I'm trying to create a grid of an image (in the way one would tile a background with). Here's what I've been using:
PImage bgtile;
PGraphics bg;
int tilesize = 50;
void setup() {
int t = millis();
fullScreen(P2D);
background(0);
bgtile = loadImage("bgtile.png");
int bgw = ceil( ((float) width) / tilesize) + 1;
int bgh = ceil( ((float) height) / tilesize) + 1;
bg = createGraphics(bgw*tilesize,bgh*tilesize);
bg.beginDraw();
for(int i = 0; i < bgw; i++){
for(int j = 0; j < bgh; j++){
bg.image(bgtile, i*tilesize, j*tilesize, tilesize, tilesize);
}
}
bg.endDraw();
print(millis() - t);
}
The timing code says that this takes about a quarter of a second, but by my count there's a full second once the window opens before anything shows up on screen (which should happen as soon as draw is first run). Is there a faster way to get this same effect? (I want to avoid rendering bgtile hundreds of times in the draw loop for obvious reasons)
One way could be to make use of the GPU and let OpenGL repeat a texture for you.
Processing makes it fairly easy to repeat a texture via textureWrap(REPEAT)
Instead of drawing an image you'd make your own quad shape and instead of calling vertex(x, y) for example, you'd call vertex(x, y, u, v); passing texture coordinates (more low level info on the OpenGL link above). The simple idea is x,y would control the geometry on screen and u,v would control how the texture is applied to the geometry.
Another thing you can control is textureMode() which allows you control how you specify the texture coordinates (U, V):
IMAGE mode is the default: you use pixel coordinates (based on the dimensions of the texture)
NORMAL mode uses values between 0.0 and 1.0 (also known as normalised values) where 1.0 means the maximum the texture can go (e.g. image width for U or image height for V) and you don't need to worry about knowing the texture image dimensions
Here's a basic example based on the textureMode() example above:
PImage img;
void setup() {
fullScreen(P2D);
noStroke();
img = loadImage("https://processing.org/examples/moonwalk.jpg");
// texture mode can be IMAGE (pixel dimensions) or NORMAL (0.0 to 1.0)
// normal means 1.0 is full width (for U) or height (for V) without having to know the image resolution
textureMode(NORMAL);
// this is what will make handle tiling for you
textureWrap(REPEAT);
}
void draw() {
// drag mouse on X axis to change tiling
int tileRepeats = (int)map(constrain(mouseX,0,width), 0, width, 1, 100);
// draw a textured quad
beginShape(QUAD);
// set the texture
texture(img);
// x , y , U , V
vertex(0 , 0 , 0 , 0);
vertex(width, 0 , tileRepeats, 0);
vertex(width, height, tileRepeats, tileRepeats);
vertex(0 , height, 0 , tileRepeats);
endShape();
text((int)frameRate+"fps",15,15);
}
Drag the mouse on the Y axis to control the number of repetitions.
In this simple example both vertex coordinates and texture coordinates are going clockwise (top left, top right, bottom right, bottom left order).
There are probably other ways to achieve the same result: using a PShader comes to mind.
Your approach caching the tiles in setup is ok.
Even flattening your nested loop into a single loop at best may only shave a few milliseconds off, but nothing substantial.
If you tried to cache my snippet above it would make a minimal difference.
In this particular case, because of the back and forth between Java/OpenGL (via JOGL), as far as I can tell using VisualVM, it looks like there's not a lot of room for improvement since simply swapping buffers takes so long (e.g. bg.image()):
An easy way to do this would be to use processing's built in get(); which saves a PImage of the coordinates you pass, for example: PImage pic = get(0, 0, width, height); will capture a "screenshot" of your entire window. So, you can create the image like you already are, and then take a screenshot and display that screenshot.
PImage bgtile;
PGraphics bg;
PImage screenGrab;
int tilesize = 50;
void setup() {
fullScreen(P2D);
background(0);
bgtile = loadImage("bgtile.png");
int bgw = ceil(((float) width) / tilesize) + 1;
int bgh = ceil(((float) height) / tilesize) + 1;
bg = createGraphics(bgw * tilesize, bgh * tilesize);
bg.beginDraw();
for (int i = 0; i < bgw; i++) {
for (int j = 0; j < bgh; j++) {
bg.image(bgtile, i * tilesize, j * tilesize, tilesize, tilesize);
}
}
bg.endDraw();
screenGrab = get(0, 0, width, height);
}
void draw() {
image(screenGrab, 0, 0);
}
This will still take a little bit to generate the image, but once it does, there is no need to use the for loops again unless you change the tilesize.
#George Profenza's answer looks more efficient than my solution, but mine may take a little less modification to the code you already have.
