PImage background color specified not working - SOLVED, see below - processing

I am working my way through Ira Greenberg's original version of "Processing: Creative Coding and Computational Art." On page 195 there is an example of using the PImage class for draw lines using pixels. The code is fairly simple and does not even use the setup and draw functions. My problem is that I cannot get the sketch to work by making a white background and black lines. I have to change it to make a black background and white lines. Take note that the background call should make it white but turns out black. I cannot find a relevant example online. Here is the code with the changed code specified on lines 5, 9, and 10.
/* program: p195_lines_with_pixels.pde
This program shows how to create lines with pixels. This seems like it has been covered.
However, this program uses the PImage library. */
size(500, 300);
background(255); // not working as specified
// used by diagonal lines
float slope = float(height)/float(width);
PImage img = createImage(width, height, RGB);
//color c = color(0, 0, 0); // original code
color c = color(255, 255, 255); // it works now but I do not know why - and inverted color
// horizontal line
for(int i=0; i<width; i++){
img.set(i, height/2, c);
}
// vertical line
for(int i=0; i<height; i++){
img.set(width/2, i, c);
}
// diagonal line (TL-BR)
for(float i=0; i<width; i++){
img.set(int(i), int(i*slope), c);
}
// diagonal line (BL-TR)
for(float i=0; i<width; i++){
img.set(int(i), int(height-i*slope), c);
}
image(img, 0, 0);

By looking at some other examples online, for instance in the PImage tutorials found on the Processing site, I figured out what was going on. The original code does not work as intended with current Java and Processing. And, as per usual, making mistakes can often lead to figuring out how things work. Code placement in the sketch can affect how the sketch looks. Specifying the slope as a global variable did not work properly at this time and I ended up putting it in the draw function. The sketch could not find the height and width when slope was specified as a global variable.
And when using image(img, 0, 0), that places the image at the 0, 0 starting point. So, if you have an image that is less than the window size, you can see that it does not fill the whole window. This is what lead me to realize that the slope was not getting the correct values when it was initialized. It was a 1/1 slope when it should have been less. Below is the code that I ended up writing to work with this example:
/* program: p195_lines_with_pixels_3.pde
This program uses the PImage class to work with images. It allows for
direct manipulation
of pixles in the image. You can use an image from an external source or
create an image
in the sketch. Here, the image had to be created in the sketch.
This sketch was originally written as an example in Ira Greenberg's
book, "Processing:
Coding and Computational Art," 1st ed, 2007. So, the code had to be
changed a little, I
imagine because some things have changed with Java and Processing over
the years. The
current year is 2022. See the original code below */
// used by diagonal lines
// float slope = float(height)/float(width);
/* I think that part of the problem is that the image created below
actually creates an
image that is black, not a white background. So, the image created is
overlaying the
image of the background. Maybe the PImage class had a transparency to it
in 2007. */
//PImage img = createImage(width, height, RGB);
PImage img; // create img here, intialize it below
color c = color(0, 0, 0);
color cBackground = color(255, 255, 255);
void setup(){
size(500, 300);
background(255); // technically not necessary here as the image fills the window
}
void draw(){
// create the image called img
PImage img = createImage(width, height, RGB);
// fill the image with white pixels
float slope = float(height)/float(width);
for(int i=0; i<width; i++){
for(int j=0; j<height; j++){
img.set(i, j, cBackground);
}
}
// horizontal line
for(int i=0; i<width; i++){
img.set(i, height/2, c);
}
// vertical line
for(int i=0; i<height; i++){
img.set(width/2, i, c);
}
// diagonal line (TL-BR)
for(float i=0; i<width; i++){
img.set(int(i), int(i*slope), c);
}
// diagonal line (BL-TR)
for(float i=0; i<width; i++){
img.set(int(i), int(height-i*slope), c);
}
image(img, 0, 0);
}

