Check if a line intersects a cube (3D) - algorithm

In a 3D cartesian coordinate system, given the vertices of a cube and the points of the ends of a line, I would like to check if the line passes through the cube (touching the vertices doesn't count). How could I do so?

Using the parameteric equation of the line segment PQ, we establish the system of inequations
0 < t < 1
Xm < Xp + t Xpq < XM
Ym < Yp + t Ypq < YM
Zm < Zp + t Zpq < ZM
or, temporatily assuming Xpq, Ypq, Zpq > 0,
0 < t < 1
(Xm - Xp) / Xpq < t < (XM - Xp) / Xpq
(Ym - Yp) / Ypq < t < (YM - Yp) / Ypq
(Zm - Zp) / Zpq < t < (ZM - Zp) / Zpq
This system admits a solution iff
max(0,(Xm-Xp)/Xpq,(Ym-Yp)/Ypq,(Zm-Zp)/Zpq) < min(1,(XM-Xp)/Xpq,(YM-Yp)/Ypq,(ZM-Zp)/Zpq)
If the inequation holds, the t values of the endpoints of the intersection are given by the min and the max.
Now, if Xpq < 0, it suffices to swap Xm and XM, and if Xpq = 0, the second inequation reduces to Xm < Xp < XM, and t is unbounded (-∞<t<∞). Similar reasoning on Y and Z, so there are nine cases to be considered.
Another way to look at the problem is that we stretch space by three linear transformations on the coordinates so that the segment PQ gets normalized to (0, 0, 0)-(1, 1, 1), and the limits of the cube are recomputed accordingly. Then we get the simple system
0 < t < 1
X0 < t < X1
Y0 < t < Y1
Z0 < t < Z1
A complete discussion of the special cases (segment in a face, crossing an edge, along an edge, through a vertex, just touching by an endpoint...) is out of the scope of this answer and is highly dependent on the use case.

Related

Searching a 3D array for closest point satisfying a certain predicate

I'm looking for an enumeration algorithm to search through a 3D array "sphering" around a given starting point.
Given an array a of size NxNxN where each N is 2^k for some k, and a point p in that array. The algorithm I'm looking for should do the following: If a[p] satisfies a certain predicate, the algorithm stops and p is returned. Otherwise the next point q is checked, where q is another point in the array that is the closest to p and hasn't been visited yet. If that doesn't match either, the next q'is checked an so on until in the worst case the whole array has been searched.
By "closest" here the perfect solution would be the point q that has the smallest Euclidean distance to p. As only discrete points have to be considered, perhaps some clever enumeration algorithm woukd make that possible. However, if this gets too complicated, the smallest Manhattan distance would be fine too. If there are several nearest points, it doesn't matter which one should be considered next.
Is there already an algorithm that can be used for this task?
You can search for increasing squared distances, so you won't miss a point. This python code should make it clear:
import math
import itertools
# Calculates all points at a certain distance.
# Coordinate constraint: z <= y <= x
def get_points_at_squared_euclidean_distance(d):
result = []
x = int(math.floor(math.sqrt(d)))
while 0 <= x:
y = x
while 0 <= y:
target = d - x*x - y*y
lower = 0
upper = y + 1
while lower < upper:
middle = (lower + upper) / 2
current = middle * middle
if current == target:
result.append((x, y, middle))
break
if current < target:
lower = middle + 1
else:
upper = middle
y -= 1
x -= 1
return result
# Creates all possible reflections of a point
def get_point_reflections(point):
result = set()
for p in itertools.permutations(point):
for n in range(8):
result.add((
p[0] * (1 if n % 8 < 4 else -1),
p[1] * (1 if n % 4 < 2 else -1),
p[2] * (1 if n % 2 < 1 else -1),
))
return sorted(result)
# Enumerates all points around a center, in increasing distance
def get_next_point_near(center):
d = 0
points_at_d = []
while True:
while not points_at_d:
d += 1
points_at_d = get_points_at_squared_euclidean_distance(d)
point = points_at_d.pop()
for reflection in get_point_reflections(point):
yield (
center[0] + reflection[0],
center[1] + reflection[1],
center[2] + reflection[2],
)
# The function you asked for
def get_nearest_point(center, predicate):
for point in get_next_point_near(center):
if predicate(point):
return point
# Example usage
print get_nearest_point((1,2,3), lambda p: sum(p) == 10)
Basically you consume points from the generator until one of them fulfills your predicate.
This is pseudocode for a simple algorithm that will search in increasing-radius spherical husks until it either finds a point or it runs out of array. Let us assume that condition returns either true or false and has access to the x, y, z coordinates being tested and the array itself, returning false (instead of exploding) for out-of-bounds coordinates:
def find_from_center(center, max_radius, condition) returns a point
let radius = 0
while radius < max_radius,
let point = find_in_spherical_husk(center, radius, condition)
if (point != null) return point
radius ++
return null
the hard part is inside find_in_spherical_husk. We are interested in checking out points such that
dist(center, p) >= radius AND dist(center, p) < radius+1
which will be our operating definition of husk. We could iterate over the whole 3D array in O(n^3) looking for those, but that would be really expensive in terms of time. A better pseudocode is the following:
def find_in_spherical_husk(center, radius, condition)
let z = center.z - radius // current slice height
let r = 0 // current circle radius; maxes at equator, then decreases
while z <= center + radius,
let z_center = (z, center.x, point.y)
let point = find_in_z_circle(z_center, r)
if (point != null) return point
// prepare for next z-sliced cirle
z ++
r = sqrt(radius*radius - (z-center.z)*(z-center.z))
the idea here is to slice each husk into circles along the z-axis (any axis will do), and then look at each slice separately. If you were looking at the earth, and the poles were the z axis, you would be slicing from north to south. Finally, you would implement find_in_z_circle(z_center, r, condition) to look at the circumference of each of those circles. You can avoid some math there by using the Bresenham circle-drawing algorithm; but I assume that the savings are negligible compared with the cost of checking condition.