Related
Image to be manipulated, hoping to identify each white dot on each picture with a counter
PImage blk;
void setup() {
size(640, 480);
blk=loadImage("img.png");
}
void draw () {
loadPixels();
blk.loadPixels();
int i = 0;
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
int loc = x+y*width;
pixels [loc] = blk.pixels[loc];
if (blk.pixels[loc] == 0) {
if (blk.pixels [loc]+1 != 0) {
i++;
}
}
float r = red(blk.pixels[loc]);
float g = green(blk.pixels[loc]);
float b = blue(blk.pixels[loc]);
pixels [loc] = color(r, g, b);
}
}
System.out.println (i);
updatePixels();
}
The main problem is within my if statement, not sure to approach it logically.
I'm unsure where this is exactly going, but I can help you find the white pixels. Here, I just counted 7457 "white" pixels (then I turned them red so you can see where they are and adjust the threshold if you want to get more or less of them):
Of course, this is just a proof of concept which you should be able to adapt to your needs.
PImage blk;
void setup() {
size(640, 480);
blk=loadImage("img.png");
blk.loadPixels();
int whitePixelsCount = 0;
// I'm doing this in the 'setup()' method because I don't need to do it 60 times per second
// Once it's done once I can just use the image as modified unless you want several
// different versions (which you can calculate once anyway then store in different PImages)
for (int i = 0; i < blk.width * blk.height; i++) {
float r = red(blk.pixels[i]);
float g = green(blk.pixels[i]);
float b = blue(blk.pixels[i]);
// In RGB, the brightness of each color is represented by it's intensity
// So here I'm checking the "average intensity" of the color to see how bright it is
// And I compare it to 100 since 255 is the max and I wanted this simple, but you can
// play with this threshold as much as you like
if ((r+g+b)/3 > 100) {
whitePixelsCount++;
// Here I'm making those pixels red so you can see where they are.
// It's easier to adjust the threshold if you can see what you're doing
blk.pixels[i] = color(255, 0, 0);
}
}
println(whitePixelsCount);
updatePixels();
}
void draw () {
image(blk, 0, 0);
}
In short (you'll read this in the comments too), we count the pixels according to a threshold we can adjust. To make things more obvious for you, I colored the "white" pixels red. You can lower or raise the threshold according to what you see this way, and once you know what you want you can get rid of the color.
There is a difficulty here, which is that the image isn't "black and white", but more greyscale - which is totally normal, but makes things harder for what you seem to be trying to do. You'll probably have to tinker a lot to get to the exact ratio which interests you. It could help a lot if you edited the original image in GiMP or another image software which lets you adjust contrast and brightness. It's kinda cheating, but it it doesn't work right off the bat this strategy could save you some work.
Have fun!
I'm trying as a task given to create a pattern of 20 squares that are 500x500px and in the middle of a screen size of 600x600px. With each one slightly smaller and rotated by 1o and each one with an alpha value of 40. I have attached an image what it needs to look like. I have no idea how to start it and may need a lot of assistance. Thanks in advance.
Draw the rectangles by using the function rect in a loop.
Set the fill color with an alpha channel. Since the default belnd mode is BLEND, the objects are blendend. This means, if more objects are drawn at the same place, then the scene will become more saturated at this parts.
Use scale and rotate to consecutively change the model matrix, but reset the model matrix at the begin of each loop iteration by resetMatrix.
The amount of the angle of rotation does not linear increase, but it increases more as the index i increases.
void setup(){
size(500,500);
}
float angle_degree = 1.1;
float scale_percent = 3.7;
float size = 400;
void draw() {
background(255);
stroke(0);
fill(0,0,255,40);
float current_ang = 0;
float current_scale = 1.0;
for( int i=0;i < 20; ++i ) {
resetMatrix();
translate(width/2, height/2);
scale(current_scale);
rotate(current_ang);
rect(-size/2, -size/2, size, size);
current_scale -= scale_percent / 100.0;
current_ang -= i * angle_degree * PI/180.0;
}
}
Preview:
The code is supposed to fade and copy the window's image to a buffer f, then draw f back onto the window but translated, rotated, and scaled. I am trying to create an effect like a feedback loop when you point a camera plugged into a TV at the TV.
I have tried everything I can think of, logged every variable I could think of, and still it just seems like image(f,0,0) is doing something wrong or unexpected.
What am I missing?
Pic of double image mirror about x-axis:
PGraphics f;
int rect_size;
int midX;
int midY;
void setup(){
size(1000, 1000, P2D);
f = createGraphics(width, height, P2D);
midX = width/2;
midY = height/2;
rect_size = 300;
imageMode(CENTER);
rectMode(CENTER);
smooth();
background(0,0,0);
fill(0,0);
stroke(255,255);
}
void draw(){
fade_and_copy_pixels(f); //fades window pixels and then copies pixels to f
background(0,0,0);//without this the corners dont get repainted.
