I am very new here and to coding in general so apologies in advance for any mistakes in my questions and code.
I am currently working on this problem:
Primary U.S. interstate highways are numbered 1-99. Odd numbers (like the 5 or 95) go north/south, and evens (like the 10 or 90) go east/west. Auxiliary highways are numbered 100-999, and service the primary highway indicated by the rightmost two digits. Thus, I-405 services I-5, and I-290 services I-90. Note: 200 is not a valid auxiliary highway because 00 is not a valid primary highway number. Given a highway number, indicate whether it is a primary or auxiliary highway. If auxiliary, indicate what primary highway it serves. Also indicate if the (primary) highway runs north/south or east/west.
EX: if the input is:
290
the output is:
I-290 is auxiliary, serving I-90, going east/west.
My code is currently as shown:
#include iostream
using namespace std;
int main()
{
int A; // A is the value for the Auxiliary highway
// This message will display when the code is run//
cout << "Please enter the three digit Auxiliary highway number" << endl;
cin >> A; // User inputs the Auxiliary highway number
do A-= 100;
while (A>100);
I am not sure what I am doing but I have no clue how to go about this so I am first starting with the second part(trying to make the code understand that if I am at the auxiliary number of I-290 then I would be servicing I-90). I tried this by trying to subtract 100 when the value for A was over 100 which would in theory leave me with a 2-digit number that would be the interstate highway number. I know that an error will happen when a number that ends in two zeros is entered so I planned to just use an if-else statement at the beginning of the code that would essentially just prevent this but, again, no clue how to do it but I think it may work
The first thing you want to do with a problem like this is think through it step by step. How do you solve this problem as a human with a pen and paper if you are given a highway number?
First you need a piece of code to tell you if the number is primary, so the code needs to tell you if the number is less than or equal to 99, if yes, then it is primary, if no, then it is auxillary.
In the case that is is not primary, you need a piece of code to tell you what the last 2 digits are of the number. The easiest way to do this is to convert the number to a string and remove the first character, and then convert back into an integer.
Lastly, you need a piece of code that tells you whether the primary road runs north/south, or east/west. So you need to check whether the number is even or odd. The easiest way to do this is to use the modulo function (x%2==y). If y is equal to zero, then you know the road runs east/west, otherwise it runs north south.
Hopefully you can see that the problem is a series of little problems that you can solve 1 by 1 to get the full solution. Problems become a lot less scary then.
I'm afraid I don't know C++ that well to give you a coded solution, but hopefully you can figure it out from here. It will be good practice for you to work through it because a lot of programming is about banging your head against a wall until you figure out the solution.
There are many ways to solve this problem. Here is one:
first, fix your header
#include <iostream>
accept user "highwayNumber"
cin >> highwayNumber;
write an if loop to determine highway properties:
if(highwayNumber > 0 && highwayNumber < 100){
highwayType = "primary";
//determine if highwayNumber is even or odd
if(highwayNumber % 2 == 0){
primaryType = “east-west”;
} else {
primaryType = “north-south”;
}
} else if (highwayNumber >= 100 && highwayNumber <= 999){
highwayType = “auxiliary”;
//determine what primaryHighway the auxiliaryHighway services
auxiliaryServiced = highwayNumber % 100;
} else {
cout << "invalid highway number” << end;
}
print output to user
Related
Im Vladimir Grygov and I have very serious problem.
In our work we now work on really hard algorithm, which using limits to cout the specific result.
Alghoritm is veary heavy and after two months of work we found really serious problem. Our team of analytics told me to solve this problem.
For the first I tell you the problem, which must be solve by limits:
We have veary much datas in the database. Ec INT_MAX.
For each this data we must sort them by the alghoritm to two groups and one must have red color interpretation and second must be blue.
The algorithm counts with ID field, which is some AUTO_INCREMENT value. For this value we check, if this value is eequal to 1. If yeas, this is red color data. If it is zero, this is blue data. If it is more. Then one, you must substract number 2 and check again.
We choose after big brainstorming method by for loop, but this was really slow for bigger number. So we wanted to remove cycle, and my colegue told me use recursion.