Related

Processing: Efficiently create uniform grid

I'm trying to create a grid of an image (in the way one would tile a background with). Here's what I've been using:
PImage bgtile;
PGraphics bg;
int tilesize = 50;
void setup() {
int t = millis();
fullScreen(P2D);
background(0);
bgtile = loadImage("bgtile.png");
int bgw = ceil( ((float) width) / tilesize) + 1;
int bgh = ceil( ((float) height) / tilesize) + 1;
bg = createGraphics(bgw*tilesize,bgh*tilesize);
bg.beginDraw();
for(int i = 0; i < bgw; i++){
for(int j = 0; j < bgh; j++){
bg.image(bgtile, i*tilesize, j*tilesize, tilesize, tilesize);
}
}
bg.endDraw();
print(millis() - t);
}
The timing code says that this takes about a quarter of a second, but by my count there's a full second once the window opens before anything shows up on screen (which should happen as soon as draw is first run). Is there a faster way to get this same effect? (I want to avoid rendering bgtile hundreds of times in the draw loop for obvious reasons)
One way could be to make use of the GPU and let OpenGL repeat a texture for you.
Processing makes it fairly easy to repeat a texture via textureWrap(REPEAT)
Instead of drawing an image you'd make your own quad shape and instead of calling vertex(x, y) for example, you'd call vertex(x, y, u, v); passing texture coordinates (more low level info on the OpenGL link above). The simple idea is x,y would control the geometry on screen and u,v would control how the texture is applied to the geometry.
Another thing you can control is textureMode() which allows you control how you specify the texture coordinates (U, V):
IMAGE mode is the default: you use pixel coordinates (based on the dimensions of the texture)
NORMAL mode uses values between 0.0 and 1.0 (also known as normalised values) where 1.0 means the maximum the texture can go (e.g. image width for U or image height for V) and you don't need to worry about knowing the texture image dimensions
Here's a basic example based on the textureMode() example above:
PImage img;
void setup() {
fullScreen(P2D);
noStroke();
img = loadImage("https://processing.org/examples/moonwalk.jpg");
// texture mode can be IMAGE (pixel dimensions) or NORMAL (0.0 to 1.0)
// normal means 1.0 is full width (for U) or height (for V) without having to know the image resolution
textureMode(NORMAL);
// this is what will make handle tiling for you
textureWrap(REPEAT);
}
void draw() {
// drag mouse on X axis to change tiling
int tileRepeats = (int)map(constrain(mouseX,0,width), 0, width, 1, 100);
// draw a textured quad
beginShape(QUAD);
// set the texture
texture(img);
// x , y , U , V
vertex(0 , 0 , 0 , 0);
vertex(width, 0 , tileRepeats, 0);
vertex(width, height, tileRepeats, tileRepeats);
vertex(0 , height, 0 , tileRepeats);
endShape();
text((int)frameRate+"fps",15,15);
}
Drag the mouse on the Y axis to control the number of repetitions.
In this simple example both vertex coordinates and texture coordinates are going clockwise (top left, top right, bottom right, bottom left order).
There are probably other ways to achieve the same result: using a PShader comes to mind.
Your approach caching the tiles in setup is ok.
Even flattening your nested loop into a single loop at best may only shave a few milliseconds off, but nothing substantial.
If you tried to cache my snippet above it would make a minimal difference.
In this particular case, because of the back and forth between Java/OpenGL (via JOGL), as far as I can tell using VisualVM, it looks like there's not a lot of room for improvement since simply swapping buffers takes so long (e.g. bg.image()):
An easy way to do this would be to use processing's built in get(); which saves a PImage of the coordinates you pass, for example: PImage pic = get(0, 0, width, height); will capture a "screenshot" of your entire window. So, you can create the image like you already are, and then take a screenshot and display that screenshot.
PImage bgtile;
PGraphics bg;
PImage screenGrab;
int tilesize = 50;
void setup() {
fullScreen(P2D);
background(0);
bgtile = loadImage("bgtile.png");
int bgw = ceil(((float) width) / tilesize) + 1;
int bgh = ceil(((float) height) / tilesize) + 1;
bg = createGraphics(bgw * tilesize, bgh * tilesize);
bg.beginDraw();
for (int i = 0; i < bgw; i++) {
for (int j = 0; j < bgh; j++) {
bg.image(bgtile, i * tilesize, j * tilesize, tilesize, tilesize);
}
}
bg.endDraw();
screenGrab = get(0, 0, width, height);
}
void draw() {
image(screenGrab, 0, 0);
}
This will still take a little bit to generate the image, but once it does, there is no need to use the for loops again unless you change the tilesize.
#George Profenza's answer looks more efficient than my solution, but mine may take a little less modification to the code you already have.

