times slower than compiled code. The
interpreted languages like Basic or
JavaScript are the slowest. Their
advantage is not needing to be
recompiled after changes and that is
handy when you're learning to program.
The 5-10 times slower is not necessarily true for languages like Java and C#, however. They are interpreted, but the just-in-time compilers can generate machine language instructions for some operations, speeding things up dramatically (near the speed of a compiled language at times).
There is no such thing as an interpreted language. Any language can be implemented by an interpreter or a compiler. These days most languages have implementations using a compiler.
That said, interpreters are usually slower, because they need process the language or something rather close to it at runtime and translate it to machine instructions. A compiler does this translation to machine instructions only once, after that they are executed directly.
Yeah, interpreted languages are slow...
However, consider the following. I had a problem to solve. It took me 4 minutes to solve the problem in Python, and the program took 0.15 seconds to run. Then I tried to write it in C, and I got a runtime of 0.12 seconds, and it took me 1 hour to write it. All this because the practical way to solve problem in question was to use hashtables, and the hashtable dominated the runtime anyway.
Interpreted languages need to read and interpret your source code at execution time. With compiled code a lot of that interpretation is done ahead of time (at compilation time).
Very few contemporary scripting languages are "interpreted" these days; they're typically compiled on the fly, either into machine code or into some intermediate bytecode language, which is (more efficiently) executed in a virtual machine.
Having said that, they're slower because your cpu is executing many more instructions per "line of code", since many of the instructions are spent understanding the code rather than doing whatever the semantics of the line suggest!
Read this Pros And Cons Of Interpreted Languages
This is the relevant idea in that post to your problem.
An execution by an interpreter is
usually much less efficient then
regular program execution. It happens
because either every instruction
should pass an interpretation at
runtime or as in newer
implementations, the code has to be
compiled to an intermediate
representation before every execution.
For the same reason that it's slower to talk via translator than in native language. Or, reading with dictionary. It takes time to translate.
Update: no, I didn't see that my answer is the same as the accepted one, to a degree ;-)
Wikipedia says,
Interpreting code is slower than running the compiled code because the interpreter must analyze each statement in the program each time it is executed and then perform the desired action, whereas the compiled code just performs the action within a fixed context determined by the compilation. This run-time analysis is known as "interpretive overhead". Access to variables is also slower in an interpreter because the mapping of identifiers to storage locations must be done repeatedly at run-time rather than at compile time.
Refer this IBM doc,
Interpreted program must be translated each time it is executed, there is a higher overhead. Thus, an interpreted language is generally more suited to ad hoc requests than predefined requests.
In Java though it is considered as an interpreted language, It uses JIT (Just-in-Time) compilation which mitigate the above issue by using a caching technique to cache the compiled bytecode.
The JIT compiler reads the bytecodes in many sections (or in full, rarely) and compiles them dynamically into machine code so the program can run faster. This can be done per-file, per-function or even on any arbitrary code fragment; the code can be compiled when it is about to be executed (hence the name "just-in-time"), and then cached and reused later without needing to be recompiled.

