Pillow Black&White Image is saved as a blacksquare - image

I get an image from PySide6 Canvas.
I can show it in the browser properly. But while saving this one, I get the black square.
While converting the image into a NumPy array I get correct figures in the array.
Large screenshot of Numpy array
I can't understand what is going wrong while saving image.
I expected to save the image properly but I can't find a way to.
the class code
import numpy as np
from PIL import Image, ImageOps
from numpy.typing import NDArray
from typing import Tuple, Union
THRESHOLD = 100
FINAL_SIZE = 28
class Utils:
#classmethod
def get_formatted_image(cls, pil_im: Image, as_ndarray=True) -> Union[Image.Image, NDArray]:
"""
Converts an image of the number into NumPy array
"""
pil_im = cls._get_cropped_image(cls._get_gscale_image(pil_im))
pil_im = pil_im.resize((FINAL_SIZE, FINAL_SIZE), resample=1)
pil_im = cls._get_gscale_image(pil_im, inverse=False)
return np.array(pil_im) if as_ndarray else pil_im
#staticmethod
def _get_gscale_image(img: Image, inverse=True) -> Image:
"""
Converts image into a black-white one
"""
converted_image = img.convert('L')
return ImageOps.invert(converted_image) if inverse else converted_image
#classmethod
def _get_cropped_image(cls, img: Image) -> Image:
"""
Crops the image (converts the image into a squared one)
"""
img_np = np.array(img)
boundaries = cls._get_boundaries(img_np)
img_np = img_np[boundaries[0]: boundaries[2], boundaries[1]: boundaries[3]]
return Image.fromarray(img_np)
#staticmethod
def _get_boundaries(np_img: NDArray, inverted_image=True) -> Tuple:
"""
Gets boundaries of the image
"""
x = {k: v for k, v in enumerate(np_img.sum(axis=1) / np_img.shape[1])}
y = {k: v for k, v in enumerate(np_img.sum(axis=0) / np_img.shape[0])}
if inverted_image:
x = list(filter(lambda z: z[1] > 0, x.items()))
y = list(filter(lambda z: z[1] > 0, y.items()))
else:
x = list(filter(lambda z: z[1] < 255, x.items()))
y = list(filter(lambda z: z[1] < 255, y.items()))
return min(x)[0], min(y)[0], max(x)[0], max(y)[0]
Anything else is given above. There is nothing else I can add.
processed_own_image.show()
gives expected result, but
processes_own_image.save('temp.png', 'PNG') gives a black square

Related

How to convert a Julia plot (via Plots.jl) into a Matrix{RGB{N0f8}}

Matplotlib can convert a plot/figure into a RGB array as follows:
import matplotlib.pyplot as plt
import numpy as np
import io
fig, ax = plt.subplots()
n=256
I, J = np.indices((n, n))
im = ax.imshow((I | J) % 19, interpolation='none')
fig.colorbar(im, ax=ax)
#Convert fig to a RGB array
io_buf = io.BytesIO()
fig.savefig(io_buf, format='raw')
io_buf.seek(0)
fig_arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
print(f"The shape of the rgb array: {fig_arr.shape}")
plt.show()
It displays:
The shape of the rgb array: (480, 640, 4)
Is it possible to convert similarly a Plots plot into a Matrix{RGB{N0f8}}?
The first part:
using Plots
n = 255
I = [i for i in 0:n, j in 0:n]
h = heatmap(mod.((I .| I'), 19), c= :deep, yflip=true, size=(400, 400), aspect_ratio=:equal)
I searched for Julia equivalent of numpy.frombuffer, but no result has been returned
With h holding the plot, as the code in the OP has described. The following:
using FileIO
io = IOBuffer()
show(io, MIME("image/png"), h);
strm = Stream(format"PNG", io)
img = load(strm)
leaves img with the Matrix{RGB{...}}.

