Count the number of zero digit in an integer number? - algorithm

I wonder if there is a way to count the number of zero digit in an integer number by using only these operations: +, -, * and /
Others operations such as cast, div, mod, ... are not allowed.
Input: 16085021
Output: 2

It is a major restriction that numbers cannot be compared in a way to know that one is less than the other, and only equality checks can be done.
In my opinion that means there is nothing much else you can do than repeatedly add 1 to a variable until it hits a target (n) and derive from that what the least significant digit is of the original number n. This is of course terribly slow and not scalable, but it works in theory.
Here is a demo in Python using only ==, +, - and /:
n = 16085021
count = 0
while True:
# find out what least significant digit is
digit = 0
i = 0
while True:
if n == i:
break
digit = digit + 1
if digit == 10:
digit = 0
i = i + 1
# count any zero digit
if digit == 0:
count = count + 1
# shift that digit out of n
n = (n - digit) / 10
if n == 0:
break
print(count) # 2

Modulo can be implemented with subtractions: a % b = subtract b from a until you end up with something < b and that's the result. You say we can only use the == comparison operator, but we are only interested in modulo 10, so we can just check equality to 0, 1, ..., 9.
def modulo10WithSubtractions(a):
if a == 0 || a == 1 || ... || a == 9:
return a
while True:
a = a - b
if a == 0 || a == 1 || ... || a == 9:
return a
Integer division by 10 can be implemented in a similar fashion: a // 10 = add 10 to itself as many times as possible without exceeding a.
def div10WithAdditions(a):
if a == 0 || a == 1 || ... || a == 9:
return 0
k = 0
while True:
k += 1
if a - k*10 == 0 || a - k*10 == 1 || ... || a - k*10 == 9:
return k
Then we can basically do the classical algorithm:
count = 0
while True:
lastDigit = modulo10WithSubtractions(a)
if lastDigit == 0:
count += 1
a = div10WithAdditions(a)
if a == 0:
break

Asuuming / means integer division, then this snippet does the job.
int zeros = 0;
while(num > 0){
if(num / 10 == (num + 9) / 10){
zeros++;
}
num /= 10;
}

