Iterating over loops in ruby? - ruby

I am new to ruby. I am trying to create a letter counter. my intended output was supposed to be [2,"I"] but I keep getting [3,"D]. Any help in understanding where I went wrong would be so helpful, thank you.
class LetterCounter
def initialize(text)
#text = text
end
def calculate_most_common()
counter = Hash.new(1)
most_common = nil
most_common_count = 1
#text.chars.each do |char|
next unless is_letter?(char)
counter[char] = (counter[char] || 1) + 1
if counter[char] > most_common_count
most_common = char
most_common_count += counter[char]
end
end
return [most_common_count, most_common]
end
private
def is_letter?(letter)
return letter =~ /[a-z]/i
end
end
counter = LetterCounter.new("Digital Punk")
p counter.calculate_most_common
# Intended output:
# [2, "i"]

Try:
class LetterCounter
def initialize(text)
#text = text
end
def calculate_most_common()
arr=#text.scan(/[a-z]/i)
arr.each_with_object(Hash.new(0)) { |n,h| h[n] += 1 }.max_by(&:last)
end
end
counter = LetterCounter.new("Digital Punk")
p counter.calculate_most_common
Prints:
["i", 2]
If you want to fix yours, try:
class LetterCounter
def initialize(text)
#text = text
end
def calculate_most_common()
counter = Hash.new(0)
most_common = nil
most_common_count = 0
#text.chars.each do |char|
next unless is_letter?(char)
counter[char] += 1
if counter[char]>most_common_count
most_common=char
most_common_count=counter[char]
end
end
return [most_common_count, most_common]
end
private
def is_letter?(letter)
return letter =~ /[a-z]/i
end
end
counter = LetterCounter.new("Digital Punk")
p counter.calculate_most_common

class LetterCounter
def initialize(text)
#text = text
end
def calculate_most_common()
counter = Hash.new(0) # wrong initialization in your code
most_common = nil
most_common_count = 0
#text.chars.each do |char|
next unless is_letter?(char)
counter[char] = (counter[char] || 1) + 1
puts "#{char} #{counter[char]}"
if counter[char] > most_common_count
puts "most common: #{most_common_count} #{char} #{counter[char]}"
most_common = char
most_common_count = counter[char] # error in your code
end
end
return [most_common_count, most_common]
end
private
def is_letter?(letter)
return letter =~ /[a-z]/i
end
end
counter = LetterCounter.new("Digital Punk")
p counter.calculate_most_common

The initial counters are at 1. These should be 0 since you are incrementing inside your loop anyways.
On the First Iteration -
Hash counter[char] is being initialized to 1 ( From Hash.new(1) ),
Then counter[char] is increased to 1 on first loop and the most_common_count is also increased by 1.
Which leads to D having value 3.
since most_common_count is already at 3 - the loop would no longer go into the if condition - as other characters would reach only 2 ( 1 from Hash.new and 1 from counter[char] +1 )
The if condition is > most_common_count and not >= - hence even if i reaches 3 - condition would not execute.
Hence the output [3, 'D']
Try this instead :
class LetterCounter
def initialize(text)
#text = text
end
def calculate_most_common()
counter = Hash.new(0)
most_common = nil
most_common_count = 0
#text.chars.each do |char|
next unless is_letter?(char)
puts char + " ==> " + counter[char].to_s # To know the value on each iteration
counter[char] += 1
if counter[char] > most_common_count
most_common = char
most_common_count = counter[char]
puts [most_common_count, most_common] # To know when the if condition is executed
end
end
return [most_common_count, most_common]
end
private
def is_letter?(letter)
return letter =~ /[a-z]/i
end
end
counter = LetterCounter.new("Digital Punk")
p counter.calculate_most_common

Related

How do I fix a problem to call a function in Ruby?