//transform display window (instead of f)
pushMatrix();
float scaling = 0.90; // x>1 makes image bigger
float rot = 5; //angle in degrees
translate(midX,midY); //makes it so rotations are always around the center
rotate(radians(rot));
scale(scaling);
imageMode(CENTER);
image(f,0,0); //weird double image must have something not working around here
popMatrix();//returns window matrix to normal
int x = mouseX;
int y = mouseY;
rectMode(CENTER);
rect(x,y,rect_size,rect_size);
}
//fades window pixels and then copies pixels to f
void fade_and_copy_pixels(PGraphics f){
loadPixels(); //load windows pixels. dont need because I am only reading pixels?
f.loadPixels(); //loads feedback loops pixels
// Loop through every pixel in window
//it is faster to grab data from pixels[] array, so dont use get and set, use this
for (int i = 0; i < pixels.length; i++) {
//////////////FADE PIXELS in window and COPY to f:///////////////
color p = pixels[i];
//get color values, mask then shift
int r = (p & 0x00FF0000) >> 16;
int g = (p & 0x0000FF00) >> 8;
int b = p & 0x000000FF; //no need for shifting
// reduce value for each color proportional
// between fade_amount between 0-1 for 0 being totallty transparent, and 1 totally none
// min is 0.0039 (when using floor function and 255 as molorModes for colors)
float fade_percent= 0.005; //0.05 = 5%
int r_new = floor(float(r) - (float(r) * fade_percent));
int g_new = floor(float(g) - (float(g) * fade_percent));
int b_new = floor(float(b) - (float(b) * fade_percent));
//maybe later rewrite in a way to save what the difference is and round it differently, like maybe faster at first and slow later,
//round doesn't work because it never first subtracts one to get the ball rolling
//floor has a minimum of always subtracting 1 from each value each time. cant just subtract 1 ever n loops
//keep a list of all the pixel as floats? too much memory?
//ill stick with floor for now
// the lowest percent that will make a difference with floor is 0.0039?... because thats slightly more than 1/255
//shift back and or together
p = 0xFF000000 | (r_new << 16) | (g_new << 8) | b_new; // or-ing all the new hex together back into AARRGGBB
f.pixels[i] = p;
////////pixels now copied
}
f.updatePixels();
}
This is a weird one. But let's start with a simpler MCVE that isolates the problem:
PGraphics f;
void setup() {
size(500, 500, P2D);
f = createGraphics(width, height, P2D);
}
void draw() {
background(0);
rect(mouseX, mouseY, 100, 100);
copyPixels(f);
image(f, 0, 0);
}
void copyPixels(PGraphics f) {
loadPixels();
f.loadPixels();
for (int i = 0; i < pixels.length; i++) {
color p = pixels[i];
f.pixels[i] = p;
}
f.updatePixels();
}
This code exhibits the same problem as your code, without any of the extra logic. I would expect this code to show a rectangle wherever the mouse is, but instead it shows a rectangle at a position reflected over the X axis. If the mouse is on the top of the window, the rectangle is at the bottom of the window, and vice-versa.
I think this is caused by the P2D renderer being OpenGL, which has an inversed Y axis (0 is at the bottom instead of the top). So it seems like when you copy the pixels over, it's going from screen space to OpenGL space... or something. That definitely seems buggy though.
For now, there are two things that seem to fix the problem. First, you could just use the default renderer instead of P2D. That seems to fix the problem.
Or you could get rid of the for loop inside the copyPixels() function and just do f.pixels = pixels; for now. That also seems to fix the problem, but again it feels pretty buggy.
If somebody else (paging George) doesn't come along with a better explanation by tomorrow, I'd file a bug on Processing's GitHub. (I can do that for you if you want.)
Edit: I've filed an issue here, so hopefully we'll hear back from a developer in the next few days.
Edit Two: Looks like a fix has been implemented and should be available in the next release of Processing. If you need it now, you can always build Processing from source.
An easier one, and works like a charm:
add f.beginDraw(); before and f.endDraw(); after using f:
loadPixels(); //load windows pixels. dont need because I am only reading pixels?
f.loadPixels(); //loads feedback loops pixels
// Loop through every pixel in window
//it is faster to grab data from pixels[] array, so dont use get and set, use this
f.beginDraw();
and
f.updatePixels();
f.endDraw();
Processing must know when it's drawing in a buffer and when not.