I did so. But... after implementation I had got unknown error for big integers and for example long long int and after him was wrote that: "Stack Overflow Exception"
From this I decided to write here, because IDE told me name of this page, so I think that here may be Answer.
Thank You so much. All of you.
After your comment I think I can solve it:
public bool isRed(long long val) {
if (val==1)
{return true; }
else if (val==0)
{ return false; }
else { return isRed(val - 2); }
}
Any halfway decent value for val will easily break this. There is just no way this could have worked with recursion. No CPU will support a stacktrace close to half long.MaxInt!
However there are some general issues with your code:
Right now this is the most needlesly complex "is the number even" check ever. Most people use Modulo to figure that out. if(val%2 == 0) return false; else return true;
the type long long seems off. Did you repeat the type? Did you mean to use BigInteger?
If the value you substract by is not static and it is not solveable via modulo, then there is no reason not to use a loop here.
public bool isRed (long long val){
for(;val >= 0; val = val -2){
if(value == 0)
return false;
}
return true;
}
it run corectly but it should have around 500 matches but it only has around 50 and I dont know why!
This is a probelm for my comsci class that I am having isues with
we had to make a function that checks a list for duplication I got that part but then we had to apply it to the birthday paradox( more info here http://en.wikipedia.org/wiki/Birthday_problem) thats where I am runing into problem because my teacher said that the total number of times should be around 500 or 50% but for me its only going around 50-70 times or 5%
duplicateNumber=0
import random
def has_duplicates(listToCheck):
for i in listToCheck:
x=listToCheck.index(i)
del listToCheck[x]
if i in listToCheck:
return True
else:
return False
listA=[1,2,3,4]
listB=[1,2,3,1]
#print has_duplicates(listA)
#print has_duplicates(listB)
for i in range(0,1000):
birthdayList=[]
for i in range(0,23):
birthday=random.randint(1,365)
birthdayList.append(birthday)
x= has_duplicates(birthdayList)
if x==True:
duplicateNumber+=1
else:
pass
print "after 1000 simulations with 23 students there were", duplicateNumber,"simulations with atleast one match. The approximate probibilatiy is", round(((duplicateNumber/1000)*100),3),"%"
This code gave me a result in line with what you were expecting:
import random
duplicateNumber=0
def has_duplicates(listToCheck):
number_set = set(listToCheck)
if len(number_set) is not len(listToCheck):
return True
else:
return False
for i in range(0,1000):
birthdayList=[]
for j in range(0,23):
birthday=random.randint(1,365)
birthdayList.append(birthday)
x = has_duplicates(birthdayList)
if x==True:
duplicateNumber+=1
print "after 1000 simulations with 23 students there were", duplicateNumber,"simulations with atleast one match. The approximate probibilatiy is", round(((duplicateNumber/1000.0)*100),3),"%"
The first change I made was tidying up the indices you were using in those nested for loops. You'll see I changed the second one to j, as they were previously bot i.
The big one, though, was to the has_duplicates function. The basic principle here is that creating a set out of the incoming list gets the unique values in the list. By comparing the number of items in the number_set to the number in listToCheck we can judge whether there are any duplicates or not.
Here is what you are looking for. As this is not standard practice (to just throw code at a new user), I apologize if this offends any other users. However, I believe showing the OP a correct way to write a program should be could all do us a favor if said user keeps the lack of documentation further on in his career.
Thus, please take a careful look at the code, and fill in the blanks. Look up the python doumentation (as dry as it is), and try to understand the things that you don't get right away. Even if you understand something just by the name, it would still be wise to see what is actually happening when some built-in method is being used.
Last, but not least, take a look at this code, and take a look at your code. Note the differences, and keep trying to write your code from scratch (without looking at mine), and if it messes up, see where you went wrong, and start over. This sort of practice is key if you wish to succeed later on in programming!
def same_birthdays():
import random
'''
This is a program that does ________. It is really important
that we tell readers of this code what it does, so that the
reader doesn't have to piece all of the puzzles together,
while the key is right there, in the mind of the programmer.
