Algorithm to find the lines bracketing one point - algorithm

I have following task:
In the program we should draw lines on a bit mapped display. An array of n pairs of reals (ai,bi) defined the n lines yi = ai*x + bi. The lines were ordered in the x-interval [0, 1] in the sense that yi < yi+1 for all values of i between 0 and n-2 and for all values of x in [0, 1]
Less formally, the lines don't touch in the vertical slab. Given a point (x,y), where 0 < x < 1, we want to determine two lines that bracket the point.
How can we solve this problem quickly?

Function bracket( Real x, Real y, Array a[1..n],b[1..n] of Reals): Returns void
{
Integer i = 1;
While (i<=n && (a[i] * x + b[i]) <= y, i++)
If (i==1 || i == n+1)
{ Print("Not bracket exists");
Exit()
}
If (a[i] * x + b[i]) == y)
{ Print("Point lies on line",i);
Exit()
}
Print("Point between lines ", i-1, " and ", i);
}
There is, however a slight catch. See the following picture:
Would you say that point F is "bracketed" by the two lines in [0,1]x[0,1] ?? What is the correct answer in this case?

Related

alternating substring using (recursive) dynamic programming

My task is to solve alternating sub string problem with a recursive dynamic programming approach:
Consider a sequence A = a1, a2, a3, ... an of integers. A subsequence B of a is a sequence B = b1, b2, .... ,bn which is created from A by removing some elements but by keeping the order. Given an integer sequence A, the goal is to compute anb alternating subsequence B, i.e. a sequence b1, ... bn such that for all i in {2, 3, ... , m-1}, if b{i-1} < b{i} then b{i} > b{i+1} and if b{i-1} > b{i} then b{i} < b{i+1}
So far I need to check on every recursive step if I want to take the element and look for the next alternating number or if I simply take the next number and start with both possibles of alternation.
s index from left
e end ( len(Array))
A array
g(A,s) a function which get next greater or smaller integer.
my recursive formula is:
V(A, s, e) = max( V(A, g(A,s),e), V(A, s+1, e) ) +1
V(A, g(A,s),e) takes the element and continues with next alternating one
V(A, s+1, e) leaves the element and start new sequence at next element
assuming that my implementation and approach is correct I suggest the runntime to O(n^2) since we need to know every combination ones.
Without the mesmerization part it would be O(2^n) like a binary trees leaf amount.
Is this analysis correct? Is might be just correct for the formula but not for the code...
the function getsmaller and getbigger are g(A,s)
A = [5,6,5,5,5,7,5,5,5,87,5]
s = 0
e = len(A)
memo_want_small = [-1] * len(A)
memo_want_bigger = [-1] * len(A)
def getsmaller(A, s):
erg = 0
for i in range(s, len(A)):
if A[i] < A[s]:
if i is not None:
return i
return -1
def getbigger(A, s):
for i in range(s, len(A)):
if A[i] > A[s]:
if i is not None:
return i
return -1
def wantsmall(A, s, e):
if s == -1: # no more alternating element
return 0
if s == e: # base case
return 0
if memo_want_small[s] is not -1:
return memo_want_small[s]
return_V = max(wantbigger(A, getbigger(A, s), e) , alt(A, s+1, e)) + 1
memo_want_small[s] = return_V
return return_V
def wantbigger(A, s, e):
if s == -1: # no more alternating element
return 0
if s == e: # base case
return 0
if memo_want_bigger[s] is not -1:
return memo_want_bigger[s]
return_V = max(wantsmall(A, getsmaller(A, s), e) , alt(A, s+1, e)) + 1
memo_want_bigger[s] = return_V
return return_V
def alt(A, s, e):
if s == e: # base case
return 0
return max(wantsmall(A, getsmaller(A, s), e), wantbigger(A, getbigger(A, s), e))
print("solution: " + str(alt(A,s,e)))
Let's consider a sequence going left from A[i], with direction up first.
First, there could not be a higher element, A[j] to the left of A[i] that ends a longer sequence, because if there were, we could always switch that element with A[i] and end up with an up-first sequence of the same length.
* Going left from A[i], up-first
↖
A[j]
... A[i]
Secondly, there could not be a lower element, A[j] to the left, ending a longer up-first sequence, and an element in between, A[k], that's higher than A[i], because then we could just add both A[i] and the higher element and get a sequence longer by two.
* Going left from A[i], up-first
A[k]
... ... A[i]
↖
A[j]
So, looking left, the longest up-first sequence ending at A[i] is either (1) the same length or longer than the sequence ending at the next higher element to the left, or (2) the same length as the sequence ending at the lowest element of any contiguous, monotonically increasing subarray that reaches A[i].
Now, consider an element, A[r], the first higher to the right of A[i], for which we would like to find the longest down-first sequence ending at it. As we've shown, elements to the left of A[i] that end an up-first sequence and are either higher or lower than A[i] can already be accounted for when calculating a result for A[i], therefore it remains the only cell of interest for calculating the longest down-first sequence ending at A[r] (looking to the left). This points to an O(n) dynamic program.