Related

Count number of 1 digits in 11 to the power of N

I came across an interesting problem:
How would you count the number of 1 digits in the representation of 11 to the power of N, 0<N<=1000.
Let d be the number of 1 digits
N=2 11^2 = 121 d=2
N=3 11^3 = 1331 d=2
Worst time complexity expected O(N^2)
The simple approach where you compute the number and count the number of 1 digits my getting the last digit and dividing by 10, does not work very well. 11^1000 is not even representable in any standard data type.
Powers of eleven can be stored as a string and calculated quite quickly that way, without a generalised arbitrary precision math package. All you need is multiply by ten and add.
For example, 111 is 11. To get the next power of 11 (112), you multiply by (10 + 1), which is effectively the number with a zero tacked the end, added to the number: 110 + 11 = 121.
Similarly, 113 can then be calculated as: 1210 + 121 = 1331.
And so on:
11^2 11^3 11^4 11^5 11^6
110 1210 13310 146410 1610510
+11 +121 +1331 +14641 +161051
--- ---- ----- ------ -------
121 1331 14641 161051 1771561
So that's how I'd approach, at least initially.
By way of example, here's a Python function to raise 11 to the n'th power, using the method described (I am aware that Python has support for arbitrary precision, keep in mind I'm just using it as a demonstration on how to do this an an algorithm, which is how the question was tagged):
def elevenToPowerOf(n):
# Anything to the zero is 1.
if n == 0: return "1"
# Otherwise, n <- n * 10 + n, once for each level of power.
num = "11"
while n > 1:
n = n - 1
# Make multiply by eleven easy.
ten = num + "0"
num = "0" + num
# Standard primary school algorithm for adding.
newnum = ""
carry = 0
for dgt in range(len(ten)-1,-1,-1):
res = int(ten[dgt]) + int(num[dgt]) + carry
carry = res // 10
res = res % 10
newnum = str(res) + newnum
if carry == 1:
newnum = "1" + newnum
# Prepare for next multiplication.
num = newnum
# There you go, 11^n as a string.
return num
And, for testing, a little program which works out those values for each power that you provide on the command line:
import sys
for idx in range(1,len(sys.argv)):
try:
power = int(sys.argv[idx])
except (e):
print("Invalid number [%s]" % (sys.argv[idx]))
sys.exit(1)
if power < 0:
print("Negative powers not allowed [%d]" % (power))
sys.exit(1)
number = elevenToPowerOf(power)
count = 0
for ch in number:
if ch == '1':
count += 1
print("11^%d is %s, has %d ones" % (power,number,count))
When you run that with:
time python3 prog.py 0 1 2 3 4 5 6 7 8 9 10 11 12 1000
you can see that it's both accurate (checked with bc) and fast (finished in about half a second):
11^0 is 1, has 1 ones
11^1 is 11, has 2 ones
11^2 is 121, has 2 ones
11^3 is 1331, has 2 ones
11^4 is 14641, has 2 ones
11^5 is 161051, has 3 ones
11^6 is 1771561, has 3 ones
11^7 is 19487171, has 3 ones
11^8 is 214358881, has 2 ones
11^9 is 2357947691, has 1 ones
11^10 is 25937424601, has 1 ones
11^11 is 285311670611, has 4 ones
11^12 is 3138428376721, has 2 ones
11^1000 is 2469932918005826334124088385085221477709733385238396234869182951830739390375433175367866116456946191973803561189036523363533798726571008961243792655536655282201820357872673322901148243453211756020067624545609411212063417307681204817377763465511222635167942816318177424600927358163388910854695041070577642045540560963004207926938348086979035423732739933235077042750354729095729602516751896320598857608367865475244863114521391548985943858154775884418927768284663678512441565517194156946312753546771163991252528017732162399536497445066348868438762510366191040118080751580689254476068034620047646422315123643119627205531371694188794408120267120500325775293645416335230014278578281272863450085145349124727476223298887655183167465713337723258182649072572861625150703747030550736347589416285606367521524529665763903537989935510874657420361426804068643262800901916285076966174176854351055183740078763891951775452021781225066361670593917001215032839838911476044840388663443684517735022039957481918726697789827894303408292584258328090724141496484460001, has 105 ones
real 0m0.609s
user 0m0.592s
sys 0m0.012s
That may not necessarily be O(n2) but it should be fast enough for your domain constraints.
Of course, given those constraints, you can make it O(1) by using a method I call pre-generation. Simply write a program to generate an array you can plug into your program which contains a suitable function. The following Python program does exactly that, for the powers of eleven from 1 to 100 inclusive:
def mulBy11(num):
# Same length to ease addition.
ten = num + '0'
num = '0' + num
# Standard primary school algorithm for adding.
result = ''
carry = 0
for idx in range(len(ten)-1, -1, -1):
digit = int(ten[idx]) + int(num[idx]) + carry
carry = digit // 10
digit = digit % 10
result = str(digit) + result
if carry == 1:
result = '1' + result
return result
num = '1'
print('int oneCountInPowerOf11(int n) {')
print(' static int numOnes[] = {-1', end='')
for power in range(1,101):
num = mulBy11(num)
count = sum(1 for ch in num if ch == '1')
print(',%d' % count, end='')
print('};')
print(' if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))')
print(' return -1;')
print(' return numOnes[n];')
print('}')
The code output by this script is:
int oneCountInPowerOf11(int n) {
static int numOnes[] = {-1,2,2,2,2,3,3,3,2,1,1,4,2,3,1,4,2,1,4,4,1,5,5,1,5,3,6,6,3,6,3,7,5,7,4,4,2,3,4,4,3,8,4,8,5,5,7,7,7,6,6,9,9,7,12,10,8,6,11,7,6,5,5,7,10,2,8,4,6,8,5,9,13,14,8,10,8,7,11,10,9,8,7,13,8,9,6,8,5,8,7,15,12,9,10,10,12,13,7,11,12};
if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))
return -1;
return numOnes[n];
}
which should be blindingly fast when plugged into a C program. On my system, the Python code itself (when you up the range to 1..1000) runs in about 0.6 seconds and the C code, when compiled, finds the number of ones in 111000 in 0.07 seconds.
Here's my concise solution.
def count1s(N):
# When 11^(N-1) = result, 11^(N) = (10+1) * result = 10*result + result
result = 1
for i in range(N):
result += 10*result
# Now count 1's
count = 0
for ch in str(result):
if ch == '1':
count += 1
return count
En c#:
private static void Main(string[] args)
{
var res = Elevento(1000);
var countOf1 = res.Select(x => int.Parse(x.ToString())).Count(s => s == 1);
Console.WriteLine(countOf1);
}
private static string Elevento(int n)
{
if (n == 0) return "1";
//Otherwise, n <- n * 10 + n, once for each level of power.
var num = "11";
while (n > 1)
{
n--;
// Make multiply by eleven easy.
var ten = num + "0";
num = "0" + num;
//Standard primary school algorithm for adding.
var newnum = "";
var carry = 0;
foreach (var dgt in Enumerable.Range(0, ten.Length).Reverse())
{
var res = int.Parse(ten[dgt].ToString()) + int.Parse(num[dgt].ToString()) + carry;
carry = res/10;
res = res%10;
newnum = res + newnum;
}
if (carry == 1)
newnum = "1" + newnum;
// Prepare for next multiplication.
num = newnum;
}
//There you go, 11^n as a string.
return num;
}

