Julia while loop slower than for loop? - performance

I'm working with Julia 1.8.2 on the Advent of Code day 6 and noticed some strange performance difference between while and for loops.
I had written an implementation with a for loop, but realized that I did not need to go over each index, and I could skip indices in certain cases, but when I rewrote my code with a while loop it took ~10x as long to run. Both the for and the while loop code give the correct answer.
Then I added a small basic while vs for loop test to see if it was my code or the actual loops, and the results were even more dramatic. The while test took ~0.5s while the for test completed almost instantly.
My full code is given below, see AoC day6 for the data.
My question is why is the while loop so much slower? Does the Julia interpreter have a hard time optimizing while loops for some reason?
using BenchmarkTools
function parse_data()
open(joinpath(dirname(#__FILE__), "data/day6.txt")) do f
while !eof(f)
line = readline(f)
return line
end
end
end
function test_for(data)
tot = 0
for i = 1:length(data) * 100
tot += 1
end
return tot
end
function test_while(data)
tot = 0
i = 1
while i <= length(data) * 100
tot += 1
i += 1
end
return tot
end
function solve_problem_for(data)
marker_length = 14
for i = 1:length(data)
repeat = false
for (j, item) in enumerate(view(data, i:i+marker_length - 1))
repeat = repeat || occursin(item, view(data, i + j:i + marker_length - 1))
if repeat
break
end
end
if !repeat
return i + marker_length - 1
end
end
end
function solve_problem_while(data)
marker_length = 14
i = 1
while i <= length(data)
repeat = false
for (j, item) in enumerate(view(data, i:i+marker_length - 1))
repeat = repeat || occursin(item, view(data, i + j:i + marker_length - 1))
if repeat
i += j - 1
break
end
end
if !repeat
return i + marker_length - 1
end
i += 1
end
end
function main()
data = parse_data()
#time sol = solve_problem_while(data)
#time sol = solve_problem_while(data)
println(sol)
#time sol = test_while(data)
#time sol = test_while(data)
#time sol = solve_problem_for(data)
#time sol = solve_problem_for(data)
println(sol)
#time sol = test_for(data)
#time sol = test_for(data)
end
main()

Related

How can I count number of iterations/steps to find answers of a method - RUBY

How can I get the number of iterations/steps that this method takes to find an answer?
def binary_search(array, n)
min = 0
max = (array.length) - 1
while min <= max
middle = (min + max) / 2
if array[middle] == n
return middle
elsif array[middle] > n
max = middle - 1
elsif array[middle] < n
min = middle + 1
end
end
"#{n} not found in this array"
end
One option to use instead of a counter is the .with_index keyword. To use this you'll need to use loop instead of while, but it should work the same. Here's a basic example with output.
arr = [1,2,3,4,5,6,7,8]
loop.with_index do |_, index| # The underscore is to ignore the first variable as it's not used
if (arr[index] % 2).zero?
puts "even: #{arr[index]}"
else
puts "odd: #{arr[index]}"
end
break if index.eql?(arr.length - 1)
end
=>
odd: 1
even: 2
odd: 3
even: 4
odd: 5
even: 6
odd: 7
even: 8
Just count the number of iterations.
Set a variable to 0 outside the loop
Add 1 to it inside the loop
When you return the index, return the count with it (return [middle, count]).
I assume the code to count numbers of interations required by binary_search is to be used for testing or optimization. If so, the method binary_search should be modified in such a way that to produce production code it is only necessary to remove (or comment out) lines of code, as opposed to modifying statements. Here is one way that might be done.
def binary_search(array, n)
# remove from production code lines marked -> #******
_bin_srch_iters = 0 #******
begin #******
min = 0
max = (array.length) - 1
loop do
_bin_srch_iters += 1 #******
middle = (min + max) / 2
break middle if array[middle] == n
break nil if min == max
if array[middle] > n
max = middle - 1
else # array[middle] < n
min = middle + 1
end
end
ensure #******
puts "binary_search reqd #{_bin_srch_iters} interations" #******
end #******
end
x = binary_search([1,3,6,7,9,11], 3)
# binary_search reqd 3 interations
#=> 1
binary_search([1,3,6,7,9,11], 5)
# binary_search reqd 3 interations
#=> nil