What kind of algorithm would find a grid of squares in a reasonable time?

I found a result that there is a grid of size 9x13 with following properties:
Every cell contains a digit in base 10.
One can read the numbers from the grid by selecting a starting square, go to one of its 8 nearest grid, maintain that direction and concatenate numbers.
For example, if we have the following grid:
340934433
324324893
455423343
Then one can select the leftmost upper number 3 and select direction to the right and down to read numbers 3, 32 and 325.
Now one has to prove that there is a grid of size 9x13 where one can read the squares of 1 to 100, i.e. one can read all of the integers of the form i^2 where i=1,...,100 from the square.
The best grid I found on the net is of size 11x11, given in Solving a recreational square packing problem . But it looks like it is hard to modify the program to find integers in rectangular grid.
So what kind of algorithm would output a suitable grid in a reasonable time?
I just got a key error from this code:
import random, time, sys
N = 9
M = 13
K = 100
# These are the numbers we would like to pack
numbers = [str(i*i) for i in xrange(1, K+1)]
# Build the global list of digits (used for weighted random guess)
digits = "".join(numbers)
def random_digit(n=len(digits)-1):
return digits[random.randint(0, n)]
# By how many lines each of the numbers is currently covered
count = dict((x, 0) for x in numbers)
# Number of actually covered numbers
covered = 0
# All lines in current position (row, cols, diags, counter-diags)
lines = (["*"*N for x in xrange(N)] +
["*"*M for x in xrange(M)] +
["*"*x for x in xrange(1, N)] + ["*"*x for x in xrange(N, 0, -1)] +
["*"*x for x in xrange(1, M)] + ["*"*x for x in xrange(M, 0, -1)])
# lines_of[x, y] -> list of line/char indexes
lines_of = {}
def add_line_of(x, y, L):
try:
lines_of[x, y].append(L)
except KeyError:
lines_of[x, y] = [L]
for y in xrange(N):
for x in xrange(N):
add_line_of(x, y, (y, x))
add_line_of(x, y, (M + x, y))
add_line_of(x, y, (2*M + (x + y), x - max(0, x + y - M + 1)))
add_line_of(x, y, (2*M + 2*N-1 + (x + N-1 - y), x - max(0, x + (M-1 - y) - M + 1)))
# Numbers covered by each line
covered_numbers = [set() for x in xrange(len(lines))]
# Which numbers the string x covers
def cover(x):
c = x + "/" + x[::-1]
return [y for y in numbers if y in c]
# Set a matrix element
def setValue(x, y, d):
global covered
for i, j in lines_of[x, y]:
L = lines[i]
C = covered_numbers[i]
newL = L[:j] + d + L[j+1:]
newC = set(cover(newL))
for lost in C - newC:
count[lost] -= 1
if count[lost] == 0:
covered -= 1
for gained in newC - C:
count[gained] += 1
if count[gained] == 1:
covered += 1
covered_numbers[i] = newC
lines[i] = newL
def do_search(k, r):
start = time.time()
for i in xrange(r):
x = random.randint(0, N-1)
y = random.randint(0, M-1)
setValue(x, y, random_digit())
best = None
attempts = k
while attempts > 0:
attempts -= 1
old = []
for ch in xrange(1):
x = random.randint(0, N-1)
y = random.randint(0, M-1)
old.append((x, y, lines[y][x]))
setValue(x, y, random_digit())
if best is None or covered > best[0]:
now = time.time()
sys.stdout.write(str(covered) + chr(13))
sys.stdout.flush()
attempts = k
if best is None or covered >= best[0]:
best = [covered, lines[:N][:]]
else:
for x, y, o in old[::-1]:
setValue(x, y, o)
print
sys.stdout.flush()
return best
for y in xrange(N):
for x in xrange(N):
setValue(x, y, random_digit())
best = None
while True:
if best is not None:
for y in xrange(M):
for x in xrange(N):
setValue(x, y, best[1][y][x])
x = do_search(100000, M)
if best is None or x[0] > best[0]:
print x[0]
print "\n".join(" ".join(y) for y in x[1])
if best is None or x[0] >= best[0]:
best = x[:]
To create such a grid, I'd start with a list of strings representing the squares of the first K (100) numbers.
Reduce those strings as much as possible, where many are contained within others (for example, 625 contains 25, so 625 covers the squares of 5 and 25).