Plot LINESTRING Z from GeoDataFrame using pydeck's PathLayer (or TripLayer)

I have a geodataframe with LINESTRING Z geometries:
TimeUTC
Latitude
Longitude
AGL
geometry
0
2021-06-16 00:34:04+00:00
42.8354
-70.9196
82.2
LINESTRING Z (42.83541343273769 -70.91961015378617 82.2, 42.83541343273769 -70.91961015378617 82.2)
1
2021-06-14 13:32:18+00:00
42.8467
-70.8192
66.3
LINESTRING Z (42.84674080836037 -70.81919357049679 66.3, 42.84674080836037 -70.81919357049679 66.3)
2
2021-06-18 23:56:05+00:00
43.0788
-70.7541
0.9
LINESTRING Z (43.07882882269921 -70.75414567194126 0.9, 43.07884601143309 -70.75416286067514 0, 43.07885174101104 -70.75416286067514 0, 43.07884028185512 -70.75415713109717 0, 43.07884601143309 -70.75414567194126 0, 43.07884601143309 -70.75414567194126 0)
I can plot the component points using pydeck's ScatterplotLayer using the raw
(not geo) dataframe but I need to also plot the full, smooth, track.
I've tried this:
layers = [
pdk.Layer(
type = "PathLayer",
data=tracks,
get_path="geometry",
width_scale=20,
width_min_pixels=5,
get_width=5,
get_color=[180, 0, 200, 140],
pickable=True,
),
]
view_state = pdk.ViewState(
latitude=gdf_polygon.centroid.x,
longitude=gdf_polygon.centroid.y,
zoom=6,
min_zoom=5,
max_zoom=15,
pitch=40.5,
bearing=-27.36)
r = pdk.Deck(layers=[layers], initial_view_state=view_state)
return(r)
Which silently fails. Try as I might, I cannot find a way to convert the
LINESTRING Z's (and I can do without the Z component if need be) to an object
that pydeck will accept.
I found a way to extract the info needed from GeoPandas and make it work in pydeck. You just need to apply a function that extracts the coordinates from the shapely geometries as a list. Here is a fully reproducible example:
import shapely
import numpy as np
import pandas as pd
import pydeck as pdk
import geopandas as gpd
linestring_a = shapely.geometry.LineString([[0,1,2],
[3,4,5],
[6,7,8]])
linestring_b = shapely.geometry.LineString([[7,15,1],
[8,14,2],
[9,13,3]])
multilinestring = shapely.geometry.MultiLineString([[[10,11,2],
[13,14,5],
[16,17,8]],
[[19,10,11],
[12,15,4],
[10,13,0]]])
gdf = gpd.GeoDataFrame({'id':[1,2,3],
'geometry':[linestring_a,
linestring_b,
multilinestring],
'color_hex':['#ed1c24',
'#faa61a',
'#ffe800']})
# Function that transforms a hex string into an RGB tuple.
def hex_to_rgb(h):
h = h.lstrip("#")
return tuple(int(h[i : i + 2], 16) for i in (0, 2, 4))
# Applying the HEX-to-RGB function above
gdf['color_rgb'] = gdf['color_hex'].apply(hex_to_rgb)
# Function that extracts the 2d list of coordinates from an input geometry
def my_geom_coord_extractor(input_geom):
if (input_geom is None) or (input_geom is np.nan):
return []
else:
if input_geom.type[:len('multi')].lower() == 'multi':
full_coord_list = []
for geom_part in input_geom.geoms:
geom_part_2d_coords = [[coord[0],coord[1]] for coord in list(geom_part.coords)]
full_coord_list.append(geom_part_2d_coords)
else:
full_coord_list = [[coord[0],coord[1]] for coord in list(input_geom.coords)]
return full_coord_list
# Applying the coordinate list extractor to the dataframe
gdf['coord_list'] = gdf['geometry'].apply(my_geom_coord_extractor)
gdf_polygon = gdf.unary_union.convex_hull
# Establishing the default view for the pydeck output
view_state = pdk.ViewState(latitude=gdf_polygon.centroid.coords[0][1],
longitude=gdf_polygon.centroid.coords[0][0],
zoom=4)
# Creating the pydeck layer
layer = pdk.Layer(
type="PathLayer",
data=gdf,
pickable=True,
get_color='color_rgb',
width_scale=20,
width_min_pixels=2,
get_path="coord_list",
get_width=5,
)
# Finalizing the pydeck output
r = pdk.Deck(layers=[layer], initial_view_state=view_state, tooltip={"text": "{id}"})
r.to_html("path_layer.html")
Here's the output it yields:
Big caveat
It seems like pydeck isn't able to deal with MultiLineString geometries. Notice how, in the example above, my original dataframe had 3 geometries, but only 2 lines were drawn in the screenshot.

