So my understanding around hibernate first level cache was that it is around sessions and transactions. Items remain in the cache during a transaction, but then once a transaction is closed ie request fulfilled it will clean/evict items.
But I wondered if that is wrong does the first level cache keep items after a request has been fulfilled and subsequent GET API requests go to the cache. Is there a time limit when it evicts objects from the cache.
This is in Spring boot.
Your description of the first level cache is correct. It's per session/transaction. After the transaction is finished, the objects are left to be garbage collected.
To cache entities across sessions one needs to use the second level cache.
Using this can become a bit tricky for applications with multiple instances; depending how the application is built, one might need to use a distributed cache to have the cache in sync across instances of the application.
Related
I am working on a Java 8 / Spring Boot 2 application and I have noticed that the security module of my app internally uses the findByEmail method of my UserRepostiory (which is a standard Spring Data JPA Repository). When I enabled Hibernate SQL logging, I discovered that these queries are performed multiple times within the same session (security uses it 3-4 times and then my business code uses it some more times). Each time the query hits the database.
This surprised me, as I expected it to be cached in the Hibernate's first level cache. After reading up about it a little bit more, I found out that the first level cache only caches the result of the findById query, not others.
Is there anyway that I can cache the result of the findByEmail query in the first level cache? (I don't want the cache to be shared between sessions, I don't want to use the 2nd level cache, as I think it should be invalidated right after the current session ends).
Yes, you can cache the results of a query on a unique property if you annotate the property with the #NaturalId annotation. If you then use the dedicated API to execute the query, the results will be stored in the 1st level cache. An example:
User user = entityManager
.unwrap(Session.class)
.bySimpleNaturalId(User.class)
.load("john#example.com");
I have a table with millions of rows (with 98% reads, maybe 1 - 2% writes) which has references to couple of other config tables (with maybe 20 entries each). What are the best practices for caching the tables in this case? I cannot cache the table with millions of rows. But at the same time, I also don't want to hit the DB for the config tables. Is there a work around for this? I'm using Spring boot, and the data is in postgres.
Thanks.
First of all, let me refer to this:
What are the best practices for caching the tables in this case
I don't think you should "cache tables" as you say. In the Application, you work with the data, and this is what should be cached. This means the object that you cache should be already in a structure that includes these relations. Of course, in order to fetch the whole object from the database, you can use JOINs, but when the object gets cached, it doesn't matter already, the translation from Relational model to the object model was done.
Now the question is too broad because the actual answer can vary on the technologies you use, nature of data, and so forth.
You should answer the following questions before you design the cache (the list is out my head, but hopefully you'll get the idea):
What is the cache invalidation strategy? You say, there are 2% writes, what happens if the data gets updated, the data in the cache may become stale. Is it ok?
A kind of generalization of the previous question: If you have multiple instances (JVMs) of the same application, and one of them triggered the update to the DB data, what should happen to other apps' caches?
How long the stale/invalid data can reside in the cache?
Do the use cases of your application access all the data from the tables with the same frequencies or some data is more "interesting" (for example, the oldest data is not read, but the latest data is always "hot")? Probably if its millions of data for configuration, the JVM doesn't have all these objects in the heap at the same time, so there should be some "slice" of this data...
What are the performance implications of having the cache? How does it affect the GC behavior?
What technologies can be used in your case (maybe due to some regulations/licensing, some technologies are just not available, this is more a case in large organizations)
Based on these observations you can go with:
In-memory cache:
Spring integrates with various in-memory cache technologies, you can also use them without spring at all, to name a few:
Google Guava cache (for older spring cache implementations)
Coffeine (for newer spring cache implementations)
In memory map of key / value
In memory but in another process:
Redis
Infinispan
Now, these caches are slower than those listed in the previous category but still can
be significantly faster than the DB.
Data Grids:
Hazelcast
Off heap memory-based caches (this means that you store the data off-heap, so its not eligible for garbage collection)
Postgres related solutions. For example, you can still go to db, but since you can opt for keeping the index in-memory the queries will be significantly faster.
Some ORM mapping specific caches (like hibernate has its cache as well).
Some kind of mix of all above.
Implement your own solution - well, this is something that probably you shouldn't do as the first attempt to address the issue, because caching can be tricky.