Maximum length of zigzag sequence

A sequence of integers is called zigzag sequence if each of its elements is either strictly less or strictly greater than its neighbors.
Example : The sequence 4 2 3 1 5 3 forms a zigzag, but 7 3 5 5 2 and 3 8 6 4 5 don't.
For a given array of integers we need to find the length of its largest (contiguous) sub-array that forms a zigzag sequence.
Can this be done in O(N) ?
Currently my solution is O(N^2) which is just simply taking every two points and checking each possible sub-array if it satisfies the condition or not.
I claim that the length of overlapping sequence of any 2 zigzag sub-sequences is a most 1
Proof by contradiction:
Assume a_i .. a_j is the longest zigzag sub-sequence, and there is another zigzag sub-sequence b_m...b_n overlapping it.
without losing of generality, let's say the overlapping part is
a_i ... a_k...a_j
--------b_m...b_k'...b_n
a_k = b_m, a_k+1 = b_m+1....a_j = b_k' where k'-m = j-k > 0 (at least 2 elements are overlapping)
Then they can merge to form a longer zig-zag sequence, contradiction.
This means the only case they can be overlapping each other is like
3 5 3 2 3 2 3
3 5 3 and 3 2 3 2 3 is overlapping at 1 element
This can still be solved in O(N) I believe, like just greedily increase the zig-zag length whenever possible. If fails, move iterator 1 element back and treat it as a new zig-zag starting point
Keep record the latest and longest zig-zag length you have found
Walk along the array and see if the current item belongs to (fits a definition of) a zigzag. Remember the las zigzag start, which is either the array's start or the first zigzag element after the most recent non-zigzag element. This and the current item define some zigzag subarray. When it appears longer than the previously found, store the new longest zigzag length. Proceed till the end of array and you should complete the task in O(N).
Sorry I use perl to write this.
#!/usr/bin/perl
#a = ( 5, 4, 2, 3, 1, 5, 3, 7, 3, 5, 5, 2, 3, 8, 6, 4, 5 );
$n = scalar #a;
$best_start = 0;
$best_end = 1;
$best_length = 2;
$start = 0;
$end = 1;
$direction = ($a[0] > $a[1]) ? 1 : ($a[0] < $a[1]) ? -1 : 0;
for($i=2; $i<$n; $i++) {
// a trick here, same value make $new_direction = $direction
$new_direction = ($a[$i-1] > $a[$i]) ? 1 : ($a[$i-1] < $a[$i]) ? -1 : $direction;
print "$a[$i-1] > $a[$i] : direction $new_direction Vs $direction\n";
if ($direction != $new_direction) {
$end = $i;
} else {
$this_length = $end - $start + 1;
if ($this_length > $best_length) {
$best_start = $start;
$best_end = $end;
$best_length = $this_length;
}
$start = $i-1;
$end = $i;
}
$direction = $new_direction;
}
$this_length = $end - $start + 1;
if ($this_length > $best_length) {
$best_start = $start;
$best_end = $end;
$best_length = $this_length;
}
print "BEST $best_start to $best_end length $best_length\n";
for ($i=$best_start; $i <= $best_end; $i++) {
print $a[$i], " ";
}
print "\n";
For each index i, you can find the smallest j such that the subarray with index j,j+1,...,i-1,i is a zigzag. This can be done in two phases:
Find the longest "increasing" zig zag (starts with a[1]>a[0]):
start = 0
increasing[0] = 0
sign = true
for (int i = 1; i < n; i ++)
if ((arr[i] > arr[i-1] && sign) || )arr[i] < arr[i-1] && !sign)) {
increasing[i] = start
sign = !sign
} else if (arr[i-1] < arr[i]) { //increasing and started last element
start = i-1
sign = false
increasing[i] = i-1
} else { //started this element
start = i
sign = true
increasing[i] = i
}
}
Do similarly for "decreasing" zig-zag, and you can find for each index the "earliest" possible start for a zig-zag subarray.