I'm trying to use some ruby code that I've found in Github. I've downloaded the code and did the necessary imports the "requires" and tried to run it as it is described in the readme file on github repository. The code is the following:
In the file pcset_test.rb the code is the following:
require './pcset.rb'
require 'test/unit'
#
# When possible, test cases are adapted from
# Introduction to Post-Tonal Theory by Joseph N. Straus,
# unless obvious or otherwise noted.
#
class PCSetTest < Test::Unit::TestCase
def test_init
#assert_raise(ArgumentError) {PCSet.new []}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3, 'string']}
assert_raise(ArgumentError) {PCSet.new "string"}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3.6, 4]}
assert_equal([0, 1, 2, 9], PCSet.new([0, 1, 2, 33, 13]).pitches)
assert_equal([3, 2, 1, 11, 10, 0], PCSet.new_from_string('321bac').pitches)
assert_equal([0,2,4,5,7,11,9], PCSet.new([12,2,4,5,7,11,9]).pitches)
assert_nothing_raised() {PCSet.new []}
end
def test_inversion
end
def test_transposition
end
def test_multiplication
end
#
# set normal prime forte #
# 0,2,4,7,8,11 7,8,11,0,2,4 0,1,4,5,7,9 6-31
# 0,1,2,4,5,7,11 11,0,1,2,4,5,7 0,1,2,3,5,6,8 7-Z36
# 0,1,3,5,6,7,9,10,11 5,6,7,9,10,11,0,1,3 0,1,2,3,4,6,7,8,10 9-8
#
def test_normal_form
testPC = PCSet.new [0,4,8,9,11]
assert_kind_of(PCSet, testPC.normal_form)
assert_equal([8,9,11,0,4], testPC.normal_form.pitches)
assert_equal([10,1,4,6], PCSet.new([1,6,4,10]).normal_form.pitches)
assert_equal([2,4,8,10], PCSet.new([10,8,4,2]).normal_form.pitches)
assert_equal([7,8,11,0,2,4], PCSet.new([0,2,4,7,8,11]).normal_form.pitches)
assert_equal([11,0,1,2,4,5,7], PCSet.new([0,1,2,4,5,7,11]).normal_form.pitches)
assert_equal([5,6,7,9,10,11,0,1,3], PCSet.new([0,1,3,5,6,7,9,10,11]).normal_form.pitches)
end
def test_prime_form
assert_equal([0,1,2,6], PCSet.new([5,6,1,7]).prime.pitches)
assert_equal([0,1,4], PCSet.new([2,5,6]).prime.pitches)
assert_equal([0,1,4,5,7,9], PCSet.new([0,2,4,7,8,11]).prime.pitches)
assert_equal([0,1,2,3,5,6,8], PCSet.new([0,1,2,4,5,7,11]).prime.pitches)
assert_equal([0,1,2,3,4,6,7,8,10], PCSet.new([0,1,3,5,6,7,9,10,11]).prime.pitches)
end
def test_set_class
testPcs = PCSet.new([2,5,6])
testPrime = testPcs.prime
assert_equal([
[2,5,6], [3,6,7], [4,7,8], [5,8,9], [6,9,10], [7,10,11],
[8,11,0],[9,0,1], [10,1,2],[11,2,3],[0,3,4], [1,4,5],
[6,7,10],[7,8,11],[8,9,0], [9,10,1],[10,11,2],[11,0,3],
[0,1,4], [1,2,5], [2,3,6], [3,4,7], [4,5,8], [5,6,9]
].sort, PCSet.new([2,5,6]).set_class.map{|x| x.pitches})
assert_equal(testPcs.set_class.map{|x| x.pitches}, testPrime.set_class.map{|x| x.pitches})
end
def test_interval_vector
assert_equal([2,1,2,1,0,0], PCSet.new([0,1,3,4]).interval_vector)
assert_equal([2,5,4,3,6,1], PCSet.new([0,1,3,5,6,8,10]).interval_vector)
assert_equal([0,6,0,6,0,3], PCSet.new([0,2,4,6,8,10]).interval_vector)
end
def test_complement
assert_equal([6,7,8,9,10,11], PCSet.new([0,1,2,3,4,5]).complement.pitches)
assert_equal([3,4,5], PCSet.new([0,1,2], 6).complement.pitches)
end
#
# Test values from (Morris 1991), pages 105-111
# Citation:
# Morris. Class Notes for Atonal Music Theory
# Lebanon, NH. Frog Peak Music, 1991.
#
def test_invariance_vector
assert_equal([1,0,0,0,5,6,5,5],PCSet.new([0,2,5]).invariance_vector)
assert_equal([2,2,2,2,6,6,6,6],PCSet.new([0,1,6,7]).invariance_vector)