'''
count = 0
#Count is going to store the number of times that we have the same birthdays
timesToRun = 1000 #timesToRun should probably be in a parameter
#timesToRun is clearly defined in its name as well. Further elaboration
#on its purpose is not necessary.
for i in range(0,timesToRun):
birthdayList = []
for j in range(0,23):
random_birthday = random.randint(1,365)
birthdayList.append(random_birthday)
birthdayList = sorted(birthdayList) #sorting for easier matching
#If we really want to, we could provide a check in the above nester
#for loop to check right away if there is a duplicate.
#But again, we are here
for j in range(0, len(birthdayList)-1):
if (birthdayList[j] == birthdayList[j+1]):
count+=1
break #leaving this nested for-loop
return count
If you wish to find the percent, then get rid of the above return statement and add:
return (count/timesToRun)
Here's a solution that doesn't use set(). It also takes a different approach with the array so that each index represents a day of the year. I also removed the hasDuplicate() function.
import random
sim_total=0
birthdayList=[]
#initialize an array of 0's representing each calendar day
for i in range(365):
birthdayList.append(0)
for i in range(0,1000):
first_dup=True
for n in range(365):
birthdayList[n]=0
for b in range(0, 23):
r = random.randint(0,364)
birthdayList[r]+=1
if (birthdayList[r] > 1) and (first_dup==True):
sim_total+=1
first_dup=False
avg = float(sim_total) / 1000 * 100
print "after 1000 simulations with 23 students there were", sim_total,"simulations with atleast one duplicate. The approximate problibility is", round(avg,3),"%"
I have a function like this:
float_as_thousands_str_with_precision(value, precision)
If I use it like this:
float_as_thousands_str_with_precision(volts, 1)
float_as_thousands_str_with_precision(amps, 2)
float_as_thousands_str_with_precision(watts, 2)
Are those 1/2s magic numbers?
Yes, they are magic numbers. It's obvious that the numbers 1 and 2 specify precision in the code sample but not why. Why do you need amps and watts to be more precise than volts at that point?
Also, avoiding magic numbers allows you to centralize code changes rather than having to scour the code when for the literal number 2 when your precision needs to change.
I would propose something like:
HIGH_PRECISION = 3;
MED_PRECISION = 2;
LOW_PRECISION = 1;
And your client code would look like:
float_as_thousands_str_with_precision(volts, LOW_PRECISION )
float_as_thousands_str_with_precision(amps, MED_PRECISION )
float_as_thousands_str_with_precision(watts, MED_PRECISION )
Then, if in the future you do something like this:
HIGH_PRECISION = 6;
MED_PRECISION = 4;
LOW_PRECISION = 2;
All you do is change the constants...
But to try and answer the question in the OP title:
IMO the only numbers that can truly be used and not be considered "magic" are -1, 0 and 1 when used in iteration, testing lengths and sizes and many mathematical operations. Some examples where using constants would actually obfuscate code:
for (int i=0; i<someCollection.Length; i++) {...}
if (someCollection.Length == 0) {...}
if (someCollection.Length < 1) {...}
int MyRidiculousSignReversalFunction(int i) {return i * -1;}
Those are all pretty obvious examples. E.g. start and the first element and increment by one, testing to see whether a collection is empty and sign reversal... ridiculous but works as an example. Now replace all of the -1, 0 and 1 values with 2:
for (int i=2; i<50; i+=2) {...}
if (someCollection.Length == 2) {...}
if (someCollection.Length < 2) {...}
int MyRidiculousDoublinglFunction(int i) {return i * 2;}
Now you have start asking yourself: Why am I starting iteration on the 3rd element and checking every other? And what's so special about the number 50? What's so special about a collection with two elements? the doubler example actually makes sense here but you can see that the non -1, 0, 1 values of 2 and 50 immediately become magic because there's obviously something special in what they're doing and we have no idea why.
No, they aren't.
A magic number in that context would be a number that has an unexplained meaning. In your case, it specifies the precision, which clearly visible.
A magic number would be something like:
int calculateFoo(int input)
{
return 0x3557 * input;
}
You should be aware that the phrase "magic number" has multiple meanings. In this case, it specifies a number in source code, that is unexplainable by the surroundings. There are other cases where the phrase is used, for example in a file header, identifying it as a file of a certain type.