From there, finding the maximal possible zig-zag is easy.
Since all oporations are done in O(n), and you basically do one after the other, this is your complexity.
You can combine the both "increasing" and "decreasing" to one go:
start = 0
maxZigZagStart[0] = 0
sign = true
for (int i = 1; i < n; i ++)
if ((arr[i] > arr[i-1] && sign) || )arr[i] < arr[i-1] && !sign)) {
maxZigZagStart[i] = start
sign = !sign
} else if (arr[i-1] > arr[i]) { //decreasing:
start = i-1
sign = false
maxZigZagStart[i] = i-1
} else if (arr[i-1] < arr[i]) { //increasing:
start = i-1
sign = true
maxZigZagStart[i] = i-1
} else { //equality
start = i
//guess it is increasing, if it is not - will be taken care of next iteration
sign = true
maxZigZagStart[i] = i
}
}
You can see that you can actually even let go of maxZigZagStart aux array and stored local maximal length instead.
A sketch of simple one-pass algorithm. Cmp compares neighbour elements, returning -1, 0, 1 for less, equal and greater cases.
Zigzag ends for cases of Cmp transitions:
0 0
-1 0
1 0
Zigzag ends and new series starts:
0 -1
0 1
-1 -1
1 1
Zigzag series continues for transitions
-1 1
1 -1
Algo:
Start = 0
LastCmp = - Compare(A[i], A[i - 1]) //prepare to use the first element individually
MaxLen = 0
for i = 1 to N - 1 do
Cmp = Compare(A[i], A[i - 1]) //returns -1, 0, 1 for less, equal and greater cases
if Abs(Cmp - LastCmp) <> 2 then
//zigzag condition is violated, series ends, new series starts
MaxLen = Max(MaxLen, i - 1 - Start)
Start = i
//else series continues, nothing to do
LastCmp = Cmp
//check for ending zigzag
if LastCmp <> 0 then
MaxLen = Max(MaxLen, N - Start)
examples of output:
2 6 7 1 7 0 7 3 1 1 7 4
5 (7 1 7 0 7)
8 0 0 3 5 8
1
0 0 7 0
2
1 2 0 7 9
3
8 3 5 2
4
1 3 7 1 6 6
2
1 4 0 6 6 3 4 3 8 0 9 9
5
Lets consider sequence 5 9 3 4 5 4 2 3 6 5 2 1 3 as an example. You have a condition which every internal element of subsequence should satisfy (element is strictly less or strictly greater than its neighbors). Lets compute this condition for every element of the whole sequence:
5 9 3 6 5 7 2 3 6 5 2 1 3
0 1 1 1 1 1 1 0 1 0 0 1 0
The condition is undefined for outermost elements because they have only one neighbor each. But I defined it as 0 for convenience.
The longest subsequence of 1's (9 3 6 5 7 2) is the internal part of the longest zigzag subsequence (5 9 3 6 5 7 2 3). So the algorithm is:
Find the longest subsequence of elements satisfying condition.
Add to it one element to each side.
The first step can be done in O(n) by the following algorithm:
max_length = 0
current_length = 0
for i from 2 to len(a) - 1:
if a[i - 1] < a[i] > a[i + 1] or a[i - 1] > a[i] < a[i + 1]:
current_length += 1
else:
max_length = max(max_length, current_length)
current_length = 0
max_length = max(max_length, current_length)
The only special case is if the sequence total length is 0 or 1. Then the whole sequence would be the longest zigzag subsequence.
#include "iostream"
using namespace std ;
int main(){
int t ; scanf("%d",&t) ;
while(t--){
int n ; scanf("%d",&n) ;
int size1 = 1 , size2 = 1 , seq1 , seq2 , x ;
bool flag1 = true , flag2 = true ;
for(int i=1 ; i<=n ; i++){
scanf("%d",&x) ;
if( i== 1 )seq1 = seq2 = x ;
else {
if( flag1 ){
if( x>seq1){
size1++ ;
seq1 = x ;
flag1 = !flag1 ;
}
else if( x < seq1 )
seq1 = x ;
}
else{
if( x<seq1){
size1++ ;
seq1=x ;
flag1 = !flag1 ;
}
else if( x > seq1 )
seq1 = x ;
}
if( flag2 ){
if( x < seq2 ){
size2++ ;
seq2=x ;
flag2 = !flag2 ;
}
else if( x > seq2 )
seq2 = x ;
}
else {
if( x > seq2 ){
size2++ ;
seq2 = x ;
flag2 = !flag2 ;
}
else if( x < seq2 )
seq2 = x ;
}
}
}
printf("%d\n",max(size1,size2)) ;
}
return 0 ;
}