assert_equal([6,6,6,6,6,6,6,6],PCSet.new([0,2,4,6,8,10]).invariance_vector)
assert_equal([1,0,0,0,0,0,0,0],PCSet.new([0,1,2,3,4,5,8]).invariance_vector)
assert_equal([1,0,0,1,0,0,0,0],PCSet.new([0,1,2,3,5,6,8]).invariance_vector)
assert_equal([12,12,12,12,0,0,0,0],PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).invariance_vector)
end
#
# Test values from (Huron 1994). Huron rounds, thus the 0.01 margin of error.
# Citation:
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
#
def test_huron
h1 = PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).huron
assert_in_delta(-0.2, h1[0], 0.01)
assert_in_delta(0.21, h1[1], 0.01)
h2 = PCSet.new([0,2,4,5,7,9,11]).huron
assert_in_delta(4.76, h2[0], 0.01)
assert_in_delta(0.62, h2[1], 0.01)
end
def test_coherence
end
end
And in the file pcset.rb the folloing code:
#
# => PCSet Class for Ruby
# => Beau Sievers
# => Hanover, Fall 2008.
#
#
# TODO: Make this a module to avoid namespace collisions.
# Lilypond and MusicXML output
#
include Math
def choose(n, k)
return [[]] if n.nil? || n.empty? && k == 0
return [] if n.nil? || n.empty? && k > 0
return [[]] if n.size > 0 && k == 0
c2 = n.clone
c2.pop
new_element = n.clone.pop
choose(c2, k) + append_all(choose(c2, k-1), new_element)
end
def append_all(lists, element)
lists.map { |l| l << element }
end
def array_to_binary(array)
array.inject(0) {|sum, n| sum + 2**n}
end
# the following method is horrifically inelegant
# but avoids monkey-patching.
# TODO: do this right, incl. error checking
def pearsons(x, y)
if !x.is_a?(Array) || !y.is_a?(Array) then raise StandardError, "x and y must be arrays", caller end
if x.size != y.size then raise StandardError, "x and y must be same size", caller end
sum_x = x.inject(0) {|sum, n| sum + n}
sum_y = y.inject(0) {|sum, n| sum + n}
sum_square_x = x.inject(0) {|sum, n| sum + n * n}
sum_square_y = y.inject(0) {|sum, n| sum + n * n}
xy = []
x.zip(y) {|a, b| xy.push(a * b)}
sum_xy = xy.inject(0) {|sum, n| sum + n}
num = sum_xy - ((sum_x * sum_y)/x.size)
den = Math.sqrt((sum_square_x - ((sum_x*sum_x)/x.size)) * (sum_square_y - ((sum_y*sum_y)/x.size)))
(num/den)
end
class PCSet
include Comparable
attr_reader :pitches, :base, :input
def initialize(pcarray, base = 12)
if pcarray.instance_of?(Array) && pcarray.all?{|pc| pc.instance_of?(Fixnum)}
#base, #input = base, pcarray
#pitches = pcarray.map{ |x| x % #base }.uniq
else
raise ArgumentError, "Improperly formatted PC array", caller
end
end
def PCSet.new_from_string(pcstring, base = 12)
if base > 36 then raise StandardError, "Use PCSet.new to create pcsets with a base larger than 36", caller end
pcarray = []
pcstring.downcase.split(//).each do |c|
if c <= 'z' and c >= '0' then pcarray.push(c.to_i(36)) end
end
PCSet.new pcarray, base
end
def <=>(pcs)
#pitches <=> pcs.pitches
end
def [](index)
#pitches[index]
end
# Intersection
def &(other)
PCSet.new #pitches & other.pitches
end
# Union
def |(other)
PCSet.new #pitches | other.pitches
end
def inspect
#pitches.inspect
end
def length
#pitches.length
end
def invert(axis = 0)
PCSet.new #pitches.map {|x| (axis-x) % #base}
end
def invert!(axis = 0)
#pitches.map! {|x| (axis-x) % #base}
end
def transpose(interval)
PCSet.new #pitches.map {|x| (x + interval) % #base}
end
def transpose!(interval)
#pitches.map! {|x| (x + interval) % #base}
end
def multiply(m = 5)
PCSet.new #pitches.map {|x| (x * m) % #base}
end
def multiply!(m = 5)