JavaScript code:
// Preprocess previous higher and lower elements in O(n)
// Adapted from https://www.geeksforgeeks.org/next-greater-element
function prev(A, higherOrLower) {
function compare(a, b){
if (higherOrLower == 'higher')
return a < b
else if (higherOrLower == 'lower')
return a > b
}
let result = new Array(A.length)
let stack = [A.length - 1]
for (let i=A.length-2; i>=0; i--){
if (!stack.length){
stack.push(A[i])
continue
}
while (stack.length && compare(A[ stack[stack.length-1] ], A[i]))
result[ stack.pop() ] = i
stack.push(i)
}
while (stack.length)
result[ stack.pop() ] = -1
return result
}
function longestAlternatingSequence(A){
let prevHigher = prev(A, 'higher')
let prevLower = prev(A, 'lower')
let longestUpFirst = new Array(A.length)
let longestDownFirst = new Array(A.length)
let best = 1
longestUpFirst[0] = 1
longestDownFirst[0] = 1
for (let i=1; i<A.length; i++){
// Longest up-first
longestUpFirst[i] = Math.max(
A[i] >= A[i-1] ? longestUpFirst[i - 1] : -Infinity,
prevHigher[i] != -1 ? longestUpFirst[ prevHigher[i] ] : -Infinity,
prevHigher[i] != -1 ? 1 + longestDownFirst[ prevHigher[i] ] : -Infinity,
1
)
// Longest down-first
longestDownFirst[i] = Math.max(
A[i] <= A[i-1] ? longestDownFirst[i - 1] : -Infinity,
prevLower[i] != -1 ? longestDownFirst[ prevLower[i] ] : -Infinity,
prevLower[i] != -1 ? 1 + longestUpFirst[ prevLower[i] ] : -Infinity,
1
)
best = Math.max(best, longestUpFirst[i], longestDownFirst[i])
}
console.log(`${ longestUpFirst } (longestUpFirst)`)
console.log(`${ longestDownFirst } (longestDownFirst)`)
return best
}
var tests = [
[5,6,5,5,5,7,5,5,5,87,5],
[1,2,3,4,5,6,7,8],
new Array(10).fill(null).map(_ => ~~(Math.random()*50))
]
for (let A of tests){
console.log(JSON.stringify(A))
console.log(longestAlternatingSequence(A))
console.log('')
}
Update
Heh, there's a simpler O(n) recurrence here: https://www.geeksforgeeks.org/longest-alternating-subsequence/

Find final square in matrix walking like a spiral

Given the matrix A x A and a number of movements N.
And walking like a spiral:
right while possible, then
down while possible, then
left while possible, then
up while possible, repeat until got N.
Image with example (A = 8; N = 36)
In this example case, the final square is (4; 7).
My question is: Is it possible to use a generic formula to solve this?
Yes, it is possible to calculate the answer.
To do so, it will help to split up the problem into three parts.
(Note: I start counting at zero to simplify the math. This means that you'll have to add 1 to some parts of the answer. For instance, my answer to A = 8, N = 36 would be the final square (3; 6), which has the label 35.)
(Another note: this answer is quite similar to Nyavro's answer, except that I avoid the recursion here.)
In the first part, you calculate the labels on the diagonal:
(0; 0) has label 0.
(1; 1) has label 4*(A-1). The cycle can be evenly split into four parts (with your labels: 1..7, 8..14, 15..21, 22..27).
(2; 2) has label 4*(A-1) + 4*(A-3). After taking one cycle around the A x A matrix, your next cycle will be around a (A - 2) x (A - 2) matrix.
And so on. There are plenty of ways to now figure out the general rule for (K; K) (when 0 < K < A/2). I'll just pick the one that's easiest to show:
4*(A-1) + 4*(A-3) + 4*(A-5) + ... + 4*(A-(2*K-1)) =
4*A*K - 4*(1 + 3 + 5 + ... + (2*K-1)) =
4*A*K - 4*(K + (0 + 2 + 4 + ... + (2*K-2))) =
4*A*K - 4*(K + 2*(0 + 1 + 2 + ... + (K-1))) =
4*A*K - 4*(K + 2*(K*(K-1)/2)) =
4*A*K - 4*(K + K*(K-1)) =
4*A*K - 4*(K + K*K - K) =
4*A*K - 4*K*K =
4*(A-K)*K
(Note: check that 4*(A-K)*K = 28 when A = 8 and K = 1. Compare this to the label at (2; 2) in your example.)
Now that we know what labels are on the diagonal, we can figure out how many layers (say K) we have to remove from our A x A matrix so that the final square is on the edge. If we do this, then answering our question
What are the coordinates (X; Y) when I take N steps in a A x A matrix?
can be done by calculating this K and instead solve the question
What are the coordinates (X - K; Y - K) when I take N - 4*(A-K)*K steps in a (A - 2*K) x (A - 2*K) matrix?
To do this, we should find the largest integer K such that K < A/2 and 4*(A-K)*K <= N.
The solution to this is K = floor(A/2 - sqrt(A*A-N)/2).
All that remains is to find out the coordinates of a square that is N along the edge of some A x A matrix:
if 0*E <= N < 1*E, the coordinates are (0; N);
if 1*E <= N < 2*E, the coordinates are (N - E; E);
if 2*E <= N < 3*E, the coordinates are (E; 3*E - N); and
if 3*E <= N < 4*E, the coordinates are (4*E - N; 0).
Here, E = A - 1.