Filling a matrix using parallel processing in Julia

I'm trying to speed up the solution time for a dynamic programming problem in Julia (v. 0.5.0), via parallel processing. The problem involves choosing the optimal values for every element of a 1073 x 19 matrix at every iteration, until successive matrix differences fall within a tolerance. I thought that, within each iteration, filling in the values for each element of the matrix could be parallelized. However, I'm seeing a huge performance degradation using SharedArray, and I'm wondering if there's a better way to approach parallel processing for this problem.
I construct the arguments for the function below:
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = (1+r)^(-1)
sigma_range = 4
gz = 19
gp = 29
gk = 37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float32,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float32,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float32,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
I then constructed the function with serial processing. The two for loops iterate through each element to find the largest value in a 1072-sized (=the gm scalar argument in the function) array:
function dynam_serial(E,gm,gz,beta,Zprob)
v = Array(Float32,gm,gz )
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array(Float32,gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
for h=1:gm
for j=1:gz
Tv[h,j]=findmax(E[:,h,j] + beta*exp_v[:,j])[1]
end
end
diff = maxabs(Tv - v)
v=copy(Tv)
end
end
Timing this, I get:
#time dynam_serial(E,gm,gz,beta,Zprob)
> 106.880008 seconds (91.70 M allocations: 203.233 GB, 15.22% gc time)
Now, I try using Shared Arrays to benefit from parallel processing. Note that I reconfigured the iteration so that I only have one for loop, rather than two. I also use v=deepcopy(Tv); otherwise, v is copied as an Array object, rather than a SharedArray:
function dynam_parallel(E,gm,gz,beta,Zprob)
v = SharedArray(Float32,(gm,gz),init = S -> S[Base.localindexes(S)] = myid() )
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
Tv = SharedArray(Float32,gm,gz,init = S -> S[Base.localindexes(S)] = myid() )
#sync #parallel for hj=1:(gm*gz)
j=cld(hj,gm)
h=mod(hj,gm)
if h==0;h=gm;end;
#async Tv[h,j]=findmax(E[:,h,j] + beta*exp_v[:,j])[1]
end
diff = maxabs(Tv - v)
v=deepcopy(Tv)
end
end
Timing the parallel version; and using a 4-core 2.5 GHz I7 processor with 16GB of memory, I get:
addprocs(3)
#time dynam_parallel(E,gm,gz,beta,Zprob)
> 164.237208 seconds (2.64 M allocations: 201.812 MB, 0.04% gc time)
Am I doing something incorrect here? Or is there a better way to approach parallel processing in Julia for this particular problem? I've considered using Distributed Arrays, but it's difficult for me to see how to apply them to the present problem.
UPDATE:
Per #DanGetz and his helpful comments, I turned instead to trying to speed up the serial processing version. I was able to get performance down to 53.469780 seconds (67.36 M allocations: 103.419 GiB, 19.12% gc time) through:
1) Upgrading to 0.6.0 (saved about 25 seconds), which includes the helpful #views macro.
2) Preallocating the main array I'm trying to fill in (Tv), per the section on Preallocating Outputs in the Julia Performance Tips: https://docs.julialang.org/en/latest/manual/performance-tips/. (saved another 25 or so seconds)
The biggest remaining slow-down seems to be coming from the add_vecs function, which sums together subarrays of two larger matrices. I've tried devectorizing and using BLAS functions, but haven't been able to produce better performance.
In any event, the improved code for dynam_serial is below:
function add_vecs(r::Array{Float32},h::Int,j::Int,E::Array{Float32},exp_v::Array{Float32},beta::Float32)
#views r=E[:,h,j] + beta*exp_v[:,j]
return r
end
function dynam_serial(E::Array{Float32},gm::Int,gz::Int,beta::Float32,Zprob::Array{Float32})
v = Array{Float32}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float32}(gm,gz)
r = Array{Float32}(gm)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
for h=1:gm
for j=1:gz
#views Tv[h,j]=findmax(add_vecs(r,h,j,E,exp_v,beta))[1]
end
end
diff = maximum(abs,Tv - v)
v=copy(Tv)
end
return Tv
end
If add_vecs seems to be the critical function, writing an explicit for loop could offer more optimization. How does the following benchmark:
function add_vecs!(r::Array{Float32},h::Int,j::Int,E::Array{Float32},
exp_v::Array{Float32},beta::Float32)