#pitches.map! {|x| (x * m) % #base}
end
def zero
transpose(-1 * #pitches[0])
end
def zero!
transpose!(-1 * #pitches[0])
end
def transpositions
(0..(#base-1)).to_a.map{|x| #pitches.map {|y| (y + x) % #base}}.sort.map {|x| PCSet.new x}
end
def transpositions_and_inversions(axis = 0)
transpositions + invert(axis).transpositions
end
#
# Normal form after Straus. Morris and AthenaCL do this differently.
#
def normal_form
tempar = #pitches.sort
arar = [] # [[1,4,7,8,10],[4,7,8,10,1], etc.] get each cyclic variation
tempar.each {arar.push PCSet.new(tempar.unshift(tempar.pop))}
most_left_compact(arar)
end
def normal_form!
#pitches = normal_form.pitches
end
def is_normal_form?
self.pitches == self.normal_form.pitches
end
def set_class
transpositions_and_inversions.map{|pcs| pcs.normal_form}.sort
end
def prime
most_left_compact([normal_form.zero, invert.normal_form.zero])
end
def prime!
self.pitches = self.prime.pitches
end
def is_prime?
self.pitches == self.prime.pitches
end
def complement
new_pitches = []
#base.times do |p|
if !#pitches.include? p then
new_pitches.push p
end
end
PCSet.new new_pitches
end
def full_interval_vector
pairs = choose(#pitches, 2) # choose every pc pair
intervals = pairs.map {|x| (x[1] - x[0]) % #base} # calculate every interval
i_vector = Array.new(#base-1).fill(0)
intervals.each {|x| i_vector[x-1] += 1} # count the intervals
i_vector
end
def interval_vector
i_vector = full_interval_vector
(0..((#base-1)/2)-1).each {|x| i_vector[x] += i_vector.pop}
i_vector
end
#
# Morris's invariance vector
#
def invariance_vector(m = 5)
t = transpositions.map!{|pcs| self & pcs}
ti = invert.transpositions.map!{|pcs| self & pcs}
tm = multiply(m).transpositions.map!{|pcs| self & pcs}
tmi = invert.multiply(m).transpositions.map!{|pcs| self & pcs}
tc = complement.transpositions.map!{|pcs| self & pcs}
tic = complement.invert.transpositions.map!{|pcs| self & pcs}
tmc = complement.multiply(m).transpositions.map!{|pcs| self & pcs}
tmic = complement.invert.multiply(m).transpositions.map!{|pcs| self & pcs}
[t, ti, tm, tmi, tc, tic, tmc, tmic].map{|x| x.reject{|pcs| pcs.pitches != #pitches}.length}
end
# Huron's aggregate dyadic consonance measure.
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
def huron
if #base != 12 then raise StandardError, "PCSet.huron only makes sense for mod 12 pcsets", caller end
# m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 A4/d5
huron_table = [-1.428, -0.582, 0.594, 0.386, 1.240, -0.453]
interval_consonance = []
interval_vector.zip(huron_table) {|x, y| interval_consonance.push(x * y) }
aggregate_dyadic_consonance = interval_consonance.inject {|sum, n| sum + n}
[aggregate_dyadic_consonance, pearsons(interval_vector, huron_table)]
end
#
# Balzano's vector of relations. Citation for all Balzano methods:
#
# Balzano. "The Pitch Set as a Level of Description for Studying Musical
# Pitch Perception" in Music, Mind, and Brain ed. Clynes. Plenum Press. 1982.
#
def vector_of_relations
(0..length-1).to_a.map do |i|
(0..length-1).to_a.map do |j|
(#pitches[(i + j) % length] - #pitches[i]) % #base
end
end
end
#
# Checks if the set satisfies Balzano's uniqueness.
#
def is_unique?
vector_of_relations.uniq.size == vector_of_relations.size
end