This should yield an initial list of 81 unique squares, requiring a minimum of about 312 digits:
def construct_optimal_set(K):
# compute a minimal solution:
numbers = [str(n*n) for n in range(0,K+1)]
min_numbers = []
# note: go in reverse direction, biggest to smallest, to maximize elimination of smaller numbers later
while len(numbers) > 0:
i = 0
while i < len(min_numbers):
q = min_numbers[i]
qr = reverse(min_numbers[i])
# check if the first number is contained within any element of min_numbers
if numbers[-1] in q or numbers[-1] in qr:
break
# check if any element of min_numbers is contained within the first number
elif q in numbers[-1] or qr in numbers[-1]:
min_numbers[i] = numbers[-1]
break
i += 1
# if not found, add it
if i >= len(min_numbers):
min_numbers.append(numbers[-1])
numbers = numbers[:-1]
min_numbers.sort()
return min_numbers
This will return a minimal set of squares, with any squares that are subsets of other squares removed. Extend this by concatenating any mostly-overlapping elements (such as 484 and 841 into 4841); I leave that as an exercise, since it will build familiarity with this code.
Then, you assemble these sort of like a cross-word puzzle. As you assemble the values, pack based on probability of possible future overlaps, by computing a weight for each digit (for example, 1's are fairly common, 9's are less common, so given the choice, you would favor overlapping 9's rather than 1's).
Use something like the following code to build a list of all possible values that are represented in the current grid. Use this periodically while building, in order to eliminate squares that are already represented, as well as to test whether your grid is a full solution.
def merge(digits):
result = 0
for i in range(len(digits)-1,-1,-1):
result = result * 10 + digits[i]
return result
def merge_reverse(digits):
result = 0
for i in range(0, len(digits)):
result = result * 10 + digits[i]
return result
# given a grid where each element contains a single numeric digit,
# return list of every ordering of those digits less than SQK,
# such that you pick a starting point and one of eight directions,
# and assemble digits until either end of grid or larger than SQK;
# this will construct only the unique combinations;
# also note that this will not construct a large number of values,
# since for any given direction, there are at most
# (sqrt(n*n + m*m))!
# possible arrangements, and there will rarely be that many.
def construct_lines(grid, k):
# rather than build a dictionary type, use a little more memory to use faster simple array indexes;
# index is #, and value at index indicates existence: 0 = does not exist, >0 means exists in grid
sqk = k*k
combinations = [0]*(sqk+1)
# do all horizontals, since they are easiest
for y in range(len(grid)):
digits = []
for x in range(len(grid[y])):
digits.append(grid[y][x])
# for every possible starting point...
for q in range(1,len(digits)):
number = merge(digits[q:])
if number <= sqk:
combinations[number] += 1
# now do all verticals
# note that if the grid is really square, grid[0] will give an accurate width of all grid[y][] rows
for x in range(len(grid[0])):
digits = []
for y in range(len(grid)):
digits.append(grid[y][x])
# for every possible starting point...
for q in range(1,len(digits)):
number = merge(digits[q:])
if number <= sqk:
combinations[number] += 1
# the longer axis (x or y) in both directions will contain every possible diagonal
# e.g. x is the longer axis here (using random characters to more easily distinguish idea):
# [1 2 3 4]
# [a b c d]
# [. , $ !]
# 'a,' can be obtained by reversing the diagonal starting on the bottom and working up and to the left
# this means that every set must be reversed as well
if len(grid) > len(grid[0]):
# for each y, grab top and bottom in each of two diagonal directions, for a total of four sets,
# and include the reverse of each set
for y in range(len(grid)):