Fortran's performance

Fortran's performances on Computer Language Benchmark Game are surprisingly bad. Today's result puts Fortran 14th and 11th on the two quad-core tests, 7th and 10th on the single cores.
Now, I know benchmarks are never perfect, but still, Fortran was (is?) often considered THE language for high performance computing and it seems like the type of problems used in this benchmark should be to Fortran's advantage. In an recent article on computational physics, Landau (2008) wrote:
However, [Java] is not as efficient or
as well supported for HPC and parallel
processing as are FORTRAN and C, the
latter two having highly developed
compilers and many more scientific
subroutine libraries available.
FORTRAN, in turn, is still the
dominant language for HPC, with
FORTRAN 90/95 being a surprisingly
nice, modern, and effective language;
but alas, it is hardly taught by any
CS departments, and compilers can be
expensive.
Is it only because of the compiler used by the language shootout (Intel's free compiler for Linux) ?
No, this isn't just because of the compiler.
What benchmarks like this -- where the program differs from benchmark to benchmark -- is largely the amount of effort (and quality of effort) that the programmer put into writing any given program. I suspect that Fortran is at a significant disadvantage in that particular metric -- unlike C and C++, the pool of programmers who'd want to try their hand at making the benchmark program better is pretty small, and unlike most anything else, they likely don't feel like they have something to prove either. So, there's no motivation for someone to spend a few days poring over generated assembly code and profiling the program to make it go faster.
This is fairly clear from the results that were obtained. In general, with sufficient programming effort and a decent compiler, neither C, C++, nor Fortran will be significantly slower than assembly code -- certainly not more than 5-10%, at worst, except for pathological cases. The fact that the actual results obtained here are more variant than that indicates to me that "sufficient programming effort" has not been expended.
There are exceptions when you allow the assembly to use vector instructions, but don't allow the C/C++/Fortran to use corresponding compiler intrinsics -- automatic vectorization is not even a close approximation of perfect and probably never will be. I don't know how much those are likely to apply here.
Similarly, an exception is in things like string handling, where you depend heavily on the runtime library (which may be of varying quality; Fortran is rarely a case where a fast string library will make money for the compiler vendor!), and on the basic definition of a "string" and how that's represented in memory.
Some random thoughts:
Fortran used to do very well because it was easier to identify loop invariants which made some optimizations easier for the compiler. Since then
Compilers have gotten much more sophisticated. Enormous effort has been put into c and c++ compilers in particular. Have the fortran compilers kept up? I suppose the gfortran uses the same back end of gcc and g++, but what of the intel compiler? It used to be good, but is it still?
Some languages have gotten a lot specialized keywords and syntax to help the compiler (restricted and const int const *p in c, and inline in c++). Not knowing fortran 90 or 95 I can't say if these have kept pace.
I've looked at these tests. It's not like the compiler is wrong or something. In most tests Fortran is comparable to C++ except some where it gets beaten by a factor of 10. These tests just reflect what one should know from the beggining - that Fortran is simply NOT an all-around interoperable programming language - it is suited for efficient computation, has good list operations & stuff but for example IO sucks unless you are doing it with specific Fortran-like methods - like e.g. 'unformatted' IO.
Let me give you an example - the 'reverse-complement' program that is supposed to read a large (of order of 10^8 B) file from stdin line-by-line, does something with it & prints the resulting large file to stdout. The pretty straighforward Fortran program is about 10 times slower on a single core (~10s) than a HEAVILY optimized C++ (~1s). When you try to play with the program, you'll see that only simple formatted read & write take more than 8 seconds. In a Fortran way, if you care for efficiency, you'd just write an unformatted structure to a file & read it back in no time (which is totally non-portable & stuff but who cares anyway - an efficient code is supposed to be fast & optimized for a specific machine, not able to run everywhere).
So the short answer is - don't worry, just do your job - and if you want to write a super-efficient operating system, than sorry - Fortran is just not the way for that kind of performance.
This benchmark is stupid at all.
For example, they measure CPU-time for the whole program to run. As mcmint stated (and it might be actually true) Fortran I/O sucks*. But who cares? In real-world tasks one read input for some seconds than do calculations for hours/days/months and finally write output for the seconds. Thats why in most benchmarks I/O operations are excluded from time measurements (if you of course do not benchmark I/O by itself).
Norber Wiener in his book God & Golem, Inc. wrote
Render unto man the things which are man’s and unto the computer the things which are the computer’s.
In my opinion the usage of this principle while implementing algorithm in any programming language means:
Write as readable and simple code as you can and let compiler do the optimizations.
Especially it is important in real-world (huge) applications. Dirty tricks (so heavily used in many benchmarks) even if they might improve the efficiency to some extent (5%, maybe 10%) are not for the real-world projects.
/* C/C++ uses stream I/O, but Fortran traditionally uses record-based I/O. Further reading. Anyway I/O in that benchmarks are so surprising. The usage of stdin/stdout redirection might also be the source of problem. Why not simply use the ability of reading/writing files provided by the language or standard library? Once again this woud be more real-world situation.
I would like to say that even if the benchmark do not bring up the best results for FORTRAN, this language will still be used and for a long time. Reasons of use are not just performance but also some kind of thing called easyness of programmability. Lots of people that learnt to use it in the 60's and 70's are now too old for getting into new stuff and they know how to use FORTRAN pretty well. I mean, there are a lot of human factors for a language to be used. The programmer also matters.
Considering they did not publish the exact compiler options they used for the Intel Fortran Compiler, I have little faith in their benchmark.
I would also remark that both Intel's math library, MKL, and AMD's math library, ACML, use the Intel Fortran Compiler.
Edit:
I did find the compilation options when you click on the benchmark's name. The result is surprising since the optimization level seems reasonable. It may come down to the efficiency of the algorithm.

Resources