I have a function like this:
float_as_thousands_str_with_precision(value, precision)
If I use it like this:
float_as_thousands_str_with_precision(volts, 1)
float_as_thousands_str_with_precision(amps, 2)
float_as_thousands_str_with_precision(watts, 2)
Are those 1/2s magic numbers?
Yes, they are magic numbers. It's obvious that the numbers 1 and 2 specify precision in the code sample but not why. Why do you need amps and watts to be more precise than volts at that point?
Also, avoiding magic numbers allows you to centralize code changes rather than having to scour the code when for the literal number 2 when your precision needs to change.
I would propose something like:
HIGH_PRECISION = 3;
MED_PRECISION = 2;
LOW_PRECISION = 1;
And your client code would look like:
float_as_thousands_str_with_precision(volts, LOW_PRECISION )
float_as_thousands_str_with_precision(amps, MED_PRECISION )
float_as_thousands_str_with_precision(watts, MED_PRECISION )
Then, if in the future you do something like this:
HIGH_PRECISION = 6;
MED_PRECISION = 4;
LOW_PRECISION = 2;
All you do is change the constants...
But to try and answer the question in the OP title:
IMO the only numbers that can truly be used and not be considered "magic" are -1, 0 and 1 when used in iteration, testing lengths and sizes and many mathematical operations. Some examples where using constants would actually obfuscate code:
for (int i=0; i<someCollection.Length; i++) {...}
if (someCollection.Length == 0) {...}
if (someCollection.Length < 1) {...}
int MyRidiculousSignReversalFunction(int i) {return i * -1;}
Those are all pretty obvious examples. E.g. start and the first element and increment by one, testing to see whether a collection is empty and sign reversal... ridiculous but works as an example. Now replace all of the -1, 0 and 1 values with 2:
for (int i=2; i<50; i+=2) {...}
if (someCollection.Length == 2) {...}
if (someCollection.Length < 2) {...}
int MyRidiculousDoublinglFunction(int i) {return i * 2;}
Now you have start asking yourself: Why am I starting iteration on the 3rd element and checking every other? And what's so special about the number 50? What's so special about a collection with two elements? the doubler example actually makes sense here but you can see that the non -1, 0, 1 values of 2 and 50 immediately become magic because there's obviously something special in what they're doing and we have no idea why.
No, they aren't.
A magic number in that context would be a number that has an unexplained meaning. In your case, it specifies the precision, which clearly visible.
A magic number would be something like:
int calculateFoo(int input)
{
return 0x3557 * input;
}
You should be aware that the phrase "magic number" has multiple meanings. In this case, it specifies a number in source code, that is unexplainable by the surroundings. There are other cases where the phrase is used, for example in a file header, identifying it as a file of a certain type.
A literal numeral IS NOT a magic number when:
it is used one time, in one place, with very clear purpose based on its context
it is used with such common frequency and within such a limited context as to be widely accepted as not magic (e.g. the +1 or -1 in loops that people so frequently accept as being not magic).
some people accept the +1 of a zero offset as not magic. I do not. When I see variable + 1 I still want to know why, and ZERO_OFFSET cannot be mistaken.
As for the example scenario of:
float_as_thousands_str_with_precision(volts, 1)
And the proposed
float_as_thousands_str_with_precision(volts, HIGH_PRECISION)
The 1 is magic if that function for volts with 1 is going to be used repeatedly for the same purpose. Then sure, it's "magic" but not because the meaning is unclear, but because you simply have multiple occurences.
Paul's answer focused on the "unexplained meaning" part thinking HIGH_PRECISION = 3 explained the purpose. IMO, HIGH_PRECISION offers no more explanation or value than something like PRECISION_THREE or THREE or 3. Of course 3 is higher than 1, but it still doesn't explain WHY higher precision was needed, or why there's a difference in precision. The numerals offer every bit as much intent and clarity as the proposed labels.
Why is there a need for varying precision in the first place? As an engineering guy, I can assume there's three possible reasons: (a) a true engineering justification that the measurement itself is only valid to X precision, so therefore the display shoulld reflect that, or (b) there's only enough display space for X precision, or (c) the viewer won't care about anything higher that X precision even if its available.
Those are complex reasons difficult to capture in a constant label, and are probbaly better served by a comment (to explain why something is beng done).
