what does tcp:*:port mean in zeromq? - zeromq

I see this sort of address used in a bunch of examples. What does it mean exactly? Does it mean it will connect to any/all machines on the subnet that have something listening to that port? Or something else entirely? I see such usage in the docs and in books without explanation. Sort of annoying.

It is explained in the manual.
ZeroMQ supports multiple transports. tcp means you are using the TCP transport.
The address (or endpoint) for the TCP transport has the following format:
tcp://interface:port
When you bind to a local address, interface is either the IP address of a specific interface (network) or *, which means to listen on all interfaces (networks). port is the TCP port or * for a random port.
When you connect to a remote endpoint, interface is the hostname or IP address of the remote machine. port is the TCP port of the remote endpoint.

To add to rveerd's answer, what's often missed is that you can multiply bind a socket. So, tcp://*:5555 specifies port 5555 on any interface and you can bind the socket accordindly. But by calling zmq_bind() again you can bind the same socket to, say, ipc:///tmp/feeds/0, which means it will also accept connections on the /tmp/feeds/0 IPC pipe.
This is a pretty spectacularly useful feature in my view, because you can trvially have other actors local and remote to the machine though a single zmq socket.

Related

Same host UDP packet correlation in Go

In Go one can send UDP packets using net.Addr interface to specify the target endpoint. Some special addresses, e.g. :8080 and 0.0.0.0, sends packets using local loopback interface. When received, still on the same host, the message's net.Addr shows [::1]:8080 as source. What is the the easiest way to determine that the packet was sent and received by the same host?
Here's an example in the Go Playground. It shows 0.0.0.0:8080 (ipv4) instead of [::1]:8080.
I ended up using net.Dial("udp", addr) and eminently closing the connection. Dial also resolves hostnames, which I also needed.
Would be nice to avoid creating a socket, but Dial works for now.
:8080 is not an address, it is a port number, typically used when testing your own http websites on Windows because on Windows you cannot easily use port 80, the actual http port.
This will only use the loopback interface if you use localhost as the IP address.
The localhost address for IPv4 is 127.0.0.1 and for IPv6 it is ::1. The address 0.0.0.0 is usually used as a placeholder address to indicate, for example, listening on all IP addresses, see this question.
As mentioned in the comment, you can use net.IP.Equal to check if your peer is localhost. Just compare your address in question to 127.0.0.1 or to ::1, the net.IP.Equal function considers them equal.

Multiple clients - one server - one port? [duplicate]