To conclude, here is a naive (layerNumber gives incorrect answers for large values of a due to float inaccuracy) Haskell implementation of this answer:
finalSquare :: Integer -> Integer -> Maybe (Integer, Integer)
finalSquare a n
| Just (x', y') <- edgeSquare a' n' = Just (x' + k, y' + k)
| otherwise = Nothing
where
k = layerNumber a n
a' = a - 2*k
n' = n - 4*(a-k)*k
edgeSquare :: Integer -> Integer -> Maybe (Integer, Integer)
edgeSquare a n
| n < 1*e = Just (0, n)
| n < 2*e = Just (n - e, e)
| n < 3*e = Just (e, 3*e - n)
| n < 4*e = Just (4*e - n, 0)
| otherwise = Nothing
where
e = a - 1
layerNumber :: Integer -> Integer -> Integer
layerNumber a n = floor $ aa/2 - sqrt(aa*aa-nn)/2
where
aa = fromInteger a
nn = fromInteger n
Here is the possible solution:
f a n | n < (a-1)*1 = (0, n)
| n < (a-1)*2 = (n-(a-1), a-1)
| n < (a-1)*3 = (a-1, 3*(a-1)-n)
| n < (a-1)*4 = (4*(a-1)-n, 0)
| otherwise = add (1,1) (f (a-2) (n - 4*(a-1))) where
add (x1, y1) (x2, y2) = (x1+x2, y1+y2)
This is a basic solution, it may be generalized further - I just don't know how much generalization you need. So you can get the idea.
Edit
Notes:
The solution is for 0-based index
Some check for existence is required (n >= a*a)
I'm going to propose a relatively simple workaround here which generates all the indices in O(A^2) time so that they can later be accessed in O(1) for any N. If A changes, however, we would have to execute the algorithm again, which would once more consume O(A^2) time.
I suggest you use a structure like this to store the indices to access your matrix:
Coordinate[] indices = new Coordinate[A*A]
Where Coordinate is just a pair of int.
You can then fill your indices array by using some loops:
(This implementation uses 1-based array access. Correct expressions containing i, sentinel and currentDirection accordingly if this is an issue.)
Coordinate[] directions = { {1, 0}, {0, 1}, {-1, 0}, {0, -1} };
Coordinate c = new Coordinate(1, 1);
int currentDirection = 1;
int i = 1;
int sentinel = A;
int sentinelIncrement = A - 1;
boolean sentinelToggle = false;
while(i <= A * A) {
indices[i] = c;
if (i >= sentinel) {
if (sentinelToggle) {
sentinelIncrement -= 1;
}
sentinel += sentinelIncrement;
sentinelToggle = !sentinelToggle;
currentDirection = currentDirection mod 4 + 1;
}
c += directions[currentDirection];
i++;
}
Alright, off to the explanation: I'm using a variable called sentinel to keep track of where I need to switch directions (directions are simply switched by cycling through the array directions).
The value of sentinel is incremented in such a way that it always has the index of a corner in our spiral. In your example the sentinel would take on the values 8, 15, 22, 28, 34, 39... and so on.
Note that the index of "sentinel" increases twice by 7 (8, 15 = 8 + 7, 22 = 15 + 7), then by 6 (28 = 22 + 6, 34 = 28 + 6), then by 5 and so on. In my while loop I used the boolean sentinelToggle for this. Each time we hit a corner of the spiral (this is exactly iff i == sentinel, which is where the if-condition comes in) we increment the sentinel by sentinelIncrement and change the direction we're heading. If sentinel has been incremented twice by the same value, the if-condition if (sentinelToggle) will be true, so sentinelIncrement is decreased by one. We have to decrease sentinelIncrement because our spiral gets smaller as we go on.
This goes on as long as i <= A*A, that is, as long as our array indices has still entries that are zero.
Note that this does not give you a closed formula for a spiral coordinate in respect to N (which would be O(1) ); instead it generates the indices for all N which takes up O(A^2) time and after that guarantees access in O(1) by simply calling indices[N].
O(n^2) hopefully shouldn't hurt too badly because I'm assuming that you'll also need to fill your matrix at some point which also takes O(n^2).
If efficiency is a problem, consider getting rid off sentinelToggle so it doesn't mess up branch prediction. Instead, decrement sentinelIncrement every time the while condition is met. To get the same effect for your sentinel value, simply start sentinelIncrement at (A - 1) * 2 and every time the if-condition is met, execute:
sentinel += sentinelIncrement / 2
The integer division will have the same effect as only decreasing sentinelIncrement every second time. I didn't do this whole thing in my version because I think it might be more easily understandable with just a boolean value.
Hope this helps!

Number of unique sequences of 3 digits (-1,0,1) given a length that matches a sum

Say you have a vertical game board of length n (being the number of spaces). And you have a three-sided die that has the options: go forward one, stay and go back one. If you go below or above the number of board game spaces it is an invalid game. The only valid move once you reach the end of the board is "stay". Given an exact number of die rolls t, is it possible to algorithmically work out the number of unique dice rolls that result in a winning game?
So far I've tried producing a list of every possible combination of (-1,0,1) for the given number of die rolls and sorting through the list to see if any add up to the length of the board and also meet all the requirements for being a valid game. But this is impractical for dice rolls above 20.