digitsul = [] # origin point upper-left, heading down and right
digitsur = [] # origin point upper-right, heading down and left
digitsll = [] # origin point lower-left, heading up and right
digitslr = [] # origin point lower-right, heading up and left
revx = len(grid[y])-1 # pre-adjust this for computing reverse x coordinate
for deltax in range(len(grid[y])): # this may go off the grid, so check bounds
if y+deltax < len(grid):
digitsul.append(grid[y+deltax][deltax])
digitsll.append(grid[y+deltax][revx - deltax])
for q in range(1,len(digitsul)):
number = merge(digitsul[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsul[q:])
if number <= sqk:
combinations[number] += 1
for q in range(1,len(digitsll)):
number = merge(digitsll[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsll[q:])
if number <= sqk:
combinations[number] += 1
if y-deltax >= 0:
digitsur.append(grid[y-deltax][deltax])
digitslr.append(grid[y-deltax][revx - deltax])
for q in range(1,len(digitsur)):
number = merge(digitsur[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsur[q:])
if number <= sqk:
combinations[number] += 1
for q in range(1,len(digitslr)):
number = merge(digitslr[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitslr[q:])
if number <= sqk:
combinations[number] += 1
else:
# for each x, ditto above
for x in range(len(grid[0])):
digitsul = [] # origin point upper-left, heading down and right
digitsur = [] # origin point upper-right, heading down and left
digitsll = [] # origin point lower-left, heading up and right
digitslr = [] # origin point lower-right, heading up and left
revy = len(grid)-1 # pre-adjust this for computing reverse y coordinate
for deltay in range(len(grid)): # this may go off the grid, so check bounds
if x+deltay < len(grid[0]):
digitsul.append(grid[deltay][x+deltay])
digitsll.append(grid[revy - deltay][x+deltay])
for q in range(1,len(digitsul)):
number = merge(digitsul[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsul[q:])
if number <= sqk:
combinations[number] += 1
for q in range(1,len(digitsll)):
number = merge(digitsll[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsll[q:])
if number <= sqk:
combinations[number] += 1
if x-deltay >= 0:
digitsur.append(grid[deltay][x-deltay])
digitslr.append(grid[revy - deltay][x - deltay])
for q in range(1,len(digitsur)):
number = merge(digitsur[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitsur[q:])
if number <= sqk:
combinations[number] += 1
for q in range(1,len(digitslr)):
number = merge(digitslr[q:])
if number <= sqk:
combinations[number] += 1
number = merge_reverse(digitslr[q:])
if number <= sqk:
combinations[number] += 1
# now filter for squares only
return [i for i in range(0,k+1) if combinations[i*i] > 0]
Constructing the grid will be computationally expensive overall, but you will only need to run the check function once for each possible placement, to select the best placement.
Optimize placement by finding the subset of overlapping areas where you can place a sequence of numbers - this should be tolerable in terms of time required, because you can cap the number of possible locations to check; e.g. you might cap it at 10 (again, find the optimal number experimentally), such that you test the first 10 possible placements against the function above to determine which placement, if any, adds the most possible squares. As you progress, you will have fewer possible locations in which to insert the numbers, so testing which placement is best becomes computationally less expensive at the same time that your search for possible placements becomes more expensive, balancing out each other.
This will not handle all combinations, and will not pack as tightly as trying every possible arrangement and computing how many squares are covered, so some might be missed, but compared to O((N*M)!), this algorithm will actually complete in your lifetime (I'd actually estimate a few minutes on a decent computer - more if you parallelize the check for placement).