Using Processing for image visualization: pixel color thresholds

Image to be manipulated, hoping to identify each white dot on each picture with a counter
PImage blk;
void setup() {
size(640, 480);
blk=loadImage("img.png");
}
void draw () {
loadPixels();
blk.loadPixels();
int i = 0;
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
int loc = x+y*width;
pixels [loc] = blk.pixels[loc];
if (blk.pixels[loc] == 0) {
if (blk.pixels [loc]+1 != 0) {
i++;
}
}
float r = red(blk.pixels[loc]);
float g = green(blk.pixels[loc]);
float b = blue(blk.pixels[loc]);
pixels [loc] = color(r, g, b);
}
}
System.out.println (i);
updatePixels();
}
The main problem is within my if statement, not sure to approach it logically.
I'm unsure where this is exactly going, but I can help you find the white pixels. Here, I just counted 7457 "white" pixels (then I turned them red so you can see where they are and adjust the threshold if you want to get more or less of them):
Of course, this is just a proof of concept which you should be able to adapt to your needs.
PImage blk;
void setup() {
size(640, 480);
blk=loadImage("img.png");
blk.loadPixels();
int whitePixelsCount = 0;
// I'm doing this in the 'setup()' method because I don't need to do it 60 times per second
// Once it's done once I can just use the image as modified unless you want several
// different versions (which you can calculate once anyway then store in different PImages)
for (int i = 0; i < blk.width * blk.height; i++) {
float r = red(blk.pixels[i]);
float g = green(blk.pixels[i]);
float b = blue(blk.pixels[i]);
// In RGB, the brightness of each color is represented by it's intensity
// So here I'm checking the "average intensity" of the color to see how bright it is
// And I compare it to 100 since 255 is the max and I wanted this simple, but you can
// play with this threshold as much as you like
if ((r+g+b)/3 > 100) {
whitePixelsCount++;
// Here I'm making those pixels red so you can see where they are.
// It's easier to adjust the threshold if you can see what you're doing
blk.pixels[i] = color(255, 0, 0);
}
}
println(whitePixelsCount);
updatePixels();
}
void draw () {
image(blk, 0, 0);
}
In short (you'll read this in the comments too), we count the pixels according to a threshold we can adjust. To make things more obvious for you, I colored the "white" pixels red. You can lower or raise the threshold according to what you see this way, and once you know what you want you can get rid of the color.
There is a difficulty here, which is that the image isn't "black and white", but more greyscale - which is totally normal, but makes things harder for what you seem to be trying to do. You'll probably have to tinker a lot to get to the exact ratio which interests you. It could help a lot if you edited the original image in GiMP or another image software which lets you adjust contrast and brightness. It's kinda cheating, but it it doesn't work right off the bat this strategy could save you some work.
Have fun!

Drawing image(PGraphics) gives unwanted double image mirrored about x-axis. Processing 3