A literal numeral IS NOT a magic number when:
it is used one time, in one place, with very clear purpose based on its context
it is used with such common frequency and within such a limited context as to be widely accepted as not magic (e.g. the +1 or -1 in loops that people so frequently accept as being not magic).
some people accept the +1 of a zero offset as not magic. I do not. When I see variable + 1 I still want to know why, and ZERO_OFFSET cannot be mistaken.
As for the example scenario of:
float_as_thousands_str_with_precision(volts, 1)
And the proposed
float_as_thousands_str_with_precision(volts, HIGH_PRECISION)
The 1 is magic if that function for volts with 1 is going to be used repeatedly for the same purpose. Then sure, it's "magic" but not because the meaning is unclear, but because you simply have multiple occurences.
Paul's answer focused on the "unexplained meaning" part thinking HIGH_PRECISION = 3 explained the purpose. IMO, HIGH_PRECISION offers no more explanation or value than something like PRECISION_THREE or THREE or 3. Of course 3 is higher than 1, but it still doesn't explain WHY higher precision was needed, or why there's a difference in precision. The numerals offer every bit as much intent and clarity as the proposed labels.
Why is there a need for varying precision in the first place? As an engineering guy, I can assume there's three possible reasons: (a) a true engineering justification that the measurement itself is only valid to X precision, so therefore the display shoulld reflect that, or (b) there's only enough display space for X precision, or (c) the viewer won't care about anything higher that X precision even if its available.
Those are complex reasons difficult to capture in a constant label, and are probbaly better served by a comment (to explain why something is beng done).
IF the use of those functions were in one place, and one place only, I would not consider the numerals magic. The intent is clear.
For reference:
A literal numeral IS magic when
"Unique values with unexplained meaning or multiple occurrences which
could (preferably) be replaced with named constants." http://en.wikipedia.org/wiki/Magic_number_%28programming%29 (3rd bullet)
I'm thinking about an algorithm that will create X most unique concatenations of Y parts, where each part can be one of several items. For example 3 parts:
part #1: 0,1,2
part #2: a,b,c
part #3: x,y,z
And the (random, one case of some possibilities) result of 5 concatenations:
0ax
1by
2cz
0bz (note that '0by' would be "less unique " than '0bz' because 'by' already was)
2ay (note that 'a' didn't after '2' jet, and 'y' didn't after 'a' jet)
Simple BAD results for next concatenation:
1cy ('c' wasn't after 1, 'y' wasn't after 'c', BUT '1'-'y' already was as first-last
Simple GOOD next result would be:
0cy ('c' wasn't after '0', 'y' wasn't after 'c', and '0'-'y' wasn't as first-last part)
1az
1cx
I know that this solution limit possible results, but when all full unique possibilities will gone, algorithm should continue and try to keep most avaible uniqueness (repeating as few as possible).
Consider real example:
Boy/Girl/Martin
bought/stole/get
bottle/milk/water
And I want results like:
Boy get milk
Martin stole bottle
Girl bought water
Boy bought bottle (not water, because of 'bought+water' and not milk, because of 'Boy+milk')
Maybe start with a tree of all combinations, but how to select most unique trees first?
Edit: According to this sample data, we can see, that creation of fully unique results for 4 words * 3 possibilities, provide us only 3 results:
Martin stole a bootle
Boy bought an milk
He get hard water
But, there can be more results requested. So, 4. result should be most-available-uniqueness like Martin bought hard milk, not Martin stole a water
Edit: Some start for a solution ?
Imagine each part as a barrel, wich can be rotated, and last item goes as first when rotates down, first goes as last when rotating up. Now, set barells like this:
Martin|stole |a |bootle
Boy |bought|an |milk
He |get |hard|water
Now, write sentences as We see, and rotate first barell UP once, second twice, third three and so on. We get sentences (note that third barell did one full rotation):
Boy |get |a |milk
He |stole |an |water
Martin|bought|hard|bootle
And we get next solutions. We can do process one more time to get more solutions:
He |bought|a |water
Martin|get |an |bootle
Boy |stole |hard|milk
The problem is that first barrel will be connected with last, because rotating parallel.