Can't get factorial function to work

Factorial 1 and 2 works but 3 and 4 do not. I've worked the steps out on paper and do not see why they do not work. Any help is much appreciated.
def factorial(n)
x = 1
y = n
while x < n
n = n * (y-x)
x = x + 1
end
return n
end
puts("factorial(1) == 1: #{factorial(1) == 1}")
puts("factorial(2) == 2: #{factorial(2) == 2}")
puts("factorial(3) == 6: #{factorial(3) == 6}")
puts("factorial(4) == 24: #{factorial(4) == 24}")
The reason it's not working is that after each loop the value of n gets bigger and the condition x < n keeps executing until it hits a point where n becomes zero. If you pass 3 to the function on the third loop you will have:
while x(3) < n(6)
n(6) = n(6) * (y(3) - x(3))
end
therefore n becomes 0 causing the loop to exit on the next round and the return value is obviously 0. To fix it you just need to replace n with y in the while condition:
while x < y
As a side note just another interesting way you could solve the factorial problem using recursion is:
def factorial(n)
n <= 1 ? 1 : n * factorial(n - 1)
end
Try this:
def factorial(n)
if n < 0
return nil
end
x = 1
while n > 0
x = x * n
n -= 1
end
return x
end

Caculating total combinations

I don't know how to go about this programming problem.
Given two integers n and m, how many numbers exist such that all numbers have all digits from 0 to n-1 and the difference between two adjacent digits is exactly 1 and the number of digits in the number is atmost 'm'.
What is the best way to solve this problem? Is there a direct mathematical formula?
Edit: The number cannot start with 0.
Example:
for n = 3 and m = 6 there are 18 such numbers (210, 2101, 21012, 210121 ... etc)
Update (some people have encountered an ambiguity):
All digits from 0 to n-1 must be present.
This Python code computes the answer in O(nm) by keeping track of the numbers ending with a particular digit.
Different arrays (A,B,C,D) are used to track numbers that have hit the maximum or minimum of the range.
n=3
m=6
A=[1]*n # Number of ways of being at digit i and never being to min or max
B=[0]*n # number of ways with minimum being observed
C=[0]*n # number of ways with maximum being observed
D=[0]*n # number of ways with both being observed
A[0]=0 # Cannot start with 0
A[n-1]=0 # Have seen max so this 1 moves from A to C
C[n-1]=1 # Have seen max if start with highest digit
t=0
for k in range(m-1):
A2=[0]*n
B2=[0]*n
C2=[0]*n
D2=[0]*n
for i in range(1,n-1):
A2[i]=A[i+1]+A[i-1]
B2[i]=B[i+1]+B[i-1]
C2[i]=C[i+1]+C[i-1]
D2[i]=D[i+1]+D[i-1]
B2[0]=A[1]+B[1]
C2[n-1]=A[n-2]+C[n-2]
D2[0]=C[1]+D[1]
D2[n-1]=B[n-2]+D[n-2]
A=A2
B=B2
C=C2
D=D2
x=sum(d for d in D2)
t+=x
print t
After doing some more research, I think there may actually be a mathematical approach after all, although the math is advanced for me. Douglas S. Stones pointed me in the direction of Joseph Myers' (2008) article, BMO 2008–2009 Round 1 Problem 1—Generalisation, which derives formulas for calculating the number of zig-zag paths across a rectangular board.
As I understand it, in Anirudh's example, our board would have 6 rows of length 3 (I believe this would mean n=3 and r=6 in the article's terms). We can visualize our board so:
0 1 2 example zig-zag path: 0
0 1 2 1
0 1 2 0
0 1 2 1
0 1 2 2
0 1 2 1
Since Myers' formula m(n,r) would generate the number for all the zig-zag paths, that is, the number of all 6-digit numbers where all adjacent digits are consecutive and digits are chosen from (0,1,2), we would still need to determine and subtract those that begin with zero and those that do not include all digits.
If I understand correctly, we may do this in the following way for our example, although generalizing the concept to arbitrary m and n may prove more complicated:
Let m(3,6) equal the number of 6-digit numbers where all adjacent digits
are consecutive and digits are chosen from (0,1,2). According to Myers,
m(3,r) is given by formula and also equals OEIS sequence A029744 at
index r+2, so we have
m(3,6) = 16
How many of these numbers start with zero? Myers describes c(n,r) as the
number of zig-zag paths whose colour is that of the square in the top