IF the use of those functions were in one place, and one place only, I would not consider the numerals magic. The intent is clear.
For reference:
A literal numeral IS magic when
"Unique values with unexplained meaning or multiple occurrences which
could (preferably) be replaced with named constants." http://en.wikipedia.org/wiki/Magic_number_%28programming%29 (3rd bullet)
Related
Many common operations aren't built in to Raku because they can be concisely expressed with a combination of (meta) operators and/or functions. It feels like binary search of a sorted array ought to be expressable in that way (maybe with .rotor? or …?) but I haven't found a particularly good way to do so.
For example, the best I've come up with for searching a sorted array of Pairs is:
sub binary-search(#a, $target) {
when +#a ≤ 1 { #a[0].key == $target ?? #a[0] !! Empty }
&?BLOCK(#a[0..^*/2, */2..*][#a[*/2].key ≤ $target], $target)
}
That's not awful, but I can't shake the feeling that it could be an awfully lot better (both in terms of concision and readability). Can anyone see what elegant combo of operations I might be missing?
Here's one approach that technically meets my requirements (in that the function body it fits on a single normal-length line). [But see the edit below for an improved version.]
sub binary-search(#a, \i is copy = my $=0, :target($t)) {
for +#a/2, */2 … *≤1 {#a[i] cmp $t ?? |() !! return #a[i] with i -= $_ × (#a[i] cmp $t)}
}
# example usage (now slightly different, because it returns the index)
my #a = ((^20 .pick(*)) Z=> 'a'..*).sort;
say #a[binary-search(#a».key, :target(17))];
say #a[binary-search(#a».key, :target(1))];
I'm still not super happy with this code, because it loses a bit of readability – I still feel like there could/should be a concise way to do a binary sort that also clearly expresses the underlying logic. Using a 3-way comparison feels like it's on that track, but still isn't quite there.
[edit: After a bit more thought, I came up with an more readable version of the above using reduce.
sub binary-search(#a, :target(:$t)) {
(#a/2, */2 … *≤.5).reduce({ $^i - $^pt×(#a[$^i] cmp $t || return #a[$^i]) }) && Nil
}
In English, that reads as: for a sequence starting at the midpoint of the array and dropping by 1/2, move your index $^i by the value of the next item in the sequence – with the direction of the move determined by whether the item at that index is greater or lesser than the target. Continue until you find the target (in which case, return it) or you finish the sequence (which means the target wasn't present; return Nil)]
I have a large number of variables ( both Binary and Continuous). Therefore I have determined a logic to assign some variables set to 0 so that they do not become part of the optimisation process.
For example I have a binary decision variable y[b][t]:
where b varies from 1 to 100
and t from 1 to 5.
I could determine using some logic that y[20][2] onwards to y[100][2] would be 0. I want to assign the fixed value of 0 to these variables y[20][2] onwards to y[100][2] thereby reducing the number of variables in my optimisation problem. While y is a binary decision variable I have other continuous variable as well which I would like to similarly set to 0 in advance.
Is there a way how this can be achieved ? I haven't used Python with CPEX but hear that this can be probably be achieved by setting a lower and upper bound of the variables. Is there a similar method in OPL.
----Added 13th Aug
May be I was not very clear or I could not understand the solution suggested.
What I wanted is say I have the following decision variable Xbmt ...(I have a few of them)
Originally declared as :
dvar float+ Xbmt[PitBlocks][Plants][TimePeriods];
But for some of the PitBlocks and some time periods I want to define this decision variable as 0. Those time periods for which I want to set the decision variable as 0 are defined in a tuple nullVariables. It has block id same as PitBlocks, and it has time_period same as TimePeriod. Hence I want something like below. But I cannot declare the decision variable twice. I need it 0 only for those ids in the nullVariable set.
dvar float+ Xbmt[NullVariablesSet.block_id][Plants][NullVariablesSet.time_period] in 0..0;
How can this be achieved where some of Xbmt remain as decision variables where as some are removed by setting as 0
see https://github.com/AlexFleischerParis/zooopl/blob/master/zoopreassign.mod
within
Making Decision Optimization Simple
int nbKids=300;
{int} seats={40,30}; // how many seats, {} means this is a set
float costBus[seats]=[500,400];
// Now let s see how preassign some decision variables
// Suppose we know that we have exactly 6 buses 40 seats
{int} preassignedseats={40};
int preassignedvalues[preassignedseats]=[6];
dvar int+ nbBus[s in seats]
in
((s in preassignedseats)?preassignedvalues[s]:0)
..