The code is supposed to fade and copy the window's image to a buffer f, then draw f back onto the window but translated, rotated, and scaled. I am trying to create an effect like a feedback loop when you point a camera plugged into a TV at the TV.
I have tried everything I can think of, logged every variable I could think of, and still it just seems like image(f,0,0) is doing something wrong or unexpected.
What am I missing?
Pic of double image mirror about x-axis:
PGraphics f;
int rect_size;
int midX;
int midY;
void setup(){
size(1000, 1000, P2D);
f = createGraphics(width, height, P2D);
midX = width/2;
midY = height/2;
rect_size = 300;
imageMode(CENTER);
rectMode(CENTER);
smooth();
background(0,0,0);
fill(0,0);
stroke(255,255);
}
void draw(){
fade_and_copy_pixels(f); //fades window pixels and then copies pixels to f
background(0,0,0);//without this the corners dont get repainted.
//transform display window (instead of f)
pushMatrix();
float scaling = 0.90; // x>1 makes image bigger
float rot = 5; //angle in degrees
translate(midX,midY); //makes it so rotations are always around the center
rotate(radians(rot));
scale(scaling);
imageMode(CENTER);
image(f,0,0); //weird double image must have something not working around here
popMatrix();//returns window matrix to normal
int x = mouseX;
int y = mouseY;
rectMode(CENTER);
rect(x,y,rect_size,rect_size);
}
//fades window pixels and then copies pixels to f
void fade_and_copy_pixels(PGraphics f){
loadPixels(); //load windows pixels. dont need because I am only reading pixels?
f.loadPixels(); //loads feedback loops pixels
// Loop through every pixel in window
//it is faster to grab data from pixels[] array, so dont use get and set, use this
for (int i = 0; i < pixels.length; i++) {
//////////////FADE PIXELS in window and COPY to f:///////////////
color p = pixels[i];
//get color values, mask then shift
int r = (p & 0x00FF0000) >> 16;
int g = (p & 0x0000FF00) >> 8;
int b = p & 0x000000FF; //no need for shifting
// reduce value for each color proportional
// between fade_amount between 0-1 for 0 being totallty transparent, and 1 totally none
// min is 0.0039 (when using floor function and 255 as molorModes for colors)
float fade_percent= 0.005; //0.05 = 5%
int r_new = floor(float(r) - (float(r) * fade_percent));
int g_new = floor(float(g) - (float(g) * fade_percent));
int b_new = floor(float(b) - (float(b) * fade_percent));
//maybe later rewrite in a way to save what the difference is and round it differently, like maybe faster at first and slow later,
//round doesn't work because it never first subtracts one to get the ball rolling
//floor has a minimum of always subtracting 1 from each value each time. cant just subtract 1 ever n loops
//keep a list of all the pixel as floats? too much memory?
//ill stick with floor for now
// the lowest percent that will make a difference with floor is 0.0039?... because thats slightly more than 1/255
//shift back and or together
p = 0xFF000000 | (r_new << 16) | (g_new << 8) | b_new; // or-ing all the new hex together back into AARRGGBB
f.pixels[i] = p;
////////pixels now copied
}
f.updatePixels();
}
This is a weird one. But let's start with a simpler MCVE that isolates the problem:
PGraphics f;
void setup() {
size(500, 500, P2D);
f = createGraphics(width, height, P2D);
}
void draw() {
background(0);
rect(mouseX, mouseY, 100, 100);
copyPixels(f);
image(f, 0, 0);
}
void copyPixels(PGraphics f) {
loadPixels();
f.loadPixels();
for (int i = 0; i < pixels.length; i++) {
color p = pixels[i];
f.pixels[i] = p;
}
f.updatePixels();
}
This code exhibits the same problem as your code, without any of the extra logic. I would expect this code to show a rectangle wherever the mouse is, but instead it shows a rectangle at a position reflected over the X axis. If the mouse is on the top of the window, the rectangle is at the bottom of the window, and vice-versa.
I think this is caused by the P2D renderer being OpenGL, which has an inversed Y axis (0 is at the bottom instead of the top). So it seems like when you copy the pixels over, it's going from screen space to OpenGL space... or something. That definitely seems buggy though.
For now, there are two things that seem to fix the problem. First, you could just use the default renderer instead of P2D. That seems to fix the problem.
Or you could get rid of the for loop inside the copyPixels() function and just do f.pixels = pixels; for now. That also seems to fix the problem, but again it feels pretty buggy.
If somebody else (paging George) doesn't come along with a better explanation by tomorrow, I'd file a bug on Processing's GitHub. (I can do that for you if you want.)
Edit: I've filed an issue here, so hopefully we'll hear back from a developer in the next few days.
Edit Two: Looks like a fix has been implemented and should be available in the next release of Processing. If you need it now, you can always build Processing from source.
An easier one, and works like a charm:
add f.beginDraw(); before and f.endDraw(); after using f:
loadPixels(); //load windows pixels. dont need because I am only reading pixels?
f.loadPixels(); //loads feedback loops pixels
// Loop through every pixel in window
//it is faster to grab data from pixels[] array, so dont use get and set, use this
f.beginDraw();
and
f.updatePixels();
f.endDraw();
Processing must know when it's drawing in a buffer and when not.
In this image you can see that works

How to draw string objects at an angle in Processing?