For example:
t=1, n=2; Output=1
t=3, n=2; Output=3
You can use a dynamic programming approach. The sketch of a recurrence is:
M(0, 1) = 1
M(t, n) = T(t-1, n-1) + T(t-1, n) + T(t-1, n+1)
Of course you have to consider the border cases (like going off the board or not allowing to exit the end of the board, but it's easy to code that).
Here's some Python code:
def solve(N, T):
M, M2 = [0]*N, [0]*N
M[0] = 1
for i in xrange(T):
M, M2 = M2, M
for j in xrange(N):
M[j] = (j>0 and M2[j-1]) + M2[j] + (j+1<N-1 and M2[j+1])
return M[N-1]
print solve(3, 2) #1
print solve(2, 1) #1
print solve(2, 3) #3
print solve(5, 20) #19535230
Bonus: fancy "one-liner" with list compreehension and reduce
def solve(N, T):
return reduce(
lambda M, _: [(j>0 and M[j-1]) + M[j] + (j<N-2 and M[j+1]) for j in xrange(N)],
xrange(T), [1]+[0]*N)[-1]
Let M[i, j] be an N by N matrix with M[i, j] = 1 if |i-j| <= 1 and 0 otherwise (and the special case for the "stay" rule of M[N, N-1] = 0)
This matrix counts paths of length 1 from position i to position j.
To find paths of length t, simply raise M to the t'th power. This can be performed efficiently by linear algebra packages.
The solution can be read off: M^t[1, N].
For example, computing paths of length 20 on a board of size 5 in an interactive Python session:
>>> import numpy
>>> M = numpy.matrix('1 1 0 0 0;1 1 1 0 0; 0 1 1 1 0; 0 0 1 1 1; 0 0 0 0 1')
>>> M
matrix([[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1]])
>>> M ** 20
matrix([[31628466, 51170460, 51163695, 31617520, 19535230],
[51170460, 82792161, 82787980, 51163695, 31617520],
[51163695, 82787980, 82792161, 51170460, 31628465],
[31617520, 51163695, 51170460, 31628466, 19552940],
[ 0, 0, 0, 0, 1]])
So there's M^20[1, 5], or 19535230 paths of length 20 from start to finish on a board of size 5.
Try a backtracking algorithm. Recursively "dive down" into depth t and only continue with dice values that could still result in a valid state. Propably by passing a "remaining budget" around.
For example, n=10, t=20, when you reached depth 10 of 20 and your budget is still 10 (= steps forward and backwards seemed to cancelled), the next recursion steps until depth t would discontinue the 0 and -1 possibilities, because they could not result in a valid state at the end.
A backtracking algorithms for this case is still very heavy (exponential), but better than first blowing up a bubble with all possibilities and then filtering.
Since zeros can be added anywhere, we'll multiply those possibilities by the different arrangements of (-1)'s:
X (space 1) X (space 2) X (space 3) X (space 4) X
(-1)'s can only appear in spaces 1,2 or 3, not in space 4. I got help with the mathematical recurrence that counts the number of ways to place minus ones without skipping backwards.
JavaScript code:
function C(n,k){if(k==0||n==k)return 1;var p=n;for(var i=2;i<=k;i++)p*=(n+1-i)/i;return p}
function sumCoefficients(arr,cs){
var s = 0, i = -1;
while (arr[++i]){
s += cs[i] * arr[i];
}
return s;
}
function f(n,t){
var numMinusOnes = (t - (n-1)) >> 1
result = C(t,n-1),
numPlaces = n - 2,
cs = [];
for (var i=1; numPlaces-i>=i-1; i++){
cs.push(-Math.pow(-1,i) * C(numPlaces + 1 - i,i));
}
var As = new Array(cs.length),
An;
As[0] = 1;
for (var m=1; m<=numMinusOnes; m++){
var zeros = t - (n-1) - 2*m;
An = sumCoefficients(As,cs);
As.unshift(An);
As.pop();
result += An * C(zeros + 2*m + n-1,zeros);
}
return result;
}
Output:
console.log(f(5,20))
19535230

No of ways to walk M steps in a grid

You are situated in an grid at position x,y. The dimensions of the row is dx,dy. In one step, you can walk one step ahead or behind in the row or the column. In how many ways can you take M steps such that you do not leave the grid at any point ?You can visit the same position more than once.
You leave the grid if you for any x,y either x,y <= 0 or x,y > dx,dy.
1 <= M <= 300
1 <= x,y <= dx,dy <= 100
Input:
M
x y
dx dy
Output:
no of ways
Example:
Input:
1
6 6
12 12
Output:
4
Example:
Input:
2
6 6
12 12
Output:
16
If you are at position 6,6 then you can walk to (6,5),(6,7),(5,6),(7,6).
I am stuck at how to use Pascal's Triangle to solve it.Is that the correct approach? I have already tried brute force but its too slow.
C[i][j], Pascal Triangle
C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
T[startpos][stp]
T[pos][stp] = T[pos + 1][stp - 1] + T[pos - 1][stp - 1]
You can solve 1d problem with the formula you provided.
Let H[pos][step] be number of ways to move horizontal using given number of steps.
And V[pos][step] be number of ways to move vertical sing given number of steps.