Matplotlib: Animate function output in steps

I have a function that outputs return (x, y) and i would like to animate the x,y pair, from beginning to end. E.g. such that the line 'develops over time'.
This is what my output looks like:
x, y = stephan()
plt.plot(x,y)
And when I try to use a snippit of animation code:
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [])
def init():
line.set_data([], [])
return line,
def animate(i):
x, y = stephan()
line.set_data(x, y[i])
return line,
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=20, blit=True)
I get this quite boring output:
It is plotting something, but certainly not the x,y output. I think that I might be using the animate or init function wrongly? And strangely enough, I haven't been able to find any code that does this quite simply.
If the call to stephan returns two floats, y[i] does not make any sense. Furthermore you would want to store the output in a list, to obtain a line and not a single dot per frame.
A working example could look like this
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
class Stephan():
i=0
def __call__(self):
self.i += 0.02
return self.i, np.random.randn(1)
stephan = Stephan()
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [])
def init():
line.set_data([], [])
return line,
X = []
def animate(i):
x, y = stephan()
X.append((x,y))
line.set_data(zip(*X))
return line,
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=20, blit=True)
plt.show()
Alternatively, if stephan returns two lists of values, you could directly set those lists as data to the line.
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
class Stephan():
x=[0]
y=[1]
def __call__(self):
self.x.append(self.x[-1]+0.02)
self.y.append(np.random.randn(1))
return self.x, self.y
stephan = Stephan()
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [])
def init():
line.set_data([], [])
return line,
def animate(i):
x, y = stephan()
line.set_data(x,y)
return line,
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=20, blit=True)
plt.show()