Find final square in matrix walking like a spiral

Given the matrix A x A and a number of movements N.
And walking like a spiral:
right while possible, then
down while possible, then
left while possible, then
up while possible, repeat until got N.
Image with example (A = 8; N = 36)
In this example case, the final square is (4; 7).
My question is: Is it possible to use a generic formula to solve this?
Yes, it is possible to calculate the answer.
To do so, it will help to split up the problem into three parts.
(Note: I start counting at zero to simplify the math. This means that you'll have to add 1 to some parts of the answer. For instance, my answer to A = 8, N = 36 would be the final square (3; 6), which has the label 35.)
(Another note: this answer is quite similar to Nyavro's answer, except that I avoid the recursion here.)
In the first part, you calculate the labels on the diagonal:
(0; 0) has label 0.
(1; 1) has label 4*(A-1). The cycle can be evenly split into four parts (with your labels: 1..7, 8..14, 15..21, 22..27).
(2; 2) has label 4*(A-1) + 4*(A-3). After taking one cycle around the A x A matrix, your next cycle will be around a (A - 2) x (A - 2) matrix.
And so on. There are plenty of ways to now figure out the general rule for (K; K) (when 0 < K < A/2). I'll just pick the one that's easiest to show:
4*(A-1) + 4*(A-3) + 4*(A-5) + ... + 4*(A-(2*K-1)) =
4*A*K - 4*(1 + 3 + 5 + ... + (2*K-1)) =
4*A*K - 4*(K + (0 + 2 + 4 + ... + (2*K-2))) =
4*A*K - 4*(K + 2*(0 + 1 + 2 + ... + (K-1))) =
4*A*K - 4*(K + 2*(K*(K-1)/2)) =
4*A*K - 4*(K + K*(K-1)) =
4*A*K - 4*(K + K*K - K) =
4*A*K - 4*K*K =
4*(A-K)*K
(Note: check that 4*(A-K)*K = 28 when A = 8 and K = 1. Compare this to the label at (2; 2) in your example.)
Now that we know what labels are on the diagonal, we can figure out how many layers (say K) we have to remove from our A x A matrix so that the final square is on the edge. If we do this, then answering our question
What are the coordinates (X; Y) when I take N steps in a A x A matrix?
can be done by calculating this K and instead solve the question
What are the coordinates (X - K; Y - K) when I take N - 4*(A-K)*K steps in a (A - 2*K) x (A - 2*K) matrix?
To do this, we should find the largest integer K such that K < A/2 and 4*(A-K)*K <= N.
The solution to this is K = floor(A/2 - sqrt(A*A-N)/2).
All that remains is to find out the coordinates of a square that is N along the edge of some A x A matrix:
if 0*E <= N < 1*E, the coordinates are (0; N);
if 1*E <= N < 2*E, the coordinates are (N - E; E);
if 2*E <= N < 3*E, the coordinates are (E; 3*E - N); and
if 3*E <= N < 4*E, the coordinates are (4*E - N; 0).
Here, E = A - 1.
To conclude, here is a naive (layerNumber gives incorrect answers for large values of a due to float inaccuracy) Haskell implementation of this answer:
finalSquare :: Integer -> Integer -> Maybe (Integer, Integer)
finalSquare a n
| Just (x', y') <- edgeSquare a' n' = Just (x' + k, y' + k)
| otherwise = Nothing
where
k = layerNumber a n
a' = a - 2*k
n' = n - 4*(a-k)*k
edgeSquare :: Integer -> Integer -> Maybe (Integer, Integer)
edgeSquare a n
| n < 1*e = Just (0, n)
| n < 2*e = Just (n - e, e)
| n < 3*e = Just (e, 3*e - n)
| n < 4*e = Just (4*e - n, 0)
| otherwise = Nothing
where
e = a - 1
layerNumber :: Integer -> Integer -> Integer
layerNumber a n = floor $ aa/2 - sqrt(aa*aa-nn)/2
where
aa = fromInteger a
nn = fromInteger n
Here is the possible solution:
f a n | n < (a-1)*1 = (0, n)
| n < (a-1)*2 = (n-(a-1), a-1)
| n < (a-1)*3 = (a-1, 3*(a-1)-n)
| n < (a-1)*4 = (4*(a-1)-n, 0)