This question already has answers here:
Does the port change when a server accepts a TCP connection?
(3 answers)
Closed 4 years ago.
I understand the basics of how ports work. However, what I don't get is how multiple clients can simultaneously connect to say port 80. I know each client has a unique (for their machine) port. Does the server reply back from an available port to the client, and simply state the reply came from 80? How does this work?
First off, a "port" is just a number. All a "connection to a port" really represents is a packet which has that number specified in its "destination port" header field.
Now, there are two answers to your question, one for stateful protocols and one for stateless protocols.
For a stateless protocol (ie UDP), there is no problem because "connections" don't exist - multiple people can send packets to the same port, and their packets will arrive in whatever sequence. Nobody is ever in the "connected" state.
For a stateful protocol (like TCP), a connection is identified by a 4-tuple consisting of source and destination ports and source and destination IP addresses. So, if two different machines connect to the same port on a third machine, there are two distinct connections because the source IPs differ. If the same machine (or two behind NAT or otherwise sharing the same IP address) connects twice to a single remote end, the connections are differentiated by source port (which is generally a random high-numbered port).
Simply, if I connect to the same web server twice from my client, the two connections will have different source ports from my perspective and destination ports from the web server's. So there is no ambiguity, even though both connections have the same source and destination IP addresses.
Ports are a way to multiplex IP addresses so that different applications can listen on the same IP address/protocol pair. Unless an application defines its own higher-level protocol, there is no way to multiplex a port. If two connections using the same protocol simultaneously have identical source and destination IPs and identical source and destination ports, they must be the same connection.
Important:
I'm sorry to say that the response from "Borealid" is imprecise and somewhat incorrect - firstly there is no relation to statefulness or statelessness to answer this question, and most importantly the definition of the tuple for a socket is incorrect.
First remember below two rules:
Primary key of a socket: A socket is identified by {SRC-IP, SRC-PORT, DEST-IP, DEST-PORT, PROTOCOL} not by {SRC-IP, SRC-PORT, DEST-IP, DEST-PORT} - Protocol is an important part of a socket's definition.
OS Process & Socket mapping: A process can be associated with (can open/can listen to) multiple sockets which might be obvious to many readers.
Example 1: Two clients connecting to same server port means: socket1 {SRC-A, 100, DEST-X,80, TCP} and socket2{SRC-B, 100, DEST-X,80, TCP}. This means host A connects to server X's port 80 and another host B also connects to the same server X to the same port 80. Now, how the server handles these two sockets depends on if the server is single-threaded or multiple-threaded (I'll explain this later). What is important is that one server can listen to multiple sockets simultaneously.
To answer the original question of the post:
Irrespective of stateful or stateless protocols, two clients can connect to the same server port because for each client we can assign a different socket (as the client IP will definitely differ). The same client can also have two sockets connecting to the same server port - since such sockets differ by SRC-PORT. With all fairness, "Borealid" essentially mentioned the same correct answer but the reference to state-less/full was kind of unnecessary/confusing.
To answer the second part of the question on how a server knows which socket to answer. First understand that for a single server process that is listening to the same port, there could be more than one socket (maybe from the same client or from different clients). Now as long as a server knows which request is associated with which socket, it can always respond to the appropriate client using the same socket. Thus a server never needs to open another port in its own node than the original one on which the client initially tried to connect. If any server allocates different server ports after a socket is bound, then in my opinion the server is wasting its resource and it must be needing the client to connect again to the new port assigned.
A bit more for completeness:
Example 2: It's a very interesting question: "can two different processes on a server listen to the same port". If you do not consider protocol as one of the parameters defining sockets then the answer is no. This is so because we can say that in such a case, a single client trying to connect to a server port will not have any mechanism to mention which of the two listening processes the client intends to connect to. This is the same theme asserted by rule (2). However, this is the WRONG answer because 'protocol' is also a part of the socket definition. Thus two processes in the same node can listen to the same port only if they are using different protocols. For example, two unrelated clients (say one is using TCP and another is using UDP) can connect and communicate to the same server node and to the same port but they must be served by two different server processes.
Server Types - single & multiple:
When a server processes listening to a port that means multiple sockets can simultaneously connect and communicate with the same server process. If a server uses only a single child process to serve all the sockets then the server is called single-process/threaded and if the server uses many sub-processes to serve each socket by one sub-process then the server is called a multi-process/threaded server. Note that irrespective of the server's type a server can/should always use the same initial socket to respond back (no need to allocate another server port).
Suggested Books and the rest of the two volumes if you can.
A Note on Parent/Child Process (in response to query/comment of 'Ioan Alexandru Cucu')
Wherever I mentioned any concept in relation to two processes say A and B, consider that they are not related by the parent-child relationship. OS's (especially UNIX) by design allows a child process to inherit all File-descriptors (FD) from parents. Thus all the sockets (in UNIX like OS are also part of FD) that process A listening to can be listened to by many more processes A1, A2, .. as long as they are related by parent-child relation to A. But an independent process B (i.e. having no parent-child relation to A) cannot listen to the same socket. In addition, also note that this rule of disallowing two independent processes to listen to the same socket lies on an OS (or its network libraries), and by far it's obeyed by most OS's. However, one can create own OS which can very well violate this restriction.
TCP / HTTP Listening On Ports: How Can Many Users Share the Same Port
So, what happens when a server listen for incoming connections on a TCP port? For example, let's say you have a web-server on port 80. Let's assume that your computer has the public IP address of 24.14.181.229 and the person that tries to connect to you has IP address 10.1.2.3. This person can connect to you by opening a TCP socket to 24.14.181.229:80. Simple enough.
Intuitively (and wrongly), most people assume that it looks something like this:
Local Computer | Remote Computer
--------------------------------
<local_ip>:80 | <foreign_ip>:80
^^ not actually what happens, but this is the conceptual model a lot of people have in mind.
This is intuitive, because from the standpoint of the client, he has an IP address, and connects to a server at IP:PORT. Since the client connects to port 80, then his port must be 80 too? This is a sensible thing to think, but actually not what happens. If that were to be correct, we could only serve one user per foreign IP address. Once a remote computer connects, then he would hog the port 80 to port 80 connection, and no one else could connect.
Three things must be understood:
1.) On a server, a process is listening on a port. Once it gets a connection, it hands it off to another thread. The communication never hogs the listening port.
2.) Connections are uniquely identified by the OS by the following 5-tuple: (local-IP, local-port, remote-IP, remote-port, protocol). If any element in the tuple is different, then this is a completely independent connection.
3.) When a client connects to a server, it picks a random, unused high-order source port. This way, a single client can have up to ~64k connections to the server for the same destination port.
So, this is really what gets created when a client connects to a server:
Local Computer | Remote Computer | Role
-----------------------------------------------------------
0.0.0.0:80 | <none> | LISTENING
127.0.0.1:80 | 10.1.2.3:<random_port> | ESTABLISHED
Looking at What Actually Happens
First, let's use netstat to see what is happening on this computer. We will use port 500 instead of 80 (because a whole bunch of stuff is happening on port 80 as it is a common port, but functionally it does not make a difference).
netstat -atnp | grep -i ":500 "
As expected, the output is blank. Now let's start a web server:
sudo python3 -m http.server 500
Now, here is the output of running netstat again:
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:500 0.0.0.0:* LISTEN -
So now there is one process that is actively listening (State: LISTEN) on port 500. The local address is 0.0.0.0, which is code for "listening for all". An easy mistake to make is to listen on address 127.0.0.1, which will only accept connections from the current computer. So this is not a connection, this just means that a process requested to bind() to port IP, and that process is responsible for handling all connections to that port. This hints to the limitation that there can only be one process per computer listening on a port (there are ways to get around that using multiplexing, but this is a much more complicated topic). If a web-server is listening on port 80, it cannot share that port with other web-servers.
So now, let's connect a user to our machine:
quicknet -m tcp -t localhost:500 -p Test payload.
This is a simple script (https://github.com/grokit/dcore/tree/master/apps/quicknet) that opens a TCP socket, sends the payload ("Test payload." in this case), waits a few seconds and disconnects. Doing netstat again while this is happening displays the following:
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:500 0.0.0.0:* LISTEN -
tcp 0 0 192.168.1.10:500 192.168.1.13:54240 ESTABLISHED -
If you connect with another client and do netstat again, you will see the following:
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:500 0.0.0.0:* LISTEN -
tcp 0 0 192.168.1.10:500 192.168.1.13:26813 ESTABLISHED -
... that is, the client used another random port for the connection. So there is never confusion between the IP addresses.
Normally, for every connecting client the server forks a child process that communicates with the client (TCP). The parent server hands off to the child process an established socket that communicates back to the client.
When you send the data to a socket from your child server, the TCP stack in the OS creates a packet going back to the client and sets the "from port" to 80.
Multiple clients can connect to the same port (say 80) on the server because on the server side, after creating a socket and binding (setting local IP and port) listen is called on the socket which tells the OS to accept incoming connections.
When a client tries to connect to server on port 80, the accept call is invoked on the server socket. This creates a new socket for the client trying to connect and similarly new sockets will be created for subsequent clients using same port 80.
Words in italics are system calls.
Ref
http://www.scs.stanford.edu/07wi-cs244b/refs/net2.pdf