Updating matplotlib live graph in wxPython panel with scrolling x-axis

I am trying to animate a live graph in a wx.Panel. I would like to have the x-axis update like this example. Many of the examples I see are basic and don't take into consideration other controls and functions in the class. Others have so many extras that I get lost in the weeds. I can't get the animation command in the right place or update the x-axis. Here is the code:
import wx
import logging
import numpy as np
import matplotlib
import time
import matplotlib.animation as animation
matplotlib.use('WXAgg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.backends.backend_wx import NavigationToolbar2Wx
from matplotlib.figure import Figure
fTemp = ""
x = 0
class TempClass(wx.Frame):
def __init__(self):
wx.Frame.__init__(self, None, -1, title="", size=(600,500))
panel = wx.Panel(self)
self.fig = Figure(figsize=(6,4), dpi=75, facecolor='lightskyblue', edgecolor='r')
self.canvas = FigureCanvas(self, -1, self.fig)
self.ax = self.fig.add_subplot(111)
self.ax2 = self.ax.twinx()
self.ax.set_ylim(60,90)
self.ax.set_xlim(0,24)
self.ax2.set_ylim(0,100)
# major ticks every 5, minor ticks every 1
xmajor_ticks = np.arange(0, 24, 5)
xminor_ticks = np.arange(0, 24, 1)
self.ax.set_xticks(xmajor_ticks)
self.ax.set_xticks(xminor_ticks, minor=True)
self.ax.grid()
self.ax.set_xlabel('Hour')
self.ax.set_ylabel('Temp')
self.ax2.set_ylabel('Humidity')
self.ax.set_title('Temperature')
# The graph does not show in the panel when this in uncommented
#self.ani = animation.FuncAnimation(self.fig, self.onPlotTemp, interval=1000)
self.fanSensorTimer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.onPlotTemp, self.fanSensorTimer)
self.fanSensorBtn = wx.Button(self, -1, "Start Sensor")
self.Bind(wx.EVT_BUTTON, self.onStartTempPlot, self.fanSensorBtn)
font1 = wx.Font(18, wx.DEFAULT,wx.NORMAL,wx.BOLD)
self.displayTemp = wx.StaticText(self, -1, "Current Tempurature")
self.curTempTxt = wx.TextCtrl(self, -1, "0",size=(100,40), style=wx.TE_READONLY|wx.TE_CENTRE|wx.BORDER_NONE)
self.curTempTxt.SetFont(font1)
self.displayHum = wx.StaticText(self, -1, "Current Humidity")
self.curHumTxt = wx.TextCtrl(self, -1,"0", size=(100,40), style=wx.TE_READONLY|wx.TE_CENTRE|wx.BORDER_NONE)
self.curHumTxt.SetFont(font1)
self.displayBox = wx.GridBagSizer(hgap=5,vgap=5)
self.displayBox.Add(self.displayTemp, pos=(0,0), flag=wx.TOP|wx.LEFT, border=5)
self.displayBox.Add(self.displayHum, pos=(0,1), flag=wx.TOP, border=5)
self.displayBox.Add(self.curTempTxt, pos=(1,0), flag=wx.ALL, border=5)
self.displayBox.Add(self.curHumTxt, pos=(1,1), flag=wx.ALL, border=5)
#---------
self.vbox = wx.BoxSizer(wx.VERTICAL)
self.vbox.Add(self.canvas, wx.ALIGN_CENTER|wx.ALL, 1)
self.vbox.Add(self.fanSensorBtn)
self.vbox.Add(self.displayBox, wx.ALIGN_CENTER|wx.ALL, 1)
self.SetSizer(self.vbox)
self.vbox.Fit(self)
def start(self):
# get temp/humidity reading from node
pass
def readTemp(self, data1, data2):
"Populates Current Temp"
global fTemp
self.curTempTxt.Clear()
a = format(data1, '08b')
b = format(data2, '08b')
x = a+b
y = int(x, base=2)
cTemp = ((175.72 * y)/65536)-46.85
fTemp = cTemp *1.8+32
cel = format(cTemp,'.1f')
far = format(fTemp,'.1f')
self.curTempTxt.WriteText(far + (u'\u00b0')+"F")
def rh1(self, data1, data2):
"Populates Current RH"
global relhum
self.curHumTxt.Clear()
a = format(data1, '08b')
b = format(data2, '08b')
x = a+b
y = int(x, base=2)
rh = ((125 * y)/65536)-6
relhum = format(rh,'.1f')
self.curHumTxt.WriteText(relhum + " %")
def onStartTempPlot(self,event):
#set for a short time period for testing purposes
self.fanSensorTimer.Start(5000)
print "Timer Started"
def onPlotTemp(self,event):
global fTemp, x, relhum
x +=1
y = int(fTemp)
y2 = float(relhum)
self.ax.plot(x,y,'r.')
self.ax2.plot(x,y2,'k.')
self.fig.canvas.draw()
# send message to node for another reading of temp/humidity
if __name__ == "__main__":
app = wx.App(False)
frame = TempClass()
frame.Show()
frame.start()
logging.basicConfig(level=logging.DEBUG)
app.MainLoop()
I would like to see the x axis increment as the data is plotted beyond the 24 hour point on the graph; when data for point 25 appears, the first point is dropped and the x axis shows '25'. The animation is commented out because it causes the graph to disappear until a point is plotted.
Here is a runnable example of what I am trying to achieve with the x axis:
import numpy
from matplotlib.pylab import *
from mpl_toolkits.axes_grid1 import host_subplot
import matplotlib.animation as animation
# Sent for figure
font = {'size' : 9}
matplotlib.rc('font', **font)
# Setup figure and subplots
f0 = figure(num = 0, figsize = (6, 4))#, dpi = 100)
f0.suptitle("Oscillation decay", fontsize=12)
ax01 = subplot2grid((2, 2), (0, 0))
# Set titles of subplots
ax01.set_title('Position vs Time')
# set y-limits
ax01.set_ylim(0,2)
# sex x-limits
ax01.set_xlim(0,1)
# Turn on grids
ax01.grid(True)
# set label names
ax01.set_xlabel("x")
ax01.set_ylabel("py")
# Data Placeholders
yp1=zeros(0)
yv1=zeros(0)
yp2=zeros(0)
yv2=zeros(0)
t=zeros(0)
# set plots
p011, = ax01.plot(t,yp1,'b-', label="yp1")
p012, = ax01.plot(t,yp2,'g-', label="yp2")
# set lagends
ax01.legend([p011,p012], [p011.get_label(),p012.get_label()])
# Data Update
xmin = 0
xmax = 24
x = 0
def updateData(self):
global x
global yp1
global yv1
global yp2
global yv2
global t
tmpp1 = 1 + exp(-x) *sin(2 * pi * x)
tmpv1 = - exp(-x) * sin(2 * pi * x) + exp(-x) * cos(2 * pi * x) * 2 * pi
yp1=append(yp1,tmpp1)
yv1=append(yv1,tmpv1)
yp2=append(yp2,0.5*tmpp1)
yv2=append(yv2,0.5*tmpv1)
t=append(t,x)
x += 1
p011.set_data(t,yp1)
p012.set_data(t,yp2)
if x >= xmax-1:
p011.axes.set_xlim(x-xmax+1,x+1)
return p011
# interval: draw new frame every 'interval' ms
# frames: number of frames to draw
simulation = animation.FuncAnimation(f0, updateData, blit=False, frames=200, interval=20, repeat=False)
plt.show()
You are not incrementing the X axis limit or the ticks.
def onPlotTemp(self,event):
global fTemp, x, relhum
x +=1
y = int(fTemp)
y2 = float(relhum)
if x >= 24-1:
self.ax.set_xlim(x-24+1,x+1)
xmajor_ticks = np.arange(x-24+1,x+5, 5)
xminor_ticks = np.arange(x-24+1, x+1,1)
self.ax.set_xticks(xmajor_ticks)
self.ax.set_xticks(xminor_ticks, minor=True)
self.ax.plot(x,y,'r.')
self.ax2.plot(x,y2,'k.')
self.fig.canvas.draw()
I'm not sure if the above resets the ticks the way you want them but you get the idea. Obviously I have hard-coded 24 as your limit, you may want to create a variable to sort that out.