I'm wondering if that will be more uniqe if i rotate last barrel one more time in last solution (but the i provide other connections like an-water - but this will be repeated only 2 times, not 3 times like now). Don't know that "barrels" are good way ofthinking here.
I think that we should first found a definition for uniqueness
For example, what is changing uniqueness to drop ? If we use word that was already used ? Do repeating 2 words close to each other is less uniqe that repeating a word in some gap of other words ? So, this problem can be subjective.
But I think that in lot of sequences, each word should be used similar times (like selecting word randomly and removing from a set, and after getting all words refresh all options that they can be obtained next time) - this is easy to do.
But, even if we get each words similar number od times, we should do something to do-not-repeat-connections between words. I think, that more uniqe is repeating words far from each other, not next to each other.
Anytime you need a new concatenation, just generate a completely random one, calculate it's fitness, and then either accept that concatenation or reject it (probabilistically, that is).
const C = 1.0
function CreateGoodConcatenation()
{
for (rejectionCount = 0; ; rejectionCount++)
{
candidate = CreateRandomConcatination()
fitness = CalculateFitness(candidate) // returns 0 < fitness <= 1
r = GetRand(zero to one)
adjusted_r = Math.pow(r, C * rejectionCount + 1) // bias toward acceptability as rejectionCount increases
if (adjusted_r < fitness)
{
return candidate
}
}
}
CalculateFitness should never return zero. If it does, you might find yourself in an infinite loop.
As you increase C, less ideal concatenations are accepted more readily.
As you decrease C, you face increased iterations for each call to CreateGoodConcatenation (plus less entropy in the result)
I work in a consulting organization and am most of the time at customer locations. Because of that I rarely meet my colleagues. To get to know each other better we are going to arrange a dinner party. There will be many small tables so people can have a chat. In order to talk to as many different people as possible during the party, everybody has to switch tables at some interval, say every hour.
How do I write a program that creates the table switching schedule? Just to give you some numbers; in this case there will be around 40 people and there can be at most 8 people at each table. But, the algorithm needs to be generic of course
heres an idea
first work from the perspective of the first person .. lets call him X
X has to meet all the other people in the room, so we should divide the remaining people into n groups ( where n = #_of_people/capacity_per_table ) and make him sit with one of these groups per iteration
Now that X has been taken care of, we will consider the next person Y
WLOG Y be a person X had to sit with in the first iteration itself.. so we already know Y's table group for that time-frame.. we should then divide the remaining people into groups such that each group sits with Y for every consecutive iteration.. and for each iteration X's group and Y's group have no person in common
.. I guess, if you keep doing something like this, you will get an optimal solution (if one exists)
Alternatively you could crowd source the problem by giving each person a card where they could write down the names of all the people they got dine with.. and at the end of event, present some kind of prize to the person with the most names in their card
This sounds like an application for genetic algorithm:
Select a random permutation of the 40 guests - this is one seating arrangement
Repeat the random permutation N time (n is how many times you are to switch seats in the night)
Combine the permutations together - this is the chromosome for one organism
Repeat for how ever many organisms you want to breed in one generation
The fitness score is the number of people each person got to see in one night (or alternatively - the inverse of the number of people they did not see)
Breed, mutate and introduce new organisms using the normal method and repeat until you get a satisfactory answer
You can add in any other factors you like into the fitness, such as male/female ratio and so on without greatly changing the underlying method.
Why not imitate real world?
class Person {
void doPeriodically() {
do {
newTable = random (numberOfTables);
} while (tableBusy(newTable))
switchTable (newTable)
}
}
Oh, and note that there is a similar algorithm for finding a mating partner and it's rumored to be effective for those 99% of people who don't spend all of their free time answering programming questions...
Perfect Table Plan
You might want to have a look at combinatorial design theory.
Intuitively I don't think you can do better than a perfect shuffle, but it's beyond my pre-coffee cognition to prove it.
This one was very funny! :D
I tried different method but the logic suggested by adi92 (card + prize) is the one that works better than any other I tried.