#inbounds for i=1:size(E,1)
r[i]=E[i,h,j] + beta*exp_v[i,j]
end
return r
end
UPDATE
To continue optimizing dynam_serial I have tried to remove more allocations. The result is:
function add_vecs_and_max!(gm::Int,r::Array{Float64},h::Int,j::Int,E::Array{Float64},
exp_v::Array{Float64},beta::Float64)
#inbounds for i=1:gm
r[i] = E[i,h,j]+beta*exp_v[i,j]
end
return findmax(r)[1]
end
function dynam_serial(E::Array{Float64},gm::Int,gz::Int,
beta::Float64,Zprob::Array{Float64})
v = Array{Float64}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
r = Array{Float64}(gm)
exp_v = Array{Float64}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.0 # arbitrary initial value greater than convcrit
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
diff = -Inf
for h=1:gm
for j=1:gz
oldv = v[h,j]
newv = add_vecs_and_max!(gm,r,h,j,E,exp_v,beta)
v[h,j]= newv
diff = max(diff, oldv-newv, newv-oldv)
end
end
end
return v
end
Switching the functions to use Float64 should increase speed (as CPUs are inherently optimized for 64-bit word lengths). Also, using the mutating A_mul_Bt! directly saves another allocation. Avoiding the copy(...) by switching the arrays v and Tv.
How do these optimizations improve your running time?
2nd UPDATE
Updated the code in the UPDATE section to use findmax. Also, changed dynam_serial to use v without Tv, as there was no need to save the old version except for the diff calculation, which is now done inside the loop.
Here's the code I copied-and-pasted, provided by Dan Getz above. I include the array and scalar definitions exactly as I ran them. Performance was: 39.507005 seconds (11 allocations: 486.891 KiB) when running #time dynam_serial(E,gm,gz,beta,Zprob).
using SpecialFunctions
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = (1+r)^(-1)
sigma_range = 4
gz = 19 #15 #19
gp = 29 #19 #29
gk = 37 #25 #37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp.(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float64,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float64,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float64,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
function add_vecs_and_max!(gm::Int,r::Array{Float64},h::Int,j::Int,E::Array{Float64},
exp_v::Array{Float64},beta::Float64)
maxr = -Inf
#inbounds for i=1:gm r[i] = E[i,h,j]+beta*exp_v[i,j]
maxr = max(r[i],maxr)
end
return maxr
end
function dynam_serial(E::Array{Float64},gm::Int,gz::Int,
beta::Float64,Zprob::Array{Float64})
v = Array{Float64}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float64}(gm,gz)
r = Array{Float64}(gm)
exp_v = Array{Float64}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.0 # arbitrary initial value greater than convcrit
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
diff = -Inf
for h=1:gm
for j=1:gz
Tv[h,j]=add_vecs_and_max!(gm,r,h,j,E,exp_v,beta)
diff = max(abs(Tv[h,j]-v[h,j]),diff)
end
end
(v,Tv)=(Tv,v)
end
return v
end
Now, here's another version of the algorithm and inputs. The functions are similar to what Dan Getz suggested, except that I use findmax rather than an iterated max function to find the array maximum. In the input construction, I am using both Float32 and mixing different bit-types together. However, I've consistently achieved better performance this way: 24.905569 seconds (1.81 k allocations: 46.829 MiB, 0.01% gc time). But it's not clear at all why.
using SpecialFunctions
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = Float32((1+r)^(-1))
sigma_range = 4
gz = 19
gp = 29
gk = 37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float32,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float32,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float32,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
function add_vecs!(gm::Int,r::Array{Float32},h::Int,j::Int,E::Array{Float32},
exp_v::Array{Float32},beta::Float32)
#inbounds #views for i=1:gm
r[i]=E[i,h,j] + beta*exp_v[i,j]
end
return r
end
function dynam_serial(E::Array{Float32},gm::Int,gz::Int,beta::Float32,Zprob::Array{Float32})
v = Array{Float32}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float32}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.00000 # arbitrary initial value greater than convcrit
iter=0
exp_v=Array{Float32}(gm,gz)
r=Array{Float32}(gm)
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
for h=1:gm
for j=1:gz
Tv[h,j]=findmax(add_vecs!(gm,r,h,j,E,exp_v,beta))[1]
end
end
diff = maximum(abs,Tv - v)
(v,Tv)=(Tv,v)
end
return v
end