#
# Checks if the set satisfies Balzano's scalestep-semitone coherence.
# For all s[i] and s[i1]:
# j < k => v[i][j] < v[i1][k]
# Where j and k are scalestep-counting indices.
# And unless v[i][j] == 6 (a tritone), in which case the strict inequality is relaxed.
#
def is_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
if v[i][j] == 6
truth_array.push(v[i][j] <= v[i1][k])
else
truth_array.push(v[i][j] < v[i1][k])
end
if v[i1][j] == 6
truth_array.push(v[i1][j] <= v[i][k])
else
truth_array.push(v[i1][j] < v[i][k])
end
end
end
!truth_array.include?(false)
end
#
# Strict Balzano coherence, no inequality relaxation for tritones.
#
def is_strictly_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
truth_array.push(v[i][j] < v[i1][k])
truth_array.push(v[i1][j] < v[i][k])
end
end
!truth_array.include?(false)
end
def notes(middle_c = 0)
noteArray = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B']
if #base != 12 then raise StandardError, "PCSet.notes only makes sense for mod 12 pcsets", caller end
out_string = String.new
transpose(-middle_c).pitches.each do |p|
out_string += noteArray[p] + ", "
end
out_string.chop.chop
end
def info
print "modulo: #{#base}\n"
print "raw input: #{#input.inspect}\n"
print "pitch set: #{#pitches.inspect}\n"
print "notes: #{notes}\n"
print "normal: #{normal_form.inspect}\n"
print "prime: #{prime.inspect}\n"
print "interval vector: #{interval_vector.inspect}\n"
print "invariance vector: #{invariance_vector.inspect}\n"
print "huron ADC: #{huron[0]} pearsons: #{huron[1]}\n"
print "balzano coherence: "
if is_strictly_coherent?
print "strictly coherent\n"
elsif is_coherent?
print "coherent\n"
else
print "false\n"
end
end
# def lilypond
#
# end
#
# def musicXML
#
# end
###############################################################################
private
#
# Convert every pitch array to a binary representation, e.g.:
# [0,2,4,8,10] -> 010100010101
# 2^n: BA9876543210
# The smallest binary number is the most left-compact.
#
def most_left_compact(pcset_array)
if !pcset_array.all? {|pcs| pcs.length == pcset_array[0].length}
raise ArgumentError, "PCSet.most_left_compact: All PCSets must be of same cardinality", caller
end
zeroed_pitch_arrays = pcset_array.map {|pcs| pcs.zero.pitches}
binaries = zeroed_pitch_arrays.map {|array| array_to_binary(array)}
winners = []
binaries.each_with_index do |num, i|
if num == binaries.min then winners.push(pcset_array[i]) end
end
winners.sort[0]
end
end
I'm calling them as follows:
> my_pcset = PCSet.new([0,2,4,6,8,10])
> my_pcset2 = PCSet.new([1,5,9])
It shoud return:
> my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
> my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
But is returning nothing.
The code is available on github
Thanks
Try this in terminal: irb -r ./path_to_directory/pcset.rb and then initialize the objects.
I think the documentation for the repo is bad as it does not explain how you should be running this.
The result of
my_pcset = PCSet.new([0,2,4,6,8,10])
should set my_pcset to an instance of a PCSet not an array, so these lines from the README file are confusing at best.
3. How to use it
Make new PCSets:
my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
Looking at the code, I see inspect has been delegated to #pitches
def inspect
#pitches.inspect
end
I think if you inspect my_pcset you will get the expected result.
my_pcset = PCSet.new([0,2,4,6,8,10])
p my_pcset # will print [0, 2, 4, 6, 8, 10]
or `my_pcset.inspect` will return what you are expecting.