You can iterate number of steps that will be made horizontal i = 0..M
Number of ways to move so is H[x][i]*V[y][M-i]*C[M][i], where C is binomial coefficient.
You can build H and V in O(max(dx,dy)*M) and do second step in O(M).
EDIT: Clarification on H and V. Supppose that you have line, that have d cells: 1,2,...,d. You're standing at cell number pos then T[pos][step] = T[pos-1][step-1] + T[pos+1][step-1], as you can move either forward or backward.
Base cases are T[0][step] = 0, T[d+1][step] = 0, T[pos][0] = 1.
We build H assuming d = dx and V assuming d = dy.
EDIT 2: Basically, the idea of algorithm is since we move in one of 2 dimensions and check is also based on each dimension independently, we can split 2d problem in 2 1d problems.
One way would be an O(n^3) dynamic programming solution:
Prepare a 3D array:
int Z[dx][dy][M]
Where Z[i][j][n] holds the number of paths that start from position (i,j) and last n moves.
The base case is Z[i][j][0] = 1 for all i, j
The recursive case is Z[i][j][n+1] = Z[i-1][j][n] + Z[i+1][j][n] + Z[i][j-1][n] + Z[i][j+1][n] (only include terms in the sumation that are on the map)
Once the array is filled out return Z[x][y][M]
To save space you can discard each 2D array for n after it is used.
Here's a Java solution I've built for the original hackerrank problem. For big grids runs forever. Probably some smart math is needed.
long compute(int N, int M, int[] positions, int[] dimensions) {
if (M == 0) {
return 1;
}
long sum = 0;
for (int i = 0; i < N; i++) {
if (positions[i] < dimensions[i]) {
positions[i]++;
sum += compute(N, M - 1, positions, dimensions);
positions[i]--;
}
if (positions[i] > 1) {
positions[i]--;
sum += compute(N, M - 1, positions, dimensions);
positions[i]++;
}
}
return sum % 1000000007;
}

Algorithm to find two repeated numbers in an array, without sorting

There is an array of size n (numbers are between 0 and n - 3) and only 2 numbers are repeated. Elements are placed randomly in the array.
E.g. in {2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, and repeated numbers are 3 and 5.
What is the best way to find the repeated numbers?
P.S. [You should not use sorting]
There is a O(n) solution if you know what the possible domain of input is. For example if your input array contains numbers between 0 to 100, consider the following code.
bool flags[100];
for(int i = 0; i < 100; i++)
flags[i] = false;
for(int i = 0; i < input_size; i++)
if(flags[input_array[i]])
return input_array[i];
else
flags[input_array[i]] = true;
Of course there is the additional memory but this is the fastest.
OK, seems I just can't give it a rest :)
Simplest solution
int A[N] = {...};
int signed_1(n) { return n%2<1 ? +n : -n; } // 0,-1,+2,-3,+4,-5,+6,-7,...
int signed_2(n) { return n%4<2 ? +n : -n; } // 0,+1,-2,-3,+4,+5,-6,-7,...
long S1 = 0; // or int64, or long long, or some user-defined class
long S2 = 0; // so that it has enough bits to contain sum without overflow
for (int i=0; i<N-2; ++i)
{
S1 += signed_1(A[i]) - signed_1(i);
S2 += signed_2(A[i]) - signed_2(i);
}
for (int i=N-2; i<N; ++i)
{
S1 += signed_1(A[i]);
S2 += signed_2(A[i]);
}
S1 = abs(S1);
S2 = abs(S2);
assert(S1 != S2); // this algorithm fails in this case
p = (S1+S2)/2;
q = abs(S1-S2)/2;
One sum (S1 or S2) contains p and q with the same sign, the other sum - with opposite signs, all other members are eliminated.
S1 and S2 must have enough bits to accommodate sums, the algorithm does not stand for overflow because of abs().
if abs(S1)==abs(S2) then the algorithm fails, though this value will still be the difference between p and q (i.e. abs(p - q) == abs(S1)).
Previous solution
I doubt somebody will ever encounter such a problem in the field ;)
and I guess, I know the teacher's expectation:
Lets take array {0,1,2,...,n-2,n-1},
The given one can be produced by replacing last two elements n-2 and n-1 with unknown p and q (less order)
so, the sum of elements will be (n-1)n/2 + p + q - (n-2) - (n-1)
the sum of squares (n-1)n(2n-1)/6 + p^2 + q^2 - (n-2)^2 - (n-1)^2
Simple math remains:
(1) p+q = S1
(2) p^2+q^2 = S2
Surely you won't solve it as math classes teach to solve square equations.
First, calculate everything modulo 2^32, that is, allow for overflow.
Then check pairs {p,q}: {0, S1}, {1, S1-1} ... against expression (2) to find candidates (there might be more than 2 due to modulo and squaring)
And finally check found candidates if they really are present in array twice.
You know that your Array contains every number from 0 to n-3 and the two repeating ones (p & q). For simplicity, lets ignore the 0-case for now.
You can calculate the sum and the product over the array, resulting in:
1 + 2 + ... + n-3 + p + q = p + q + (n-3)(n-2)/2
So if you substract (n-3)(n-2)/2 from the sum of the whole array, you get
sum(Array) - (n-3)(n-2)/2 = x = p + q
Now do the same for the product:
1 * 2 * ... * n - 3 * p * q = (n - 3)! * p * q
prod(Array) / (n - 3)! = y = p * q
Your now got these terms:
x = p + q
y = p * q
=> y(p + q) = x(p * q)
If you transform this term, you should be able to calculate p and q
Insert each element into a set/hashtable, first checking if its are already in it.