julia-lang Cache data in a parallel thread using #async

Suppose we have a slow function to produce data and another slow function to process data as follow:
# some slow function
function prime(i)
sleep(2)
println("processed $i")
i
end
function slow_process(x)
sleep(2)
println("slow processed $x")
end
function each(rng)
function _iter()
for i ∈ rng
#time d = prime(i)
produce(d)
end
end
return Task(_iter)
end
#time for x ∈ each(1000:1002)
slow_process(x)
end
Output:
% julia test-task.jl
processed 1000
2.063938 seconds (37.84 k allocations: 1.605 MB)
slow processed 1000
processed 1001
2.003115 seconds (17 allocations: 800 bytes)
slow processed 1001
processed 1002
2.001798 seconds (17 allocations: 800 bytes)
slow processed 1002
12.166475 seconds (88.08 k allocations: 3.640 MB)
Is there some way to get and cache data in a parallel thread using #async and feed to the slow_process function?
Edit: I updated the example to clarify the problem. Ideally, the example should take 2+6 seconds instead of 12 seconds.
Edit 2: This is my effort of using #sync and #async but I got the error ERROR (unhandled task failure): no process with id 2 exists
macro swap(x,y)
quote
local tmp = $(esc(x))
$(esc(x)) = $(esc(y))
$(esc(y)) = tmp
end
end
# some slow function
function prime(i)
sleep(2)
println("processed $i")
i
end
function slow_process(x)
sleep(2)
println("slow processed $x")
end
function each(rng)
#assert length(rng) > 1
rng = collect(rng)
a = b = nothing
function _iter()
for i ∈ 1:length(rng)
if a == nothing
a = #async remotecall_fetch(prime, 2, rng[i])
b = #async remotecall_fetch(prime, 2, rng[i+1])
else
if i < length(rng)
a = #async remotecall_fetch(prime, 2, rng[i+1])
end
#swap(a,b)
end
#sync d = a
produce(d)
end
end
return Task(_iter)
end
#time for x ∈ each(1000:1002)
slow_process(x)
end
OK, I have the working solution below:
macro swap(x,y)
quote
local tmp = $(esc(x))
$(esc(x)) = $(esc(y))
$(esc(y)) = tmp
end
end
# some slow function
#everywhere function prime(i)
sleep(2)
println("prime $i")
i
end
function slow_process(x)
sleep(2)
println("slow_process $x")
end
function each(rng)
#assert length(rng) > 1
rng = collect(rng)
a = b = nothing
function _iter()
for i ∈ 1:length(rng)
if a == nothing
a = remotecall(prime, 2, rng[i])
b = remotecall(prime, 2, rng[i+1])
else
if i < length(rng)
a = remotecall(prime, 2, rng[i+1])
end
#swap(a,b)
end
d = fetch(a)
produce(d)
end
end
return Task(_iter)
end
#time for x ∈ each(1000:1002)
slow_process(x)
end
And
% julia -p 2 test-task.jl
8.354102 seconds (148.00 k allocations: 6.204 MB)

Why is my Julia shared array code running so slow?