FizzBuzz Program Output in form of table

I have written the logic for the program to perform FizzBuzz operations:
fizzbuzz
module FizzBuzz
class Operation
def input
puts 'Enter a number upto which Fizz/Buzz needs to be printed'
num = gets.chomp.to_i
fizzbuzz_function(num)
end
def fizzbuzz_function(num)
for i in 1..num
if i % 3 == 0 && i % 5 == 0
puts 'FizzBuzz'
elsif i % 3 == 0
puts 'Fizz'
elsif i % 5 == 0
puts 'Buzz'
else
puts i
end
end
end
end
res = Operation.new
res.input
end
But I am trying to print the output in form of a table.
Here is FizzBuzz in form of a table:
def fizzbuzz_gen(num)
Enumerator.new do |y|
(1..num).each do |i|
if i % 3 == 0 && i % 5 == 0
y << 'FizzBuzz'
elsif i % 3 == 0
y << 'Fizz'
elsif i % 5 == 0
y << 'Buzz'
else
y << i.to_s
end
end
end
end
def fill_to_width(width, e)
result = ""
future_length = -1
while result.length + future_length < width
result << e.next
result << " "
future_length = e.peek.length
end
result.center(width)
end
def format_table(num)
fb = fizzbuzz_gen(num)
begin
puts fill_to_width(75, fb)
puts fill_to_width(75, fb)
loop do
puts "%10s%s%31s%s" % ["", fill_to_width(12, fb), "", fill_to_width(12, fb)]
end
rescue StopIteration
end
end
format_table(100)
There may be less numbers output than specified, in order for one leg not to be shorter than another.

What's wrong with my code?

def encrypt(string)
alphabet = ("a".."b").to_a
result = ""
idx = 0
while idx < string.length
character = string[idx]
if character == " "
result += " "
else
n = alphabet.index(character)
n_plus = (n + 1) % alphabet.length
result += alphabet[n_plus]
end
idx += 1
end
return result
end
puts encrypt("abc")
puts encrypt("xyz")
I'm trying to get "abc" to print out "bcd" and "xyz" to print "yza". I want to advance the letter forward by 1. Can someone point me to the right direction?
All I had to do was change your alphabet array to go from a to z, not a to b, and it works fine.
def encrypt(string)
alphabet = ("a".."z").to_a
result = ""
idx = 0
while idx < string.length
character = string[idx]
if character == " "
result += " "
else
n = alphabet.index(character)
n_plus = (n + 1) % alphabet.length
result += alphabet[n_plus]
end
idx += 1
end
return result
end
puts encrypt("abc")
puts encrypt("xyz")
Another way to solve the issue, that I think is simpler, personally, is to use String#tr:
ALPHA = ('a'..'z').to_a.join #=> "abcdefghijklmnopqrstuvwxyz"
BMQIB = ('a'..'z').to_a.rotate(1).join #=> "bcdefghijklmnopqrstuvwxyza"
def encrypt(str)
str.tr(ALPHA,BMQIB)
end
def decrypt(str)
str.tr(BMQIB,ALPHA)
end
encrypt('pizza') #=> "qjaab"
decrypt('qjaab') #=> "pizza"
Alternatively if you don't want to take up that memory storing the alphabet you could use character codings and then just use arithmetic operations on them to shift the letters:
def encrypt(string)
result = ""
idx = 0
while idx < string.length
result += (string[idx].ord == 32 ? (string[idx].chr) : (string[idx].ord+1).chr)
idx += 1
end
result
end
Other strange thing about ruby is that you do not need to explicitly return something at the end of the method body. It just returns the last thing by default. This is considered good style amongst ruby folks.
Your question has been answered, so here are a couple of more Ruby-like ways of doing that.
Use String#gsub with a hash
CODE_MAP = ('a'..'z').each_with_object({}) { |c,h| h[c] = c < 'z' ? c.next : 'a' }
#=> {"a"=>"b", "b"=>"c",..., "y"=>"z", "z"=>"a"}
DECODE_MAP = CODE_MAP.invert
#=> {"b"=>"a", "c"=>"b",..., "z"=>"y", "a"=>"z"}
def encrypt(word)
word.gsub(/./, CODE_MAP)
end
def decrypt(word)
word.gsub(/./, DECODE_MAP)
end
encrypt('pizza')
#=> "qjaab"
decrypt('qjaab')
#=> "pizza"
Use String#gsub with Array#rotate
LETTERS = ('a'..'z').to_a
#=> ["a", "b", ..., "z"]
def encrypt(word)
word.gsub(/./) { |c| LETTERS.rotate[LETTERS.index(c)] }
end
def decrypt(word)
word.gsub(/./) { |c| LETTERS.rotate(-1)[LETTERS.index(c)] }
end
encrypt('pizza')
#=> "qjaab"
decrypt('qjaab')
#=> "pizza"