((s in preassignedseats)?preassignedvalues[s]:maxint);
minimize sum(b in seats) costBus[b]*nbBus[b];
subject to
{
sum(b in seats) b*nbBus[b]>=nbKids;
}
I've tried searching for help but I haven't found a solution yet, I'm trying to repeat math.random.
current code:
local ok = ""
for i = 0,10 do
local ok = ok..math.random(0,10)
end
print(ok)
no clue why it doesn't work, please help
Long answer
Even if the preferable answer is already given, just copying it will probably not lead to the solution you may expect or less future mistakes. So I decided to explain why your code fails and to fix it and also help better understand how DarkWiiPlayer's answer works (except for string.rep and string.gsub).
Issues
There are at least three issues in your code:
the math.random(m, n) function includes lower and the upper values
local declarations hide a same-name objects in outer scopes
math.random gives the same number sequence unless you set its seed with math.randomseed
See Detailed explanation section below for more.
Another point seems at least worth mentioning or suspicious to me, as I assume you might be puzzled by the result (it seems to me to reflect exactly the perspective of the C programmer, from which I also got to know Lua): the Lua for loop specifies start and end value, so both of these values are included.
Attempt to repair
Here I show how a version of your code that yields the same results as the answer you accepted: a sequence of 10 percent-encoded decimal digits.
-- this will change the seed value (but mind that its resolution is seconds)
math.randomseed(os.time())
-- initiate the (only) local variable we are working on later
local ok = ""
-- encode 10 random decimals (Lua's for-loop is one-based and inclusive)
for i = 1, 10 do
ok = ok ..
-- add fixed part
'%3' ..
-- concatenation operator implicitly converts number to string
math.random(0, 9) -- a random number in range [0..9]
end
print(ok)
Detailed explanation
This explanation makes heavily use of the assert function instead of adding print calls or comment what the output should be. In my opinion assert is the superior choice for illustrating expected behavior: The function guides us from one true statement - assert(true) - to the next, at the first miss - assert(false) - the program is exited.
Random ranges
The math library in Lua provides actually three random functions depending on the count of arguments you pass to it. Without arguments, the result is in the interval [0,1):
assert(math.random() >= 0)
assert(math.random() < 1)
the one-argument version returns a value between 1 and the argument:
assert(math.random(1) == 1)
assert(math.random(10) >= 1)
assert(math.random(10) <= 10)
the two-argument version explicitly specifies min and max values:
assert(math.random(2,2) == 2)
assert(math.random(0, 9) >= 0)
assert(math.random(0, 9) <= 9)
Hidden outer variable
In this example, we have two variables x of different type, the outer x is not accessible from the inner scope.
local x = ''
assert(type(x) == 'string')
do
local x = 0
assert(type(x) == 'number')
-- inner x changes type
x = x .. x
assert(x == '00')
end
assert(type(x) == 'string')
Predictable randomness
The first call to math.random() in a Lua program will return always the same number because the pseudorandom number generator (PRNG) starts at seed 1. So if you call math.randomseed(1), you'll reset the PRNG to its initial state.
r0 = math.random()
math.randomseed(1)
r1 = math.random()
assert(r0 == r1)
After calling math.randomseed(os.time()) calls to math.random() will return different sequences presuming that subsequent program starts differ at least by one second. See question Current time in milliseconds and its answers for more information about the resolutions of several Lua functions.
string.rep(".", 10):gsub(".", function() return "%3" .. math.random(0, 9) end)
That should give you what you want
it run corectly but it should have around 500 matches but it only has around 50 and I dont know why!