I'm trying to implement Smith-Waterman alignment in parallel using Julia (see: Figure 1 of http://www.cs.virginia.edu/~rl6sf/paper_dump/2011:12:33:22.pdf), but the algorithm is running much slower in Julia than the serial version. I'm using shared arrays to do this and figure I am doing something silly that is making the code run slow. Could someone take a look and see if my code is optimized as possible? The parallel version should run faster than in serial….
The basic concept of it is to compute the anti-diagonal elements of a matrix in parallel from the upper left to lower right corner and to update them. I'm trying to use 32 cores on a shared array machine to do this. I have a SharedArray matrix that I am using to do this and am computing the elements of each anti-diagonal in parallel as shown below. The while loops in the spSW function submit tasks to workers in sync for each anti-diagonal using the helper function shared_get_score(). The main goal of this function is to fill in each element in the shared arrays "matrix" and "path".
function spSW(seq1,seq2,p)
indel = -1
match = 2
seq1 = "^$seq1"
seq2 = "^$seq2"
col = length(seq1)
row = length(seq2)
wl = workers()
matrix,path = shared_initialize_path(seq1,seq2)
for j = 2:col
jcol = j
irow = 2
#sync begin
count = 0
while jcol > 1 && irow < row + 1
#println(j," ",irow," ",jcol)
if seq1[jcol] == seq2[irow]
equal = true
else
equal = false
end
w = wl[(count % p) + 1]
#async remotecall_wait(w,shared_get_score!,matrix,path,equal,indel,match,irow,jcol)
jcol -= 1
irow += 1
count += 1
end
end
end
for i = 3:row
jcol = col
irow = i
#sync begin
count = 0
while irow < row+1 && jcol > 1
#println(j," ",irow," ",jcol)
if seq1[jcol] == seq2[irow]
equal = true
else
equal = false
end
w = wl[(count % p) + 1]
#async remotecall_wait(w,shared_get_score!,matrix,path,equal,indel,match,irow,jcol)
jcol -= 1
irow += 1
count += 1
end
end
end
return matrix,path
end
The other helper functions are:
function shared_initialize_path(seq1,seq2)
col = length(seq1)
row = length(seq2)
matrix = convert(SharedArray,fill(0,(row,col)))
path = convert(SharedArray,fill(0,(row,col)))
return matrix,path
end
#everywhere function shared_get_score!(matrix,path,equal,indel,match,i,j)
pathvalscode = ["-","|","M"]
pathvals = [1,2,3]
scores = []
push!(scores,matrix[i,j-1]+indel)
push!(scores,matrix[i-1,j]+indel)
if equal
push!(scores,matrix[i-1,j-1]+match)
else
push!(scores,matrix[i-1,j-1]+indel)
end
val,ind = findmax(scores)
if val < 0
matrix[i,j] = 0
else
matrix[i,j] = val
end
path[i,j] = pathvals[ind]
end
Does anyone see an obvious way to make this run faster? Right now it's about 10 times slower than the serial version.

Fast way to initialize a tensor in torch7

I need to initialize a 3D tensor with an index-dependent function in torch7, i.e.
func = function(i,j,k) --i, j is the index of an element in the tensor
return i*j*k --do operations within func which're dependent of i, j
end
then I initialize a 3D tensor A like this:
for i=1,A:size(1) do
for j=1,A:size(2) do
for k=1,A:size(3) do
A[{i,j,k}] = func(i,j,k)
end
end
end
But this code runs very slow, and I found it takes up 92% of total running time. Are there any more efficient ways to initialize a 3D tensor in torch7?
See the documentation for the Tensor:apply
These functions apply a function to each element of the tensor on
which the method is called (self). These methods are much faster than
using a for loop in Lua.
The example in the docs initializes a 2D array based on its index i (in memory). Below is an extended example for 3 dimensions and below that one for N-D tensors. Using the apply method is much, much faster on my machine:
require 'torch'
A = torch.Tensor(100, 100, 1000)
B = torch.Tensor(100, 100, 1000)
function func(i,j,k)
return i*j*k
end
t = os.clock()
for i=1,A:size(1) do
for j=1,A:size(2) do
for k=1,A:size(3) do
A[{i, j, k}] = i * j * k
end
end
end
print("Original time:", os.difftime(os.clock(), t))
t = os.clock()
function forindices(A, func)
local i = 1
local j = 1
local k = 0
local d3 = A:size(3)
local d2 = A:size(2)
return function()
k = k + 1
if k > d3 then
k = 1
j = j + 1
if j > d2 then
j = 1
i = i + 1
end
end
return func(i, j, k)
end
end
B:apply(forindices(A, func))
print("Apply method:", os.difftime(os.clock(), t))
EDIT
This will work for any Tensor object:
function tabulate(A, f)
local idx = {}
local ndims = A:dim()
local dim = A:size()
idx[ndims] = 0
for i=1, (ndims - 1) do
idx[i] = 1
end
return A:apply(function()
for i=ndims, 0, -1 do
idx[i] = idx[i] + 1
if idx[i] <= dim[i] then
break
end
idx[i] = 1
end
return f(unpack(idx))
end)
end
-- usage for 3D case.
tabulate(A, function(i, j, k) return i * j * k end)

Resources