It works like this:
a guy arrives and examines all the tables
for each table with free seats he counts how many people he has to meet yet, then choose the one with more unknown people
if two tables have an equal number of unknown people then the guy will choose the one with more free seats, so that there is more probability to meet more new people
at each turn the order of the people taking seats is random (this avoid possible infinite loops), this is a "demo" of the working algorithm in python:
import random
class Person(object):
def __init__(self, name):
self.name = name
self.known_people = dict()
def meets(self, a_guy, propagation = True):
"self meets a_guy, and a_guy meets self"
if a_guy not in self.known_people:
self.known_people[a_guy] = 1
else:
self.known_people[a_guy] += 1
if propagation: a_guy.meets(self, False)
def points(self, table):
"Calculates how many new guys self will meet at table"
return len([p for p in table if p not in self.known_people])
def chooses(self, tables, n_seats):
"Calculate what is the best table to sit at, and return it"
points = 0
free_seats = 0
ret = random.choice([t for t in tables if len(t)<n_seats])
for table in tables:
tmp_p = self.points(table)
tmp_s = n_seats - len(table)
if tmp_s == 0: continue
if tmp_p > points or (tmp_p == points and tmp_s > free_seats):
ret = table
points = tmp_p
free_seats = tmp_s
return ret
def __str__(self):
return self.name
def __repr__(self):
return self.name
def Switcher(n_seats, people):
"""calculate how many tables and what switches you need
assuming each table has n_seats seats"""
n_people = len(people)
n_tables = n_people/n_seats
switches = []
while not all(len(g.known_people) == n_people-1 for g in people):
tables = [[] for t in xrange(n_tables)]
random.shuffle(people) # need to change "starter"
for the_guy in people:
table = the_guy.chooses(tables, n_seats)
tables.remove(table)
for guy in table:
the_guy.meets(guy)
table += [the_guy]
tables += [table]
switches += [tables]
return switches
lst_people = [Person('Hallis'),
Person('adi92'),
Person('ilya n.'),
Person('m_oLogin'),
Person('Andrea'),
Person('1800 INFORMATION'),
Person('starblue'),
Person('regularfry')]
s = Switcher(4, lst_people)
print "You need %d tables and %d turns" % (len(s[0]), len(s))
turn = 1
for tables in s:
print 'Turn #%d' % turn
turn += 1
tbl = 1
for table in tables:
print ' Table #%d - '%tbl, table
tbl += 1
print '\n'
This will output something like:
You need 2 tables and 3 turns
Turn #1
Table #1 - [1800 INFORMATION, Hallis, m_oLogin, Andrea]
Table #2 - [adi92, starblue, ilya n., regularfry]
Turn #2
Table #1 - [regularfry, starblue, Hallis, m_oLogin]
Table #2 - [adi92, 1800 INFORMATION, Andrea, ilya n.]
Turn #3
Table #1 - [m_oLogin, Hallis, adi92, ilya n.]
Table #2 - [Andrea, regularfry, starblue, 1800 INFORMATION]
Because of the random it won't always come with the minimum number of switch, especially with larger sets of people. You should then run it a couple of times and get the result with less turns (so you do not stress all the people at the party :P ), and it is an easy thing to code :P
PS:
Yes, you can save the prize money :P
You can also take look at stable matching problem. The solution to this problem involves using max-flow algorithm. http://en.wikipedia.org/wiki/Stable_marriage_problem
I wouldn't bother with genetic algorithms. Instead, I would do the following, which is a slight refinement on repeated perfect shuffles.
While (there are two people who haven't met):
Consider the graph where each node is a guest and edge (A, B) exists if A and B have NOT sat at the same table. Find all the connected components of this graph. If there are any connected components of size < tablesize, schedule those connected components at tables. Note that even this is actually an instance of a hard problem known as Bin packing, but first fit decreasing will probably be fine, which can be accomplished by sorting the connected components in order of biggest to smallest, and then putting them each of them in turn at the first table where they fit.
Perform a random permutation of the remaining elements. (In other words, seat the remaining people randomly, which at first will be everyone.)
Increment counter indicating number of rounds.
Repeat the above for a while until the number of rounds seems to converge.