Move message to another proto file and import it - protocol-buffers

I currently have two proto files. foo.proto and bar.proto, foo.proto is already importing types from bar.proto However, I now need to make a change where bar.proto needs to use a message defined in foo.proto.
I moved the message definition from foo to bar but now I need to figure out the best way of deprecating the message from foo since it was removed it need to be reserver/deprecated.

I'm not sure there's a (proto3) specific way to annotate messages as deprecated and the principle is different to a deprecated field in a message.
NOTE: Even with fields deprecated is more documentary, only treated as guidance and not necessarily enforced.
This answer is for proto2 but I've not used it and can't vouch for it.
I assume (!) that you need to retain the message in foo for existing code. If there are no dependencies, simply exclude (comment out) the message from foo and explain why.
As there appears no formal mechanism, I think you're going to have to rely on comments and hope that other developers respect the request.
NOTE: I'm unsure of the consequences of recursive dependencies (foo depending on bar and vice versa) but this is likely something you should try to avoid.

Related

Using unexported functions/types from stdlib in Go

Disclaimer: yes I know that this is not "supposed to be done" and "use interface composition and delegation" and "the authors of the language know better". However, I am confronted with a choice of either copy-pasting from the standard library and creating my own packages, or doing what I am asking. So please do not reply with "What you want to do is wrong, you are a bad dev and you should feel bad."
So, in Go we have the http stdlib package. This package has a number of functions for dealing with HTTP Range headers and responses (parsers, a struct for "offset+size" and so forth). For various reasons I want to use something that is very similar to ServeContent but works a bit differently (long story short - the amount of plumbing needed to do the ReaderAt gymnastics is suboptimal for what I want to accomplish) so I want to parse the HTTP Range header myself, using the utility functions/structs from the http stdlib package and then deal with them manually. Basically, I want a changed version of ServeContent :-)
Is there a way for me to "reopen" the http stdlib package to use it's unexported identifiers? ABI is not a concern for me as the source is mine, the program gets compiled from scratch every time etc. etc. and it does not need binary compatibility with older/other Go versions. I.e. I am able to ensure that the build is going to be done on a specific Go version and there are tests to check that an unexported identifier disappeared. So...
If there is a package called foo in the Go standard library, but it only exposes a MagicMegamethod that does the thing I do not need, and uses usefulFunc and usefulStruct that I want to get access to, is there a way for me to get access to those identifiers? Either by reopening the package, or using some other way... that does not involve copy-pasting dozens of lines from stdlib without tests etc.
There exist (rather gruesome) ways of accessing unexported symbols, but it requires nontrivial amounts of tricky code, so there's unlikely to be a net win.
Since you've outruled the "don't do this" direction, it seems that the answer is either NO or use the methods described in the post I linked to (and this repo).
FWIW I'd personally just copy the code I need from the standard library and tweak it to my needs. This would likely take less time than the time it took you to write this SO question :-)

Idiomatic way of naming Getters in Go

The Effective go has following advice on naming of getters:
Go doesn't provide automatic support for getters and setters. There's
nothing wrong with providing getters and setters yourself, and it's
often appropriate to do so, but it's neither idiomatic nor necessary
to put Get into the getter's name. If you have a field called owner
(lower case, unexported), the getter method should be called Owner
(upper case, exported), not GetOwner. The use of upper-case names for
export provides the hook to discriminate the field from the method. A
setter function, if needed, will likely be called SetOwner. Both names
read well in practice:
Source: https://golang.org/doc/effective_go.html#Getters
Now, this advice doesn't seem to consistent as the stdlib itself violates this multiple times.
As you can see in above screenshot, there are multiple methods which use GetX naming convention which is advised against in the effective go guide.
So the question is is the advice given in guide wrong or these methods are named wrongly & would be fixed in future versions?
These names are not consistent with Go naming by design. Rob Pike, one of the Go creators, says this about the names in the OS package:
There are inconsistencies but this is the key point. It should be Stdout not StdOut, because that name is coming from the underlying system. Similarly it's Fprintf not FPrintf or FPrintF because that is a very familiar name. These names are coming into Go, not being created there, and the initial cap is the admission fee.
The names will not be changed in a future version of Go.
[go-nuts] FunctionName caseinconsistencies
A lot of the all lowercase names were chosen before we had really
figured out what the naming conventions should be. The rule we
adopted, which might be worth revisiting later, was that entry points
in package os or syscall, which are named after equivalents in C, just
had a single capital at the beginning, to avoid needing to decide
where the internal capitalizations are in abbreviations like geteuid
or getwd or chdir. Names like Readdirnames, which are actual words,
might be worth revisiting at some point.
Russ
os: inconsistent casing in names #1187
Is there any sort of rule about the casing of functions used in the
"os" package? Looking through, it doesn't sound like it's very easy
to recall whether a given function should be called LikeThat or
Likethat.
For instance:
Mkdir
MkdirAll
TempDir
Getenv
ForkExec
Readlink
ReadAt
Readdir
It feels very ad-hoc, and hard to recall.
It's a known issue. It's unplanned.
The term "getters" refers to methods on structs that allow you to read values of (often unexported) fields on that struct. The functions you're pointing to are top-level functions which allow you to read values from the OS. That idiomatic rule is not relevant to this case.