Force gateway for IP connection

I have two NICs in my Windows PC, one for Internet and the other for outbound UDP streams. Both NICs have gateways and I tweak the metrics so that Internet bound traffic goes to the first. I would rather disable the gateway on the second NIC and specify the gateway when I create the UDP socket. Is this possible? Can I force the destination MAC address on a socket?
You have to bind() the socket to the local IP address of the NIC you want to use. If you don't know the IP, use GetAdaptersInfo() or GetAdaptersAddresses() to enumerate the NICs until you find the one you want, and then you will know its current IP to bind to.

PF_PACKET socket and 'Port unreachable' ICMP messages

My application needs to receive UDP packets from multiple destination ports (this is a bonafide application and not a sniffer). Therefore, I have chosen to use a PF_PACKET socket and to do port filtering at the application level.
Here's how I create the socket:
int g_rawSocket = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
I am correctly receiving UDP packets. However, the kernel on which the application runs is sending ICMP packets of type 'Destination unreachable' and code 'Port unreachable' to the remote device that is sending packets to my app. I guess that this is because I have not bound a port number to the socket. However, I wonder if it is appropriate to use bind with a PF_PACKET socket, especially as I need to bind multiple ports to it, which I guess is not possible.
Any comments please?
No, it can't be bound to a specific port, since it's working on a lower level than the Transport (UDP/TCP) layer. However, you could open and listen to all sockets, using regular UDP (AF_INET/SOCK_DGRAM) sockets and select for example and as far as I know you can bind and listen to as many sockets as you want, as long as you don't exceed the limits of open file descriptors for your process.
I have also done the same thing in my application.
in my case i have created sockets as many i need & bind them with the particular port. but i m not listening to any socket. so i created one raw socket
int sock_raw = socket(AF_INET , SOCK_RAW , IPPROTO_UDP);
& then received all the traffic without any ICMP.
So i think u have to bind all the ports to avoid ICMP either you have to some kernel hacking as stoping or removing the code for ICMP in the linux-kernel code & build it again

tcp server ip address

When starting H2 tcp server and the host pc has multiple IP address's how can I define the IP that the server is going to bind to listen for connections ?
We can define the tcp port but there does not seems to be a way to define the ip address.
Thank you, Oscar
http://www.h2database.com/html/advanced.html#server_bind_address
Usually server sockets accept connections on any/all local addresses.
This may be a problem on multi-homed hosts. To bind only to one
address, use the system property h2.bindAddress. This setting is used
for both regular server sockets and for SSL server sockets. IPv4 and
IPv6 address formats are supported.

Resources