right corner of the board. In our case, c(3,6) would include the total
for starting-digit 0 as well as starting-digit 2. He gives c(3,2r) as 2^r,
so we have
c(3,6) = 8. For starting-digit 0 only, we divide by two to get 4.
Now we need to obtain only those numbers that include all the digits in
the range, but how? We can do this be subtracting m(n-1,r) from m(n,r).
In our case, we have all the m(2,6) that would include only 0's and 1's,
and all the m(2,6) that would include 1's and 2's. Myers gives
m(2,anything) as 2, so we have
2*m(2,6) = 2*2 = 4
But we must remember that one of the zero-starting numbers is included
in our total for 2*m(2,6), namely 010101. So all together we have
m(3,6) - c(3,6)/2 - 4 + 1
= 16 - 4 - 4 + 1
= 9
To complete our example, we must follow a similar process for m(3,5),
m(3,4) and m(3,3). Since it's late here, I might follow up tomorrow...
One approach could be to program it recursively, calling the function to add as well as subtract from the last digit.
Haskell code:
import Data.List (sort,nub)
f n m = concatMap (combs n) [n..m]
combs n m = concatMap (\x -> combs' 1 [x]) [1..n - 1] where
combs' count result
| count == m = if test then [concatMap show result] else []
| otherwise = combs' (count + 1) (result ++ [r + 1])
++ combs' (count + 1) (result ++ [r - 1])
where r = last result
test = (nub . sort $ result) == [0..n - 1]
Output:
*Main> f 3 6
["210","1210","1012","2101","12101","10121","21210","21012"
,"21010","121210","121012","121010","101212","101210","101012"
,"212101","210121","210101"]
In response to Anirudh Rayabharam's comment, I hope the following code will be more 'pseudocode' like. When the total number of digits reaches m, the function g outputs 1 if the solution has hashed all [0..n-1], and 0 if not. The function f accumulates the results for g for starting digits [1..n-1] and total number of digits [n..m].
Haskell code:
import qualified Data.Set as S
g :: Int -> Int -> Int -> Int -> (S.Set Int, Int) -> Int
g n m digitCount lastDigit (hash,hashCount)
| digitCount == m = if test then 1 else 0
| otherwise =
if lastDigit == 0
then g n m d' (lastDigit + 1) (hash'',hashCount')
else if lastDigit == n - 1
then g n m d' (lastDigit - 1) (hash'',hashCount')
else g n m d' (lastDigit + 1) (hash'',hashCount')
+ g n m d' (lastDigit - 1) (hash'',hashCount')
where test = hashCount' == n
d' = digitCount + 1
hash'' = if test then S.empty else hash'
(hash',hashCount')
| hashCount == n = (S.empty,hashCount)
| S.member lastDigit hash = (hash,hashCount)
| otherwise = (S.insert lastDigit hash,hashCount + 1)
f n m = foldr forEachNumDigits 0 [n..m] where
forEachNumDigits numDigits accumulator =
accumulator + foldr forEachStartingDigit 0 [1..n - 1] where
forEachStartingDigit startingDigit accumulator' =
accumulator' + g n numDigits 1 startingDigit (S.empty,0)
Output:
*Main> f 3 6
18
(0.01 secs, 571980 bytes)
*Main> f 4 20
62784
(1.23 secs, 97795656 bytes)
*Main> f 4 25
762465
(11.73 secs, 1068373268 bytes)
model your problem as 2 superimposed lattices in 2 dimensions, specifically as pairs (i,j) interconnected with oriented edges ((i0,j0),(i1,j1)) where i1 = i0 + 1, |j1 - j0| = 1, modified as follows:
dropping all pairs (i,j) with j > 9 and its incident edges
dropping all pairs (i,j) with i > m-1 and its incident edges
dropping edge ((0,0), (1,1))
this construction results in a structure like in this diagram:
:
the requested numbers map to paths in the lattice starting at one of the green elements ((0,j), j=1..min(n-1,9)) that contain at least one pink and one red element ((i,0), i=1..m-1, (i,n-1), i=0..m-1 ). to see this, identify the i-th digit j of a given number with point (i,j). including pink and red elements ('extremal digits') guarantee that all available diguts are represented in the number.
Analysis
for convenience, let q1, q2 denote the position-1.
let q1 be the position of a number's first digit being either 0 or min(n-1,9).
let q2 be the position of a number's first 0 if the digit at position q1 is min(n-1,9) and vv.
case 1: first extremal digit is 0
the number of valid prefixes containing no 0 can be expressed as sum_{k=1..min(n-1,9)} (paths_to_0(k,1,q1), the function paths_to_0 being recursively defined as