Inconsistencies in using <% break if %> statements causing never ending loops *Fixed

I have written two functions where in one of the the break if array.length == num statements works, while the other does not. Here are the methods and their tests, starting with the working:
def primes(n)
ret = []
return [] if n < 1
for num in 2..+1.0/0.0
ret << num if prime?(num)
break if ret.count == n
end
ret
end
def prime?(num)
(1..num).select {|x| num % x == 0}.count == 2
end
puts "\nPrimes:\n" + "*" * 15 + "\n"
puts primes(0) == []
puts primes(1) == [2]
puts primes(2) == [2,3]
puts primes(6) == [2,3,5,7,11,13]

Sum of positive elements in linked list

I need to make program, but i can't finish it and get into mess with methods.
The aim is to find the sum of all positive of elements and add it in the end. I am just started teach classes and methods.
How can I make the sum of all positive elements in my final array?
Here is my code:
class Node
attr_accessor :value, :next_node
def initialize val,next_in_line
#value = val
#next_nodex = next_in_line
puts "Initialized a Node with value: " + value.to_s
end
end
class LinkedList
def initialize val
#head = Node.new(val,nil)
end
def add(value)
current = #head
while current.next_node != nil
current = current.next_node
end
current.next_node = Node.new(value,nil)
self
end
def delete(val)
current = #head
if current.value == val
#head = #head.next_node
else
current = #head
while (current != nil) && (current.next_node != nil) && ((current.next_node).value != val)
current = current.next_node
end
if (current != nil) && (current.next_node != nil)
current.next_node = (current.next_node).next_node
end
end
end
def display
current = #head
full_list = []
while current.next_node != nil
full_list += [current.value.to_s]
current = current.next_node
end
full_list += [current.value.to_s]
puts full_list.join(" ")
end
def sum
end
end
puts "\n"
list = [*-99..99].shuffle
ll = LinkedList.new(list[0])
(1..9).each do |i|
ll.add(list[i])
end
puts "\nDo you want item to add? '1' - yes '0' - no"
adding = gets.to_i
puts "\n"
if adding == 1
ll.add(list[10])
end
puts "\nDisplaying Linked List:"
ll.display
puts "\nDo you want to delete item? '1' - yes '0' - no"
deleting = gets.to_i
if deleting == 1
puts "Type in and delete item and then display the linked list:"
deleteInt = gets.to_i
ll.delete(deleteInt)
end
puts ll.display
puts "\nThe sum of all positive elements"
ll.sum
Firstly, You have mistype in Node.initialize method - #next_nodex should be #next_node i think. Secondly, don't use puts 2 times: puts ll.display at the end. To add in array preferably use << symbol.
Another thing, i can't see any concept difference between display and sum methods, except one condition. According to this, it should be like:
def sum
current = #head
sum = 0
while current.next_node != nil
sum += current.value if current.value > 0
current = current.next_node
end
sum += current.value if current.value > 0
sum
end
or with dry:
def full_list
current = #head
full_list = []
while current.next_node != nil
full_list << current.value
current = current.next_node
end
full_list << current.value
full_list
end
def display
puts full_list.join(' ')
end
def sum
full_list.keep_if { |x| x > 0 }.reduce(:+)
end
All code

Resources