Time lapse animation

I'm new to python, matplotlib, and animation.
I've not been able to find a clear, detailed description of
animation.FuncAnimation(, , , , , , ......), so I've been trying to modifiy examples I've found. What are all the allowed parameters for FuncAnimation in English?
I want to produce a graph of dots shown one at a time with a time about 1 second between appearances.
Here's my current code that just produces a continuous curve after a delay:
def init():
line1.set_data([],[],'og')
return line1,
def animate(x):
x = np.linspace(0, 650, num=20, endpoint = True) #start at 0, stop at 650, number of values
y1 = (v0_y/v0_x)*x - (g/2)*(x/v0_x)**2
line1.set_data(x, y1)
time.sleep(1)
return line1,
anim = animation.FuncAnimation(fig, animate, init_func=init, frames=100, interval=3000, blit=True)
All suggestions appreciated!
You can check the documentation of FuncAnimation here, and this is an example code that does what you want:
from matplotlib import pyplot as plt
from matplotlib import animation
import numpy as np
xs = np.linspace(0, 650, num=20, endpoint = True)
ys = np.random.rand(20)
fig = plt.figure()
line1, = plt.plot([],[],'og')
plt.gca().set_xlim(0,650)
def init():
return line1,
def animate(i):
line1.set_data(xs[:i], ys[:i])
return line1,
anim = animation.FuncAnimation(fig, animate, init_func=init, interval=1000, blit=True)
plt.show()
Output window:

Resources