paths_to_0(0,q1-1,q1) = 0;
paths_to_0(1,q1-1,q1) = 1;
paths_to_0(digit,i,q1) = 0; if q1-i < digit;
paths_to_0(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before position q2,
// x > min(n-1,9) not at all
paths_to_0(x,_,_) = 0; if x <= 0;
// x=0 mustn't occur before position q1,
// x < 0 not at all
and else paths_to_0(digit,i,q1) =
paths_to_0(digit+1,i+1,q1) + paths_to_0(digit-1,i+1,q1);
similarly we have
paths_to_max(min(n-1,9),q2-1,q2) = 0;
paths_to_max(min(n-2,8),q2-1,q2) = 1;
paths_to_max(digit,i,q2) = 0 if q2-i < n-1;
paths_to_max(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before
// position q2,
// x > min(n-1,9) not at all
paths_to_max(x,_,_) = 0; if x < 0;
and else paths_to_max(digit,q1,q2) =
paths_max(digit+1,q1+1,q2) + paths_to_max(digit-1,q1+1,q2);
and finally
paths_suffix(digit,length-1,length) = 2; if digit > 0 and digit < min(n-1,9)
paths_suffix(digit,length-1,length) = 1; if digit = 0 or digit = min(n-1,9)
paths_suffix(digit,k,length) = 0; if length > m-1
or length < q2
or k > length
paths_suffix(digit,k,0) = 1; // the empty path
and else paths_suffix(digit,k,length) =
paths_suffix(digit+1,k+1,length) + paths_suffix(digit-1,k+1,length);
... for a grand total of
number_count_case_1(n, m) =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
case 2: first extremal digit is min(n-1,9)
case 2.1: initial digit is not min(n-1,9)
this is symmetrical to case 1 with all digits d replaced by min(n,10) - d. as the lattice structure is symmetrical, this means number_count_case_2_1 = number_count_case_1.
case 2.2: initial digit is min(n-1,9)
note that q1 is 1 and the second digit must be min(n-2,8).
thus
number_count_case_2_2 (n, m) =
sum_{q2=1..m-2, l_suffix=0..m-2-q2} (
paths_to_max(1,1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
so the grand grand total will be
number_count ( n, m ) = 2 * number_count_case_1 (n, m) + number_count_case_2_2 (n, m);
Code
i don't know whether a closed expression for number_count exists, but the following perl code will compute it (the code is but a proof of concept as it does not use memoization techniques to avoid recomputing results already obtained):
use strict;
use warnings;
my ($n, $m) = ( 5, 7 ); # for example
$n = ($n > 10) ? 10 : $n; # cutoff
sub min
sub paths_to_0 ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == 0) && ($at == $until - 1)) { return 0; }
if (($d == 1) && ($at == $until - 1)) { return 1; }
if ($until - $at < $d) { return 0; }
if (($d <= 0) || ($d >= $n))) { return 0; }
return paths_to_0($d+1, $at+1, $until) + paths_to_0($d-1, $at+1, $until);
} # paths_to_0
sub paths_to_max ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == $n-1) && ($at == $until - 1)) { return 0; }
if (($d == $n-2) && ($at == $until - 1)) { return 1; }
if ($until - $at < $n-1) { return 0; }
if (($d < 0) || ($d >= $n-1)) { return 0; }
return paths_to_max($d+1, $at+1, $until) + paths_to_max($d-1, $at+1, $until);
} # paths_to_max
sub paths_suffix ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d < $n-1) && ($d > 0) && ($at == $until - 1)) { return 2; }
if ((($d == $n-1) && ($d == 0)) && ($at == $until - 1)) { return 1; }
if (($until > $m-1) || ($at > $until)) { return 0; }
if ($until == 0) { return 1; }
return paths_suffix($d+1, $at+1, $until) + paths_suffix($d-1, $at+1, $until);
} # paths_suffix
#
# main
#
number_count =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
my ($number_count, $number_count_2_2) = (0, 0);
my ($first, $q1, i, $l_suffix);
for ($first = 1; $first <= $n-1; $first++) {
for ($q1 = 1; $q1 <= $m-1 - ($n-1); $q1++) {
for ($q2 = $q1; $q2 <= $m-1; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-1 - $q2; $l_suffix++) {
$number_count =
$number_count
+ paths_to_0($first,1,$q1)
+ paths_to_max(0,$q1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
}
}
#
# case 2.2
#
for ($q2 = 1; $q2 <= $m-2; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-2 - $q2; $l_suffix++) {
$number_count_2_2 =
$number_count_2_2
+ paths_to_max(1,1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
$number_count = 2 * $number_count + number_count_2_2;