Best practice for Cocoa category naming conventions

I am tidying up my ancient Cocoa code to use modern naming conventions. There has been lots of discussion on best practices, but I'm unsure of one thing.
I'm thinking about adding a prefix to category method names, to ensure uniqueness. It seem generally agreed that this is a good idea, though most people probably don't bother.
My question is: what about a NSDictionary category method like -copyDeep that does a deep copy? The method used to be named -deepCopy, but I reversed the words as the analyzer looks for a prefix of "copy". Therefore I presumably couldn't add a prefix. And having the "prefix" in the middle or end of the method name seems messy and inconsistent.
I'd also be interested in thoughts on the style of prefix -- I currently use DS (for Dejal Systems) for class prefixes. But I know that Apple now wants to reserve all two-character prefixes for themselves, so am thinking about using Dejal, e.g. my class DSManagedObject would be renamed as DejalManagedObject. And getting back to categories, their methods would be renamed to add a dejal prefix, e.g. from -substringFromString: to -dejalSubstringFromString:. But -dejalCopyDeep would confuse the analyzer, so maybe I'd have to be inconsistent for such methods, and use -copyDeepDejal or -copyDeep_dejal?
I will be re-releasing my categories and various classes as open source once I've cleaned them up, so following the latest conventions will be beneficial.
I emailed the Apple Application Frameworks Evangelist about this, and got a reply that recommended not prefixing category method names. Which conflicts with the advice in the aforelinked WWDC10 session, but I assume reflects Apple's current thinking.
He recommended just looking at the beta seed API diffs to spot conflicts, which is what I've always been doing.
I agree with Kevin Ballard, you should prefix your category method names, particularly if you are going to distribute them to others. But you do have a valid concern the analyzer will be confused by DScopy. The ARC compiler will similarly be confused if the definition/implementation of DScopy is done without ARC and is used by another class using ARC (or vice versa).
My preferred solution is to use "ownership transfer annotations", such as:
NS_RETURNS_NOT_RETAINED
NS_RETURNS_RETAINED
They would be used to override the compilers default behavior of reading method names and acting on them. You might declare DScopy like so: (This declaration must be in a header file that is imported by all the classes that use this method mentioned due to link)
-(DSManagedObject *)DScopy; NS_RETURNS_RETAINED;
Source for NS_RETURNS... WWDC 2011 Session 322 - Objective-C Advancements in Depth. The meat of this issue begins at about time 9:10.
A note about "But I know that Apple now wants to reserve all two-character prefixes for themselves". As a personal preference I like to use the _ character to separate the prefix from the name, it works well for me. You might try something like:
-(DSManagedObject *)ds_copy; NS_RETURNS_RETAINED;
This would give you three characters, and arguably make the method name more readable.
Edit In response to link posted in comment.
However as Justin's answer to your original question says that can be broken.
With regards to attributes; I did not suggest using __attribute__((objc_method_family(copy))) I suggested using NS_RETURNS_RETAINED, which translates to :__attribute__((ns_returns_retained)). While the first example there won't even compile (as he says) using - (NSString *)string __attribute__((objc_method_family(copy))); it compiles with - (NSString *)string; NS_RETURNS_RETAINED; just fine.
Obviously also if the NS_RETURNS_.. are "hidden" from the compiler in separate the .ms or indirected in some other way and the compiler can't see the directives then it won't work. Because of this I would suggest putting the declaration for any methods that may cause the analyzer/compiler confusion in your main .h file (the one that imports all the others) to limit the chances that there will be an issue.

Best Practice for comments in Java source files?