The code below draws a spiral using objects from a string array. Everything is fine, except that I would like the text objects to be drawn at a roughly 45 degree angle at each instance (based on the current x, y coordinates in the code below) rather than being drawn horizontally (when the text is horizontally drawn, it naturally overlaps with other text at concentrated points along the top & bottom of the curve). I researched some methods, but I'm still very new to all of this, and potential solutions have all evaded me.
String example = "";
String[] wordSet = split(example, " ");
float x, y;
float angle = 0;
float radiusSpiralLine = 10;
size (800, 800);
translate(width/2, height/2);
background(#ffffff);
smooth();
fill(0);
for (int i = 0; i < wordSet.length; i++) {
angle += .05;
radiusSpiralLine += .5;
x = cos(angle) * radiusSpiralLine;
y = sin(angle) * radiusSpiralLine;
textSize(9);
text(wordSet[i], x, y);
}
Here is tutorial to very similar problem. In basic you need to store projection matrix by pushMatrix() then translate and rotate according to position of letter on curve and then restore matrix by popMatrix(). I don't know how exactly do you want to rotate you text but just fold round your text() function like this maybe it will help you:
pushMatrix();
translate(x, y);
rotate(angle);
text(wordSet[i], 0, 0);
popMatrix();
First, you should start getting in the habit of wrapping code in the setup() and draw() functions. Since you're drawing a static image you don't need the draw() function, but I think it's good practice to have those two.
Now, what you are doing now is simply translating the words by a very small amount. Do the math:
x = cos(angle) * radiusSpiralLine; //cos(.05)*.5 = .499
y = sin(angle) * radiusSpiralLine; //sin(.05)*.5 = .024
That means they move less than a pixel, and they're not rotating at all.
What you need is your good ol' friend, the rotate() function.
Let's re-write code:
String example = "These are a bunch of words going around!";
String[] wordSet = split(example, " ");
float x, y;
float angle = 0;
void setup() {
size (800, 800);
background(#ffffff);
smooth();
fill(0);
pushMatrix();
translate(width/2, height/2); //Translate when you need to translate, not before
for (int i = 0; i < wordSet.length; i++) {
angle = PI/5; //Our good friends, radians
textSize(20); //What is this, text for ants? Change to 20
rotate(angle);
text(wordSet[i], 20, 0);
}
popMatrix();
}
void draw() {
}
First notice, the setup() and draw(). I like them there. It looks nicer, I think.
A couple of important things to note.
The effects of rotate() and translate() are on the canvas are cumulative.
We could have had the same effect in different ways:
for (int i = 0; i < wordSet.length; i++) {
angle = PI/5;
textSize(20);
rotate(angle); //always rotating by PI/5 ON TOP of previous rotation
text(wordSet[i], 20, 0);
}
//Everything from now on will still be rotated, we don't want that!
Slightly better, but not there yet:
for (int i = 0; i < wordSet.length; i++) {
angle += PI/5; //constantly increasing the angle
textSize(20);
pushMatrix(); //push a new canvas on top of everything
rotate(angle); //rotate by angle (which increases every loop)
text(wordSet[i], 20, 0);
popMatrix(); //pop the rotated canvas out, go back to original canvas
} //Things won't be rotated, but they'll still be translated, since translate() is outside of pushMatrix and popMatrix
Hope this helps.

Qt-OpenCV:How to display grayscale images(opencv) in Qt

I have a piece of code here.
This is a camera capture application using OpenCV and Qt(for GUI).
void MainWindow::on_pushButton_clicked()
{
cv::VideoCapture cap(0);
if(!cap.isOpened()) return;
//namedWindow("edges",1);
QVector<QRgb> colorTable;
for (int i = 0; i < 256; i++) colorTable.push_back(qRgb(i, i, i));
QImage img;
img.setColorTable(colorTable);
for(;;)
{
cap >> image;
cvtColor(image, edges, CV_BGR2GRAY);
GaussianBlur(edges, edges, cv::Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
//imshow("edges", edges);
if(cv::waitKey(30) >= 0) break;
// change color channel ordering
//cv::cvtColor(image,image,CV_BGR2RGB);
img = QImage((const unsigned char*)(edges.data),
image.cols,image.rows,QImage::Format_Indexed8);
// display on label
ui->label->setPixmap(QPixmap::fromImage(img,Qt::AutoColor));
// resize the label to fit the image
ui->label->resize(ui->label->pixmap()->size());
}
}
Initially "edges" is displayed in red with green background.Then it switches to blue background. This switching is happening randomly.
How can I display white edges in a black background in a stable manner.
In short, add the img.setColorTable(colorTable); just before the // display on labelcomment.
For more details, you create your image and affect the color table at the begining of your code:
QImage img;
img.setColorTable(colorTable);
Then in the infinite loop, you are doing the following:
img = QImage((const unsigned char*)(edges.data), image.cols, image.rows, QImage::Format_Indexed8);
What happens is that you destroy the image created at the begining of your code, the color map for this new image is not set and thus uses the default resulting in a colored output.

Resources