In the end, let me provide a link to some very interesting session given by Michael Plod about caching. I believe it will help you to find the solution that works for you best.
Is it a good practice to store your data in ehcache to improve the performance of a web application when lots of update operation on data regularly?
It all depends on how much reads you have over writes. Your updates will be costlier. So the time gain by reading should offset that.
Ehcache handles concurrent access. However, it is atomic, not transactional. So if you are getting multiple values from different caches, you can get updates in-between. But that's the same for a database. Also, you can use XA to make sure your writes are in sync with the database.
Service using SpringBoot, Maven, MongoDB, Ehcache.
Service requires a fast and frequently cache server, so eventually, I chose Ehcache.
All the cache will be called almost at the same frequency so there are no hot cold data in this case.
The original data in MongoDB will be updated every day by a timer service, so what I do is to load all the updated data to Ehcache every day.
Each item in this data has a connection with each other, like you use one to find the relevant Ids of the other. So if one cache is updated, but the other one hasn't, then you can't find these relevant Ids. I want to avoid this situation.
So my question is, is there any way to achieve a function like this, like using two Ehcache servers or something? i.e. When one is in use, the other one can load the data from MongoDB. When the update is done, switch it to the updated one. So every day when the MongoDB data updated, and I have to update the Ehcache data, it won't influence my current cache. That's just a thought I have. Another thought is something like a SQL transaction. Is there any other way to achieve this.
Please advise.
Good question. I see two ways.
One is to use an application lock. When you are ready to reload the cache, you block access to it and do it. There is no way to clear all caches are the same time. The problem is that everything will be blocked during the update.
The other way is to use an other cache. So you load the new cache with the new data and then swap the new cache and the expired one. The problem with this solution is that at a given moment you will take twice the memory since both caches are in memory.
We are using a PostgreSQL database and AppFabric Server, running a moderately busy ASP.NET MVC e-commerce site.
Following the cache-aside pattern we request data from our cache, and if it is not available, we query the database.
This approach results in 'query storms' where the database recieves multiple queries for the same data in a short space of time, while a given object in the cache is being refreshed. This issue is exacerbated by longer running queries, and obviously multiple requests for the same data can cause the query to run longer, forming an unpleasant feedback loop.
One solution to this problem is to use read-locking on the cache. However this can itself cause performance issues in a web farm situation (or even on a single busy web server) as web servers are blocked on reads for no reason, in case there is a database query taking place.
Another solution is to drop the cache-aside pattern and seed the cache independently. This is the approach we have taken to mitigate the immediate issues we are seeing with this problem, however it is not possible with all data.
Am I missing something here? And what other approaches have people taken to avoid this behaviour?
Depending on the number of servers you have and your current cache architecture it may be worthwhile to evaluate adding a server-level (or in-process) cache as well. In effect you use this as a fallback cache, and it's especially helpful where hitting the primary storage (database) is either very resource intensive or slow.
When I've used this I've used the cache-aside pattern for the primary cache and a read-through design for the secondary--in which the secondary is locking and ensures the database isn't over-saturated by the same request. With this architecture a primary cache-miss results in at most one query per entity per server (or process) to the database.
So the basic workflow is:
1) Try to retrieve from primary / shared cache pool
* If successful, return
* If unsuccessul, continue
2) Check in-process cache for value
* If successful, return (optionally seeding primary cache)
* If unsuccessul, continue
3) Get lock by cache key (and double-check in-process cache, in case it's been added by another thread)
4) Retrieve object from primary persistence (db)
5) Seed in-process cache and return
I've done this using injectable wrappers, my cache layers all implement the relevant IRepository interface, and StructureMap injects the correct stack of caches. This keeps the actual cache behaviors flexible, focused, and easy to maintain despite being fairly complex.
We've used AppFabric successfully with the seeding strategy you mention above. We actually do use both solutions:
Seed known data where possible (we have a limited set, so this is actually easy for us to figure out)
Within each cache access method, make sure to do look-aside as necessary, and populate cache on retrieval from data store.
The look-aside is necessary, as items may be evicted due to memory pressure, or simply because they were missed in the seeding operation. We have a "warming" service that pulses on an interval (an hour) and keeps the cache populated with the necessary data. We keep analysis on cache misses, and use that to tweak our warming strategy if we see frequent misses during the warming interval.