This is a probelm for my comsci class that I am having isues with
we had to make a function that checks a list for duplication I got that part but then we had to apply it to the birthday paradox( more info here http://en.wikipedia.org/wiki/Birthday_problem) thats where I am runing into problem because my teacher said that the total number of times should be around 500 or 50% but for me its only going around 50-70 times or 5%
duplicateNumber=0
import random
def has_duplicates(listToCheck):
for i in listToCheck:
x=listToCheck.index(i)
del listToCheck[x]
if i in listToCheck:
return True
else:
return False
listA=[1,2,3,4]
listB=[1,2,3,1]
#print has_duplicates(listA)
#print has_duplicates(listB)
for i in range(0,1000):
birthdayList=[]
for i in range(0,23):
birthday=random.randint(1,365)
birthdayList.append(birthday)
x= has_duplicates(birthdayList)
if x==True:
duplicateNumber+=1
else:
pass
print "after 1000 simulations with 23 students there were", duplicateNumber,"simulations with atleast one match. The approximate probibilatiy is", round(((duplicateNumber/1000)*100),3),"%"
This code gave me a result in line with what you were expecting:
import random
duplicateNumber=0
def has_duplicates(listToCheck):
number_set = set(listToCheck)
if len(number_set) is not len(listToCheck):
return True
else:
return False
for i in range(0,1000):
birthdayList=[]
for j in range(0,23):
birthday=random.randint(1,365)
birthdayList.append(birthday)
x = has_duplicates(birthdayList)
if x==True:
duplicateNumber+=1
print "after 1000 simulations with 23 students there were", duplicateNumber,"simulations with atleast one match. The approximate probibilatiy is", round(((duplicateNumber/1000.0)*100),3),"%"
The first change I made was tidying up the indices you were using in those nested for loops. You'll see I changed the second one to j, as they were previously bot i.
The big one, though, was to the has_duplicates function. The basic principle here is that creating a set out of the incoming list gets the unique values in the list. By comparing the number of items in the number_set to the number in listToCheck we can judge whether there are any duplicates or not.
Here is what you are looking for. As this is not standard practice (to just throw code at a new user), I apologize if this offends any other users. However, I believe showing the OP a correct way to write a program should be could all do us a favor if said user keeps the lack of documentation further on in his career.
Thus, please take a careful look at the code, and fill in the blanks. Look up the python doumentation (as dry as it is), and try to understand the things that you don't get right away. Even if you understand something just by the name, it would still be wise to see what is actually happening when some built-in method is being used.
Last, but not least, take a look at this code, and take a look at your code. Note the differences, and keep trying to write your code from scratch (without looking at mine), and if it messes up, see where you went wrong, and start over. This sort of practice is key if you wish to succeed later on in programming!
def same_birthdays():
import random
'''
This is a program that does ________. It is really important
that we tell readers of this code what it does, so that the
reader doesn't have to piece all of the puzzles together,
while the key is right there, in the mind of the programmer.
'''
count = 0
#Count is going to store the number of times that we have the same birthdays
timesToRun = 1000 #timesToRun should probably be in a parameter
#timesToRun is clearly defined in its name as well. Further elaboration
#on its purpose is not necessary.
for i in range(0,timesToRun):
birthdayList = []
for j in range(0,23):
random_birthday = random.randint(1,365)
birthdayList.append(random_birthday)
birthdayList = sorted(birthdayList) #sorting for easier matching
#If we really want to, we could provide a check in the above nester
#for loop to check right away if there is a duplicate.
#But again, we are here
for j in range(0, len(birthdayList)-1):
if (birthdayList[j] == birthdayList[j+1]):
count+=1
break #leaving this nested for-loop
return count
If you wish to find the percent, then get rid of the above return statement and add:
return (count/timesToRun)
Here's a solution that doesn't use set(). It also takes a different approach with the array so that each index represents a day of the year. I also removed the hasDuplicate() function.