| otherwise = add (1,1) (f (a-2) (n - 4*(a-1))) where
add (x1, y1) (x2, y2) = (x1+x2, y1+y2)
This is a basic solution, it may be generalized further - I just don't know how much generalization you need. So you can get the idea.
Edit
Notes:
The solution is for 0-based index
Some check for existence is required (n >= a*a)
I'm going to propose a relatively simple workaround here which generates all the indices in O(A^2) time so that they can later be accessed in O(1) for any N. If A changes, however, we would have to execute the algorithm again, which would once more consume O(A^2) time.
I suggest you use a structure like this to store the indices to access your matrix:
Coordinate[] indices = new Coordinate[A*A]
Where Coordinate is just a pair of int.
You can then fill your indices array by using some loops:
(This implementation uses 1-based array access. Correct expressions containing i, sentinel and currentDirection accordingly if this is an issue.)
Coordinate[] directions = { {1, 0}, {0, 1}, {-1, 0}, {0, -1} };
Coordinate c = new Coordinate(1, 1);
int currentDirection = 1;
int i = 1;
int sentinel = A;
int sentinelIncrement = A - 1;
boolean sentinelToggle = false;
while(i <= A * A) {
indices[i] = c;
if (i >= sentinel) {
if (sentinelToggle) {
sentinelIncrement -= 1;
}
sentinel += sentinelIncrement;
sentinelToggle = !sentinelToggle;
currentDirection = currentDirection mod 4 + 1;
}
c += directions[currentDirection];
i++;
}
Alright, off to the explanation: I'm using a variable called sentinel to keep track of where I need to switch directions (directions are simply switched by cycling through the array directions).
The value of sentinel is incremented in such a way that it always has the index of a corner in our spiral. In your example the sentinel would take on the values 8, 15, 22, 28, 34, 39... and so on.
Note that the index of "sentinel" increases twice by 7 (8, 15 = 8 + 7, 22 = 15 + 7), then by 6 (28 = 22 + 6, 34 = 28 + 6), then by 5 and so on. In my while loop I used the boolean sentinelToggle for this. Each time we hit a corner of the spiral (this is exactly iff i == sentinel, which is where the if-condition comes in) we increment the sentinel by sentinelIncrement and change the direction we're heading. If sentinel has been incremented twice by the same value, the if-condition if (sentinelToggle) will be true, so sentinelIncrement is decreased by one. We have to decrease sentinelIncrement because our spiral gets smaller as we go on.
This goes on as long as i <= A*A, that is, as long as our array indices has still entries that are zero.
Note that this does not give you a closed formula for a spiral coordinate in respect to N (which would be O(1) ); instead it generates the indices for all N which takes up O(A^2) time and after that guarantees access in O(1) by simply calling indices[N].
O(n^2) hopefully shouldn't hurt too badly because I'm assuming that you'll also need to fill your matrix at some point which also takes O(n^2).
If efficiency is a problem, consider getting rid off sentinelToggle so it doesn't mess up branch prediction. Instead, decrement sentinelIncrement every time the while condition is met. To get the same effect for your sentinel value, simply start sentinelIncrement at (A - 1) * 2 and every time the if-condition is met, execute:
sentinel += sentinelIncrement / 2
The integer division will have the same effect as only decreasing sentinelIncrement every second time. I didn't do this whole thing in my version because I think it might be more easily understandable with just a boolean value.
Hope this helps!