You might be able to take advantage of the fact that sum(array) = (n-2)*(n-3)/2 + two missing numbers.
Edit: As others have noted, combined with the sum-of-squares, you can use this, I was just a little slow in figuring it out.
Check this old but good paper on the topic:
Finding Repeated Elements (PDF)
Some answers to the question: Algorithm to determine if array contains n…n+m? contain as a subproblem solutions which you can adopt for your purpose.
For example, here's a relevant part from my answer:
bool has_duplicates(int* a, int m, int n)
{
/** O(m) in time, O(1) in space (for 'typeof(m) == typeof(*a) == int')
Whether a[] array has duplicates.
precondition: all values are in [n, n+m) range.
feature: It marks visited items using a sign bit.
*/
assert((INT_MIN - (INT_MIN - 1)) == 1); // check n == INT_MIN
for (int *p = a; p != &a[m]; ++p) {
*p -= (n - 1); // [n, n+m) -> [1, m+1)
assert(*p > 0);
}
// determine: are there duplicates
bool has_dups = false;
for (int i = 0; i < m; ++i) {
const int j = abs(a[i]) - 1;
assert(j >= 0);
assert(j < m);
if (a[j] > 0)
a[j] *= -1; // mark
else { // already seen
has_dups = true;
break;
}
}
// restore the array
for (int *p = a; p != &a[m]; ++p) {
if (*p < 0)
*p *= -1; // unmark
// [1, m+1) -> [n, n+m)
*p += (n - 1);
}
return has_dups;
}
The program leaves the array unchanged (the array should be writeable but its values are restored on exit).
It works for array sizes upto INT_MAX (on 64-bit systems it is 9223372036854775807).
suppose array is
a[0], a[1], a[2] ..... a[n-1]
sumA = a[0] + a[1] +....+a[n-1]
sumASquare = a[0]*a[0] + a[1]*a[1] + a[2]*a[2] + .... + a[n]*a[n]
sumFirstN = (N*(N+1))/2 where N=n-3 so
sumFirstN = (n-3)(n-2)/2
similarly
sumFirstNSquare = N*(N+1)*(2*N+1)/6 = (n-3)(n-2)(2n-5)/6
Suppose repeated elements are = X and Y
so X + Y = sumA - sumFirstN;
X*X + Y*Y = sumASquare - sumFirstNSquare;
So on solving this quadratic we can get value of X and Y.
Time Complexity = O(n)
space complexity = O(1)
I know the question is very old but I suddenly hit it and I think I have an interesting answer to it.
We know this is a brainteaser and a trivial solution (i.e. HashMap, Sort, etc) no matter how good they are would be boring.
As the numbers are integers, they have constant bit size (i.e. 32). Let us assume we are working with 4 bit integers right now. We look for A and B which are the duplicate numbers.
We need 4 buckets, each for one bit. Each bucket contains numbers which its specific bit is 1. For example bucket 1 gets 2, 3, 4, 7, ...:
Bucket 0 : Sum ( x where: x & 2 power 0 == 0 )
...
Bucket i : Sum ( x where: x & 2 power i == 0 )
We know what would be the sum of each bucket if there was no duplicate. I consider this as prior knowledge.
Once above buckets are generated, a bunch of them would have values more than expected. By constructing the number from buckets we will have (A OR B for your information).
We can calculate (A XOR B) as follows:
A XOR B = Array[i] XOR Array[i-1] XOR ... 0, XOR n-3 XOR n-2 ... XOR 0
Now going back to buckets, we know exactly which buckets have both our numbers and which ones have only one (from the XOR bit).
For the buckets that have only one number we can extract the number num = (sum - expected sum of bucket). However, we should be good only if we can find one of the duplicate numbers so if we have at least one bit in A XOR B, we've got the answer.
But what if A XOR B is zero?
Well this case is only possible if both duplicate numbers are the same number, which then our number is the answer of A OR B.
Sorting the array would seem to be the best solution. A simple sort would then make the search trivial and would take a whole lot less time/space.
Otherwise, if you know the domain of the numbers, create an array with that many buckets in it and increment each as you go through the array. something like this:
int count [10];
for (int i = 0; i < arraylen; i++) {
count[array[i]]++;
}
Then just search your array for any numbers greater than 1. Those are the items with duplicates. Only requires one pass across the original array and one pass across the count array.
Here's implementation in Python of #eugensk00's answer (one of its revisions) that doesn't use modular arithmetic. It is a single-pass algorithm, O(log(n)) in space. If fixed-width (e.g. 32-bit) integers are used then it is requires only two fixed-width numbers (e.g. for 32-bit: one 64-bit number and one 128-bit number). It can handle arbitrary large integer sequences (it reads one integer at a time therefore a whole sequence doesn't require to be in memory).
def two_repeated(iterable):
s1, s2 = 0, 0
for i, j in enumerate(iterable):
s1 += j - i # number_of_digits(s1) ~ 2 * number_of_digits(i)
s2 += j*j - i*i # number_of_digits(s2) ~ 4 * number_of_digits(i)
s1 += (i - 1) + i
s2 += (i - 1)**2 + i**2
p = (s1 - int((2*s2 - s1**2)**.5)) // 2
# `Decimal().sqrt()` could replace `int()**.5` for really large integers
# or any function to compute integer square root
return p, s1 - p
Example:
>>> two_repeated([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
A more verbose version of the above code follows with explanation:
def two_repeated_seq(arr):
"""Return the only two duplicates from `arr`.