In this image you can see that works
I know how to create a sinusoidal movement with particles as per the code below. What I would like to do however is to create an effect which is more of a ripple along a string. The idea is that a wave moves along a string but the section that is not currently in a wave returns to the zero position and doesn't undergo a further wave- ie just one wave passing down the line.
How do I amend the sinusoidal movement below to achieve this?
int xspacing = 16; // How far apart should each horizontal location be spaced
int w; // Width of entire wave
float theta = 0.0; // Start angle at 0
float amplitude = 75.0; // Height of wave
float period = 500.0; // How many pixels before the wave repeats
float dx; // Value for incrementing X, a function of period and xspacing
float[] yvalues; // Using an array to store height values for the wave
void setup() {
size(640, 360);
w = width+16;
dx = (TWO_PI / period) * xspacing;
yvalues = new float[w/xspacing];
}
void draw() {
background(0);
calcWave();
renderWave();
}
void calcWave() {
// Increment theta (try different values for 'angular velocity' here
theta += 0.02;
// For every x value, calculate a y value with sine function
float x = theta;
for (int i = 0; i < yvalues.length; i++) {
yvalues[i] = sin(x)*amplitude;
x+=dx;
}
}
void renderWave() {
noStroke();
fill(255);
// A simple way to draw the wave with an ellipse at each location
for (int x = 0; x < yvalues.length; x++) {
ellipse(x*xspacing, height/2+yvalues[x], 16, 16);
}
}
I'm not totally sure exactly what you're going for. Drawing out some examples might help explain it better.
But the short answer to your question is: you'd change the height of the sin wave by modifying this line:
yvalues[i] = sin(x)*amplitude;
Right now every particle has the same amplitude, so it your wave has a uniform height. Instead, what you want to do is give each particle a different amplitude. Here's a very simple example:
yvalues[i] = sin(x) * x * 10;
This causes particles towards the left of the screen to have a smaller amplitude, and particles at the right of the screen to have a larger amplitude. In other words, the wave starts out flat and gets larger as it moves to the right.
What I would probably do is create a Particle class that encapsulates each particle's position, movement, and amplitude. Then I'd decrease the amplitude of each particle over time, maybe increasing it when the user clicks (or whatever event you want to spawn your waves).
Shameless self-promotion: I've written a tutorial on creating classes in Processing available here.
My pixels are updating every frame causing the effect to be re-applied to the previous frame. How can i make this effect only happen once and without using noLoop(). I just want there to be a large circle around the triangle. Please help. Thanks.
Here is the whole program. I set the frameRate to 1 so you can see the problem easier:
boolean up;
int x =-300;
int y =-300;
void setup()
{
size(600, 600);
frameRate(1);
}
void draw()
{
pushMatrix();
translate(300, 300);
float a = atan2(mouseY-300, mouseX-300);
rotate(a);
for (int i = x; i < x+width; i+=40)
for (int j = y; j < y+height; j+=40)
rect(i, j, 40, 40);
loadPixels();
for (int i = 0; i < pixels.length; i++)
{
x = i%width;
y = i/width;
color c = pixels[x+y*width];
float d = dist(x, y, width/2, height/2);
pixels[x+y*width] = color(brightness(c) - d);
}
updatePixels();
popMatrix();
fill(255, 0, 0);
triangle(280, 300, 300, 200, 320, 300);
if (up)
{
x += sin(a)*5;
y += cos(a)*5;
}
}
void keyPressed()
{
if (key=='w')up=true;
}
void keyReleased()
{
if (key=='w')up=false;
}
Re-draw everything in one frame.
Remember before you use your filter, you must undo the filter effects of the last time.
The usual ordering in your draw() function goes as follows:
Add a background / clear all the objects you added in the last frame & clearing the filter of your last frame.
Add your objects.
Lay your filter on top.
Try to refrain from doing any graphic related stuff in setup, hence it will be destroyed by this draw() function - paradigma.
This should already suffice as your answer. Quick note:
When you work with for e.g. a 3D - Shadow filter, applying the filter can take a very long time. Instead we try to store as many calculations we did on the previous frame, so we don't need to calculate everything over again. The same goes for the objects-layer. You don't want to calculate the shortest-path for a minion every frame, instead you calculate the shortest path once and only recalculate it, when something changes: Position of a box, player position, etc..
If you want just use your filter and move fluently around update your effect like this:
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
color c = pixels[x+y*width];
float d = dist(x, y, width/2, height/2);
pixels[x+y*width] = color(brightness(c) - d);
}
}
You had unnecessary calculation that consume lot of CPU resources. Redrawing background also helps to make clearer animation.
If you want generate this effect only once and then apply it. PGraphics could achieve something similar.