No of ways to walk M steps in a grid

You are situated in an grid at position x,y. The dimensions of the row is dx,dy. In one step, you can walk one step ahead or behind in the row or the column. In how many ways can you take M steps such that you do not leave the grid at any point ?You can visit the same position more than once.
You leave the grid if you for any x,y either x,y <= 0 or x,y > dx,dy.
1 <= M <= 300
1 <= x,y <= dx,dy <= 100
Input:
M
x y
dx dy
Output:
no of ways
Example:
Input:
1
6 6
12 12
Output:
4
Example:
Input:
2
6 6
12 12
Output:
16
If you are at position 6,6 then you can walk to (6,5),(6,7),(5,6),(7,6).
I am stuck at how to use Pascal's Triangle to solve it.Is that the correct approach? I have already tried brute force but its too slow.
C[i][j], Pascal Triangle
C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
T[startpos][stp]
T[pos][stp] = T[pos + 1][stp - 1] + T[pos - 1][stp - 1]
You can solve 1d problem with the formula you provided.
Let H[pos][step] be number of ways to move horizontal using given number of steps.
And V[pos][step] be number of ways to move vertical sing given number of steps.
You can iterate number of steps that will be made horizontal i = 0..M
Number of ways to move so is H[x][i]*V[y][M-i]*C[M][i], where C is binomial coefficient.
You can build H and V in O(max(dx,dy)*M) and do second step in O(M).
EDIT: Clarification on H and V. Supppose that you have line, that have d cells: 1,2,...,d. You're standing at cell number pos then T[pos][step] = T[pos-1][step-1] + T[pos+1][step-1], as you can move either forward or backward.
Base cases are T[0][step] = 0, T[d+1][step] = 0, T[pos][0] = 1.
We build H assuming d = dx and V assuming d = dy.
EDIT 2: Basically, the idea of algorithm is since we move in one of 2 dimensions and check is also based on each dimension independently, we can split 2d problem in 2 1d problems.
One way would be an O(n^3) dynamic programming solution:
Prepare a 3D array:
int Z[dx][dy][M]
Where Z[i][j][n] holds the number of paths that start from position (i,j) and last n moves.
The base case is Z[i][j][0] = 1 for all i, j
The recursive case is Z[i][j][n+1] = Z[i-1][j][n] + Z[i+1][j][n] + Z[i][j-1][n] + Z[i][j+1][n] (only include terms in the sumation that are on the map)
Once the array is filled out return Z[x][y][M]
To save space you can discard each 2D array for n after it is used.
Here's a Java solution I've built for the original hackerrank problem. For big grids runs forever. Probably some smart math is needed.
long compute(int N, int M, int[] positions, int[] dimensions) {
if (M == 0) {
return 1;
}
long sum = 0;
for (int i = 0; i < N; i++) {
if (positions[i] < dimensions[i]) {
positions[i]++;
sum += compute(N, M - 1, positions, dimensions);
positions[i]--;
}
if (positions[i] > 1) {
positions[i]--;
sum += compute(N, M - 1, positions, dimensions);
positions[i]++;
}
}
return sum % 1000000007;
}

Algorithm to find the lines bracketing one point

I have following task:
In the program we should draw lines on a bit mapped display. An array of n pairs of reals (ai,bi) defined the n lines yi = ai*x + bi. The lines were ordered in the x-interval [0, 1] in the sense that yi < yi+1 for all values of i between 0 and n-2 and for all values of x in [0, 1]
Less formally, the lines don't touch in the vertical slab. Given a point (x,y), where 0 < x < 1, we want to determine two lines that bracket the point.
How can we solve this problem quickly?
Function bracket( Real x, Real y, Array a[1..n],b[1..n] of Reals): Returns void
{
Integer i = 1;
While (i<=n && (a[i] * x + b[i]) <= y, i++)
If (i==1 || i == n+1)
{ Print("Not bracket exists");
Exit()
}
If (a[i] * x + b[i]) == y)
{ Print("Point lies on line",i);
Exit()
}
Print("Point between lines ", i-1, " and ", i);
}
There is, however a slight catch. See the following picture:
Would you say that point F is "bracketed" by the two lines in [0,1]x[0,1] ?? What is the correct answer in this case?

Resources