>>> two_repeated_seq([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
"""
n = len(arr)
assert all(0 <= i < n - 2 for i in arr) # all in range [0, n-2)
assert len(set(arr)) == (n - 2) # number of unique items
s1 = (n-2) + (n-1) # s1 and s2 have ~ 2*(k+1) and 4*(k+1) digits
s2 = (n-2)**2 + (n-1)**2 # where k is a number of digits in `max(arr)`
for i, j in enumerate(arr):
s1 += j - i
s2 += j*j - i*i
"""
s1 = (n-2) + (n-1) + sum(arr) - sum(range(n))
= sum(arr) - sum(range(n-2))
= sum(range(n-2)) + p + q - sum(range(n-2))
= p + q
"""
assert s1 == (sum(arr) - sum(range(n-2)))
"""
s2 = (n-2)**2 + (n-1)**2 + sum(i*i for i in arr) - sum(i*i for i in range(n))
= sum(i*i for i in arr) - sum(i*i for i in range(n-2))
= p*p + q*q
"""
assert s2 == (sum(i*i for i in arr) - sum(i*i for i in range(n-2)))
"""
s1 = p+q
-> s1**2 = (p+q)**2
-> s1**2 = p*p + 2*p*q + q*q
-> s1**2 - (p*p + q*q) = 2*p*q
s2 = p*p + q*q
-> p*q = (s1**2 - s2)/2
Let C = p*q = (s1**2 - s2)/2 and B = p+q = s1 then from Viete theorem follows
that p and q are roots of x**2 - B*x + C = 0
-> p = (B + sqrtD) / 2
-> q = (B - sqrtD) / 2
where sqrtD = sqrt(B**2 - 4*C)
-> p = (s1 + sqrt(2*s2 - s1**2))/2
"""
sqrtD = (2*s2 - s1**2)**.5
assert int(sqrtD)**2 == (2*s2 - s1**2) # perfect square
sqrtD = int(sqrtD)
assert (s1 - sqrtD) % 2 == 0 # even
p = (s1 - sqrtD) // 2
q = s1 - p
assert q == ((s1 + sqrtD) // 2)
assert sqrtD == (q - p)
return p, q
NOTE: calculating integer square root of a number (~ N**4) makes the above algorithm non-linear.
Since a range is specified, you can perform radix sort. This would sort your array in O(n). Searching for duplicates in a sorted array is then O(n)
You can use simple nested for loop
int[] numArray = new int[] { 1, 2, 3, 4, 5, 7, 8, 3, 7 };
for (int i = 0; i < numArray.Length; i++)
{
for (int j = i + 1; j < numArray.Length; j++)
{
if (numArray[i] == numArray[j])
{
//DO SOMETHING
}
}
*OR you can filter the array and use recursive function if you want to get the count of occurrences*
int[] array = { 1, 2, 3, 4, 5, 4, 4, 1, 8, 9, 23, 4, 6, 8, 9, 1,4 };
int[] myNewArray = null;
int a = 1;
void GetDuplicates(int[] array)
for (int i = 0; i < array.Length; i++)
{
for (int j = i + 1; j < array.Length; j++)
{
if (array[i] == array[j])
{
a += 1;
}
}
Console.WriteLine(" {0} occurred {1} time/s", array[i], a);
IEnumerable<int> num = from n in array where n != array[i] select n;
myNewArray = null;
a = 1;
myNewArray = num.ToArray() ;
break;
}
GetDuplicates(myNewArray);
answer to 18..
you are taking an array of 9 and elements are starting from 0..so max ele will be 6 in your array. Take sum of elements from 0 to 6 and take sum of array elements. compute their difference (say d). This is p + q. Now take XOR of elements from 0 to 6 (say x1). Now take XOR of array elements (say x2). x2 is XOR of all elements from 0 to 6 except two repeated elements since they cancel out each other. now for i = 0 to 6, for each ele of array, say p is that ele a[i] so you can compute q by subtracting this ele from the d. do XOR of p and q and XOR them with x2 and check if x1==x2. likewise doing for all elements you will get the elements for which this condition will be true and you are done in O(n). Keep coding!
check this out ...
O(n) time and O(1) space complexity
for(i=0;i< n;i++)
xor=xor^arr[i]
for(i=1;i<=n-3;i++)
xor=xor^i;
So in the given example you will get the xor of 3 and 5
xor=xor & -xor //Isolate the last digit
for(i = 0; i < n; i++)
{
if(arr[i] & xor)
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for(i = 1; i <= n-3; i++)
{
if(i & xor)
x = x ^ i;
else
y = y ^ i;
}
x and y are your answers
For each number: check if it exists in the rest of the array.