import random
sim_total=0
birthdayList=[]
#initialize an array of 0's representing each calendar day
for i in range(365):
birthdayList.append(0)
for i in range(0,1000):
first_dup=True
for n in range(365):
birthdayList[n]=0
for b in range(0, 23):
r = random.randint(0,364)
birthdayList[r]+=1
if (birthdayList[r] > 1) and (first_dup==True):
sim_total+=1
first_dup=False
avg = float(sim_total) / 1000 * 100
print "after 1000 simulations with 23 students there were", sim_total,"simulations with atleast one duplicate. The approximate problibility is", round(avg,3),"%"
I want to make a list with its elements representing the logic map given by
x_{n+1} = a*x_n(1-x_n)
I tried the following code (which adds stuff manually instead of a For loop):
x0 = Input["Enter x0"]
a = Input["a"]
M = {x0}
L[n_] := If[n < 1, x0, a*M[[n]]*(1 - M[[n]])]
Print[L[1]]
Append[M, L[1]]
Print[M]
Append[M, L[2]]
Print[M]
The output is as follows:
0.3
2
{0.3}
0.42
{0.3,0.42}
{0.3}
Part::partw: Part 2 of {0.3`} does not exist. >>
Part::partw: Part 2 of {0.3`} does not exist. >>
{0.3, 2 (1 - {0.3}[[2]]) {0.3}[[2]]}
{0.3}
It seems that, when the function definition is being called in Append[M,L[2]], L[2] is calling M[[2]] in the older definition of M, which clearly does not exist.
How can I make L use the newer, bigger version of M?
After doing this I could use a For loop to generate the entire list up to a certain index.
P.S. I apologise for the poor formatting but I could find out how to make Latex code work here.
Other minor question: What are the allowed names for functions and lists? Are underscores allowed in names?
It looks to me as if you are trying to compute the result of
FixedPointList[a*#*(1-#)&, x0]
Note:
Building lists element-by-element, whether you use a loop or some other construct, is almost always a bad idea in Mathematica. To use the system productively you need to learn some of the basic functional constructs, of which FixedPointList is one.
I'm not providing any explanation of the function I've used, nor of the interpretation of symbols such as # and &. This is all covered in the documentation which explains matters better than I can and with which you ought to become familiar.
Mathematica allows alphanumeric (only) names and they must start with a letter. Of course, Mathematic recognises many Unicode characters other than the 26 letters in the English alphabet as alphabetic. By convention (only) intrinsic names start with an upper-case letter and your own with a lower-case.
The underscore is most definitely not allowed in Mathematica names, it has a specific and widely-used interpretation as a short form of the Blank symbol.
Oh, LaTeX formatting doesn't work hereabouts, but Mathematica code is plenty readable enough.
It seems that, when the function definition is being called in
Append[M,L2], L2 is calling M[2] in the older definition of M,
which clearly does not exist.
How can I make L use the newer, bigger version of M?
M is never getting updated here. Append does not modify the parameters you pass to it; it returns the concatenated value of the arrays.
So, the following code:
A={1,2,3}
B=Append[A,5]
Will end up with B={1,2,3,5} and A={1,2,3}. A is not modfied.
To analyse your output,
0.3 // Output of x0 = Input["Enter x0"]. Note that the assignment operator returns the the assignment value.
2 // Output of a= Input["a"]
{0.3} // Output of M = {x0}
0.42 // Output of Print[L[1]]
{0.3,0.42} // Output of Append[M, L[1]]. This is the *return value*, not the new value of M
{0.3} // Output of Print[M]
Part::partw: Part 2 of {0.3`} does not exist. >> // M has only one element, so M[[2]] doesn't make sense
Part::partw: Part 2 of {0.3`} does not exist. >> // ditto
{0.3, 2 (1 - {0.3}[[2]]) {0.3}[[2]]} (* Output of Append[M, L[2]]. Again, *not* the new value of M *)
{0.3} // Output of Print[M]
The simple fix here is to use M=Append[M, L[1]].
To do it in a single for loop:
xn=x0;
For[i = 0, i < n, i++,
M = Append[M, xn];
xn = A*xn (1 - xn)
];
A faster method would be to use NestList[a*#*(1-#)&, x0,n] as a variation of the method mentioned by Mark above.
Here, the expression a*#*(1-#)& is basically an anonymous function (# is its parameter, the & is a shorthand for enclosing it in Function[]). The NestList method takes a function as one argument and recursively applies it starting with x0, for n iterations.
Other minor question: What are the allowed names for functions and lists? Are underscores allowed in names?
No underscores, they're used for pattern matching. Otherwise a variable can contain alphabets and special characters (like theta and all), but no characters that have a meaning in mathematica (parentheses/braces/brackets, the at symbol, the hash symbol, an ampersand, a period, arithmetic symbols, underscores, etc). They may contain a dollar sign but preferably not start with one (these are usually reserved for system variables and all, though you can define a variable starting with a dollar sign without breaking anything).