How to search exact word in a test in Elastic Search - elasticsearch

Let's say I have two texts:
Text 1 - "The fox has been living in the wood cabin for days."
Text 2 - "The wooden hammer is a dangerous weapon."
And I would like to search for the word "wood", without it matching me "wooden hammer". How would I do that in Elastic Search or nest?

Term query is used for exact matches search. However it's not recommended to use it against text fields, the following quote from term query documentation:
To better search text fields, the match query also analyzes your
provided search term before performing a search. This means the match
query can search text fields for analyzed tokens rather than an exact
term.
The term query does not analyze the search term. The term query only
searches for the exact term you provide. This means the term query may
return poor or no results when searching text fields.
The problem with text exact matches, as described in the Term query documentation:
By default, Elasticsearch changes the values of text fields as part of
analysis. This can make finding exact matches for text field values
difficult.
So, the documents data is modified (i.e., analyzed) before indexing. This depends on the index mapping definition for each field, defaults to the default index analyzer, or the standard analyzer.
But the default standard analyzer will not change the token "Wooden" to "Wood", this might happen if you used stemming for this field.
This means, if you don't use a different analyzer or stemming, querying with "Wood" shouldn't match "Wooden" token.
To summarize: Indexed data is modified/analyzed before indexing (based on the field mapping definition). Match query analyze the search query, while Term query doesn't analyze the search query. So you have to properly chose the field mapping and the search query to better suit your use case
For some use cases, like storing email addressed, phone numbers or keyword fields that always have the same value, consider using the Keyword type, which is suitable for exact matches in these use cases. However, ES recommends:
Avoid using keyword fields for full-text search. Use the text field
type instead.
So for better visibility and practical solution for your use case, it's better to elaborate more the field mapping you use and what you want to achieve.

Related

How to value exact match higher than term frequency in elasticsearch?

I have an index that has several title fields.
main_title,
sub_titles,
preferred_titles
etc.
These texts fields also have a suggest field each where I run a custom analyzer that uses edge-n-gram tokenizer so we can search as we type.
I would like to value exact match over term frequency. And exact match in main_title is worth more than exact match in preferred_titles.
Anyone know how I can achieve this? Thanks in advance.
I have tried a bool_query with multi_match_query in the must clause. The multi_match is crossfields with no fields attached with the operator 'and'.
I have both the text fields and the suggest fields in the should cluase. Each text field is in a match_query with a boost and the operator 'and'. Each suggest field is in a match_phrase_query with a boost and the operator 'and'. The issue is that several boosts are added on top of the scores and I end up with very inflated scores.

ElasticSearch: term vs match query decision

Being new to ElasticSearch, need help in my understanding.
What I read about term vs match query is that term query is used for exact match and match query is used when we are searching for a term and want result based on a relevancy score.
But if we already defined a mapping for a field as a keyword, why anyone has to decide upon between term vs match, wouldn't it be always a term query in case mapping is defined as a keyword?
What are the use cases where someone will make a match query on the keyword mapping field?
The same confusion is vice versa.
A text field will be analyzed (transformed, split) to generate N tokens, and the keyword itself will become a token with no transformations. At the end, you have N tokens referencing a document.
Then.
By doing a match query, you will treat your query as a text as well, by analyzing it before performing the matching (transforming it), and the term will not.
You can create a field with a term mapping, but then perform a match query on top of it (for example if you want to be case insensitive), and you can create a text mapping for a n-gram and perform a term query to match exactly what you're asking for.

Elasticsearch wildcard query rewrite parameter not working with new wildcard field type?

The Wildcard Query offers a rewrite parameter to influence how Lucene calculates the relevance scores. On keyword fields this works as expected but it does not seem to work with the new wildcard field type which belongs to the keyword family. Is this an expected behavior or a bug?
As confirmed by Elastic staff, the rewrite parameter is unsupported. Unlike keyword fields, the wildcard field doesn't have a single indexed token for each term so it has no pre-built count for the document frequency of whole values. Instead it uses an ngram index which obviously has different frequencies for the multiple terms a search string can be broken down into.

Elastic search giving strange results

I am following this tutorial on elastic search.
Two employees have 'about' value as:
"about": "I love to go rock climbing"
"about": "I like to collect rock albums"
I run following query:
GET /megacorp/employee/_search {"query":{"match":{"about":"rock coll"}}}
Both above entries are returned, but surprisingly wit same score:
"_score": 0.2876821
Shouldn't the second one must have higher score as it has 'about' value containing both 'rock' and 'coll' while first one only contains 'rock'?
That totally depends on what analyzer you are using. if you are using standard or english analyzer this result is correct. I recommend you to spend some time working with elasticsearch's Analyze API to get familiar how each analyzer affect your text.
By the way, if you want second document to have higher score, take a look at Partial matching.
When we search on a full-text field, we need to pass the query string through the same analysis process as we have when we index a document, to ensure that we are searching for terms in the same form as those that exist in the index.
Analysis process usually consists of normalization and tokenization (the string is tokenized into individual terms by a tokenizer).
As for match Query:
If you run a match query against a full-text field, it will analyze the query string by using the correct analyzer for that field before executing the search. It just looks for the words that are specified.
So, in your match query Elasticsearch will look for occurrences of the whole separate words: rock or/and coll.
Your 2nd document doesn't contain a separate word coll but was matched by the word rock.
Conclusion: the 2 documents are equivalent in their _score value (they were matched by the same word rock)
Elasticsearch analyzes each text field before storing it. The default analyzer (standard analyzer) splits the text based on whitespaces and lowercases it. The output of analysis process is a list of tokens which are used to match your query tokens. If any of the tokens match exactly the relevant document is returned. That's being said, your second document doesn't contain the token col and that's why you are having the same score for both documents.
Even if you build your custom analyzer and use stemming, the word collect won't be stemmed as coll.
You can build custom analyzers in which you can specify that tokens should be of length 1 character, then Elasticsearch will consider each single character as a token and you can search for the existence of any character in your documents.

ElasticSearch - Simultaneous (case sensitive) Term and (case insensitive) Match search on same property

How can one search trough the same property with both a case-sensitive Term query and a case insensitive Match query?
We have a Tags property that for several reasons we need to make case-sensitive. So we would like to search trough in this manner using relevance boosting to put the exact Term matches at the top while the potentially less relevant results with different casing lower in the results.
I know that the lowercase filter for index analysis allows for case-insensitive searching using Match queries, but as I mentioned we need to keep the Tags case-sensitive.
For now we use a keyword analyzer without lowercase filter on the tags to provide exact Term matches that are case-sensitive. Adding a Match query to that is useless because it is comparing against cased tokens.
Is there a way to achieve this?

Resources