Without sorting you're going to have a keep track of numbers you've already visited.
in psuedocode this would basically be (done this way so I'm not just giving you the answer):
for each number in the list
if number not already in unique numbers list
add it to the unique numbers list
else
return that number as it is a duplicate
end if
end for each
How about this:
for (i=0; i<n-1; i++) {
for (j=i+1; j<n; j++) {
if (a[i] == a[j]) {
printf("%d appears more than once\n",a[i]);
break;
}
}
}
Sure it's not the fastest, but it's simple and easy to understand, and requires
no additional memory. If n is a small number like 9, or 100, then it may well be the "best". (i.e. "Best" could mean different things: fastest to execute, smallest memory footprint, most maintainable, least cost to develop etc..)
In c:
int arr[] = {2, 3, 6, 1, 5, 4, 0, 3, 5};
int num = 0, i;
for (i=0; i < 8; i++)
num = num ^ arr[i] ^i;
Since x^x=0, the numbers that are repeated odd number of times are neutralized. Let's call the unique numbers a and b.We are left with a^b. We know a^b != 0, since a != b. Choose any 1 bit of a^b, and use that as a mask ie.choose x as a power of 2 so that x & (a^b) is nonzero.
Now split the list into two sublists -- one sublist contains all numbers y with y&x == 0, and the rest go in the other sublist. By the way we chose x, we know that the pairs of a and b are in different buckets. So we can now apply the same method used above to each bucket independently, and discover what a and b are.
I have written a small programme which finds out the number of elements not repeated, just go through this let me know your opinion, at the moment I assume even number of elements are even but can easily extended for odd numbers also.
So my idea is to first sort the numbers and then apply my algorithm.quick sort can be use to sort this elements.
Lets take an input array as below
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
the number 2,10 and 4 are not repeated ,but they are in sorted order, if not sorted use quick sort to first sort it out.
Lets apply my programme on this
using namespace std;
main()
{
//int arr[] = {2, 9, 6, 1, 1, 4, 2, 3, 5};
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
int i = 0;
vector<int> vec;
int var = arr[0];
for(i = 1 ; i < sizeof(arr)/sizeof(arr[0]); i += 2)
{
var = var ^ arr[i];
if(var != 0 )
{
//put in vector
var = arr[i-1];
vec.push_back(var);
i = i-1;
}
var = arr[i+1];
}
for(int i = 0 ; i < vec.size() ; i++)
printf("value not repeated = %d\n",vec[i]);
}
This gives the output:
value not repeated= 2
value not repeated= 10
value not repeated= 4
Its simple and very straight forward, just use XOR man.
for(i=1;i<=n;i++) {
if(!(arr[i] ^ arr[i+1]))
printf("Found Repeated number %5d",arr[i]);
}
Here is an algorithm that uses order statistics and runs in O(n).
You can solve this by repeatedly calling SELECT with the median as parameter.
You also rely on the fact that After a call to SELECT,
the elements that are less than or equal to the median are moved to the left of the median.
Call SELECT on A with the median as the parameter.
If the median value is floor(n/2) then the repeated values are right to the median. So you continue with the right half of the array.
Else if it is not so then a repeated value is left to the median. So you continue with the left half of the array.
You continue this way recursively.
For example:
When A={2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, then the median should be the value 4.
After the first call to SELECT
A={3, 2, 0, 1, <3>, 4, 5, 6, 5} The median value is smaller than 4 so we continue with the left half.
A={3, 2, 0, 1, 3}
After the second call to SELECT
A={1, 0, <2>, 3, 3} then the median should be 2 and it is so we continue with the right half.
A={3, 3}, found.
This algorithm runs in O(n+n/2+n/4+...)=O(n).
What about using the https://en.wikipedia.org/wiki/HyperLogLog?
Redis does http://redis.io/topics/data-types-intro#hyperloglogs
A HyperLogLog is a probabilistic data structure used in order to count unique things (technically this is referred to estimating the cardinality of a set). Usually counting unique items requires using an amount of memory proportional to the number of items you want to count, because you need to remember the elements you have already seen in the past in order to avoid counting them multiple times. However there is a set of algorithms that trade memory for precision: you end with an estimated measure with a standard error, in the case of the Redis implementation, which is less than 1%. The magic of this algorithm is that you no longer need to use an amount of memory proportional to the number of items counted, and instead can use a constant amount of memory! 12k bytes in the worst case, or a lot less if your HyperLogLog (We'll just call them HLL from now) has seen very few elements.
Well using the nested for loop and assuming the question is to find the number occurred only twice in an array.
def repeated(ar,n):
count=0
for i in range(n):
for j in range(i+1,n):
if ar[i] == ar[j]:
count+=1
if count == 1:
count=0
print("repeated:",ar[i])
arr= [2, 3, 6, 1, 5, 4, 0, 3, 5]
n = len(arr)
repeated(arr,n)
Why should we try out doing maths ( specially solving quadratic equations ) these are costly op . Best way to solve this would be t construct a bitmap of size (n-3) bits , i.e, (n -3 ) +7 / 8 bytes . Better to do a calloc for this memory , so every single bit will be initialized to 0 . Then traverse the list & set the particular bit to 1 when encountered , if the bit is set to 1 already for that no then that is the repeated no .
This can be extended to find out if there is any missing no in the array or not.
This solution is O(n) in time complexity

Resources