This doesn't have to be Java, but it's what I'm dealing with. Also, not so much concerned with the methods and details of those, I'm wondering about the overall class file.
What are some of the things I really need to have in my comments for a given class file? At my corporation, the only things I really can come up with:
Copyright/License
A description of what the class does
A last modified date?
Is there anything else which should be provided?
One logical thing I've heard is to keep authors out of the header because it's redundant with the information already being provided via source control.
Update:
JavaDoc can be assumed here, but I'm really more concerned about the details of what's good to include content-wise, whether it's definitive meta-data that can be mined, or the more loose, WHY etc...
One logical thing I've heard is to keep authors out of the header because it's redundant
with the information already being provided via source control.
also last modified date is redundant
I use a small set of documentation patterns:
always documenting about thread-safety
always documenting immutability
javadoc with examples
#Deprecation with WHY and HOW to replace the annotated element
keeping comments at minimum
No to the "last modified date" - that belongs in source control too.
The other two are fine. Basically concentrate on the useful text - what the class does, any caveats around thread safety, expected usage etc.
Implementation comments should usually be about why you're doing something non-obvious - and should therefore be rare. (For instance, it could be because some API behaves in an unusual way, or because there's a useful shortcut you can use but which isn't immediately obvious.)
For the sanity of yourself and future developers, you really ought to be writing Javadocs.
When you feel the need to write comments to explain what some code does, improve the readability of the code, so that comments are not needed. You can do that by renaming methods/fields/classes to have more meaningful names, and by splitting larger methods into smaller methods using the composed method pattern.
If even after all your efforts the code is not self-explanatory, for example the reason why some unobvious code had to be written is not clear from the code, then apologize by writing comments. (Sometimes you can document the reasons by writing a test which will fail, if somebody changes the unobvious-but-correct code to do the obvious-but-wrong thing. But having a comment in addition to that is also useful. I prefix such comments often with "// HACK:" or "// XXX:".)
An overall description of the purpose of the class, a description for each field and a contract for each method. Javadoc format works well.
If you assign ownership of components to particular developers or teams, owners should be recorded in the component source or VCS metadata.

Is there any downside to redundant qualifiers? Any benefit?

For example, referencing something as System.Data.Datagrid as opposed to just Datagrid. Please provide examples and explanation. Thanks.
The benefit is that you don't need to add an import for everything you use, especially if it's the only thing you use from a particular namespace, it also prevents collisions.
The downside, of course, is that the code balloons out in size and gets harder to read the more you use specific qualifiers.
Personally I tend to use imports for most things unless I know for sure I will only be using something from a particular namespace once or twice, so it won't impact the readability of my code.
You're being very explicit about the type you're referencing, and that is a benefit. Although, in the very same process you're giving up code clarity, which clearly is a downside in my case, as I want code to be readable and understandable. I go for the short version unless I have a conflict in different namespaces which can only be solved with the explicit referencing to classes.. Unless I make an alias for it with the keyword using:
using Datagrid = System.Data.Datagrid;
Actually the full path is global::System.Data.DataGrid. The point of using a more qualified path is to avoid having to use additional using statements, especially if the introduction of another using will cause problems with type resolution. More fully qualified identifiers exist so that you can be explicit when you need to be explicit, but if the class's namespace is clear, then the DataGrid version is clearer to many.
I generally use the shortest form available in order to keep the code as clean and readable as possible. That's what using directives are for, after all, and tooltips in the VS editor give you instant detail on the provenance of a type.
I also tend to use a namespace tag for RCWs in a COM interop layer, to call out those variables explicitly in the code (they may need special attention on lifecycle and collection), eg
using _Interop = Some.Interop.Namespace;
In terms of performance there is no upside/downside. Everything is resolved at compile time and the generated MSIL is identical whether you use fully-qualified names or not.
The reason why its use is prevalent in the .NET world is because of auto-generated code, such as designer markup. In that case it would be better to fully-qualify names like class names because of possible conflicts with other classes you may have in your code.
If you have a tool like ReSharper, it will actually tell you what fully-qualified references you have are unnecessary (e.g. by graying them out) so you can lop them off. If you frequently cut-paste code across your various code bases, it would be a must to fully qualify them. (then again, why would you want to do cut-paste all the time; it's a bad form of code reuse!)
I don't think there is really a downside, just readability vs actual time spent coding. In general if you don't have namespaces with ambiguous object I don't think it's really needed. Another thing to consider is level of use. If you have one method that uses reflection and you are alright with typeing System.Reflection 10 times, then it's not a big deal but if you plan on using a namespace alot then I would recommend an include.
Depending on your situation, extra qualifiers will generate a warning (if this is what you mean by redundant). If you then treat warnings as errors, that's a pretty serious downside.
I've run into this with GCC for example.
struct A {
int A::b; // warning!
}

Resources