Number of 1s in the two's complement binary representations of integers in a range

This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):
One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1
Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37
Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99
I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119
I would appreciate it if someone could explain how this relation is derived!
Well, it's not that complicated...
The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.
The function has three cases:
a == 0 -> returns 0. Obviously.
a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.
The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?
Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):
000 (aka. 0)
010 (aka. 2)
100 (aka. 4)
and
001 (aka 1)
011 (aka 3)
101 (aka 5)
Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.
All but the last bits looks like this:
00
01
10
...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)
The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.
So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).
This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.
Cast the array into a series of integers. Then for each integer do:
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
Also this is portable, unlike __builtin_popcount
See here: How to count the number of set bits in a 32-bit integer?
when a is positive, the better explanation was already been posted.
If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.
So, in a better way,
long long solve(int a) {
if (a >= 0){
if (a == 0) return 0;
else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
}else {
a++;
return ((long long)(-a) + 1) * 32 - solve(-a);
}
}
In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.
For example:
bitsum(0) is 0
bitsum(1) is 1
bitsum(2) is 1
bitsum(3) is 4
..etc
10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000 2^i
00000000000000000000000000001001 (2^i)+1
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE
The formula of the bitsum is:
bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )
Note that x - 2^i = x & (2^i)-1
Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:
Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.
The number of zeros in a negative number x is equal to the number of ones in -x - 1.
public class TwosComplement {
//t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
private static long[] t = new long[32];
static {
t[0] = 0;
t[1] = 1;
int p = 2;
for (int i = 2; i < 32; i++) {
t[i] = 2*t[i-1] + p;
p = p << 1;
}
}
//count the bits between x and y inclusive
public static long bitsum(int x, int y) {
if (y > x && x > 0) {
return bitsum(y) - bitsum(x-1);
}
else if (y >= 0 && x == 0) {
return bitsum(y);
}
else if (y == x) {
return Integer.bitCount(y);
}
else if (x < 0 && y == 0) {
return bitsum(x);
} else if (x < 0 && x < y && y < 0 ) {
return bitsum(x) - bitsum(y+1);
} else if (x < 0 && x < y && 0 < y) {
return bitsum(x) + bitsum(y);
}
throw new RuntimeException(x + " " + y);
}
//count the bits between 0 and x
public static long bitsum(int x) {
if (x == 0) return 0;
if (x < 0) {
if (x == -1) {
return 32;
} else {
long y = -(long)x;
return 32 * y - bitsum((int)(y - 1));
}
} else {
int n = x;
int sum = 0; //x & (2^i)-1
int j = 0;
int i = 1; //i = 2^j
int lsb = n & 1; //least significant bit
n = n >>> 1;
while (n != 0) {
sum += lsb * i;
lsb = n & 1;
n = n >>> 1;
i = i << 1;
j++;
}
long tot = t[j] + 1 + sum + bitsum(sum);
return tot;
}
}
}

Resources