I'm trying to speed up the solution time for a dynamic programming problem in Julia (v. 0.5.0), via parallel processing. The problem involves choosing the optimal values for every element of a 1073 x 19 matrix at every iteration, until successive matrix differences fall within a tolerance. I thought that, within each iteration, filling in the values for each element of the matrix could be parallelized. However, I'm seeing a huge performance degradation using SharedArray, and I'm wondering if there's a better way to approach parallel processing for this problem.
I construct the arguments for the function below:
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = (1+r)^(-1)
sigma_range = 4
gz = 19
gp = 29
gk = 37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float32,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float32,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float32,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
I then constructed the function with serial processing. The two for loops iterate through each element to find the largest value in a 1072-sized (=the gm scalar argument in the function) array:
function dynam_serial(E,gm,gz,beta,Zprob)
v = Array(Float32,gm,gz )
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array(Float32,gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
for h=1:gm
for j=1:gz
Tv[h,j]=findmax(E[:,h,j] + beta*exp_v[:,j])[1]
end
end
diff = maxabs(Tv - v)
v=copy(Tv)
end
end
Timing this, I get:
#time dynam_serial(E,gm,gz,beta,Zprob)
> 106.880008 seconds (91.70 M allocations: 203.233 GB, 15.22% gc time)
Now, I try using Shared Arrays to benefit from parallel processing. Note that I reconfigured the iteration so that I only have one for loop, rather than two. I also use v=deepcopy(Tv); otherwise, v is copied as an Array object, rather than a SharedArray:
function dynam_parallel(E,gm,gz,beta,Zprob)
v = SharedArray(Float32,(gm,gz),init = S -> S[Base.localindexes(S)] = myid() )
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
Tv = SharedArray(Float32,gm,gz,init = S -> S[Base.localindexes(S)] = myid() )
#sync #parallel for hj=1:(gm*gz)
j=cld(hj,gm)
h=mod(hj,gm)
if h==0;h=gm;end;
#async Tv[h,j]=findmax(E[:,h,j] + beta*exp_v[:,j])[1]
end
diff = maxabs(Tv - v)
v=deepcopy(Tv)
end
end
Timing the parallel version; and using a 4-core 2.5 GHz I7 processor with 16GB of memory, I get:
addprocs(3)
#time dynam_parallel(E,gm,gz,beta,Zprob)
> 164.237208 seconds (2.64 M allocations: 201.812 MB, 0.04% gc time)
Am I doing something incorrect here? Or is there a better way to approach parallel processing in Julia for this particular problem? I've considered using Distributed Arrays, but it's difficult for me to see how to apply them to the present problem.
UPDATE:
Per #DanGetz and his helpful comments, I turned instead to trying to speed up the serial processing version. I was able to get performance down to 53.469780 seconds (67.36 M allocations: 103.419 GiB, 19.12% gc time) through:
1) Upgrading to 0.6.0 (saved about 25 seconds), which includes the helpful #views macro.
2) Preallocating the main array I'm trying to fill in (Tv), per the section on Preallocating Outputs in the Julia Performance Tips: https://docs.julialang.org/en/latest/manual/performance-tips/. (saved another 25 or so seconds)
The biggest remaining slow-down seems to be coming from the add_vecs function, which sums together subarrays of two larger matrices. I've tried devectorizing and using BLAS functions, but haven't been able to produce better performance.
In any event, the improved code for dynam_serial is below:
function add_vecs(r::Array{Float32},h::Int,j::Int,E::Array{Float32},exp_v::Array{Float32},beta::Float32)
#views r=E[:,h,j] + beta*exp_v[:,j]
return r
end
function dynam_serial(E::Array{Float32},gm::Int,gz::Int,beta::Float32,Zprob::Array{Float32})
v = Array{Float32}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float32}(gm,gz)
r = Array{Float32}(gm)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1 # arbitrary initial value greater than convcrit
while diff>convcrit
exp_v=v*Zprob'
for h=1:gm
for j=1:gz
#views Tv[h,j]=findmax(add_vecs(r,h,j,E,exp_v,beta))[1]
end
end
diff = maximum(abs,Tv - v)
v=copy(Tv)
end
return Tv
end
If add_vecs seems to be the critical function, writing an explicit for loop could offer more optimization. How does the following benchmark:
function add_vecs!(r::Array{Float32},h::Int,j::Int,E::Array{Float32},
exp_v::Array{Float32},beta::Float32)
#inbounds for i=1:size(E,1)
r[i]=E[i,h,j] + beta*exp_v[i,j]
end
return r
end
UPDATE
To continue optimizing dynam_serial I have tried to remove more allocations. The result is:
function add_vecs_and_max!(gm::Int,r::Array{Float64},h::Int,j::Int,E::Array{Float64},
exp_v::Array{Float64},beta::Float64)
#inbounds for i=1:gm
r[i] = E[i,h,j]+beta*exp_v[i,j]
end
return findmax(r)[1]
end
function dynam_serial(E::Array{Float64},gm::Int,gz::Int,
beta::Float64,Zprob::Array{Float64})
v = Array{Float64}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
r = Array{Float64}(gm)
exp_v = Array{Float64}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.0 # arbitrary initial value greater than convcrit
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
diff = -Inf
for h=1:gm
for j=1:gz
oldv = v[h,j]
newv = add_vecs_and_max!(gm,r,h,j,E,exp_v,beta)
v[h,j]= newv
diff = max(diff, oldv-newv, newv-oldv)
end
end
end
return v
end
Switching the functions to use Float64 should increase speed (as CPUs are inherently optimized for 64-bit word lengths). Also, using the mutating A_mul_Bt! directly saves another allocation. Avoiding the copy(...) by switching the arrays v and Tv.
How do these optimizations improve your running time?
2nd UPDATE
Updated the code in the UPDATE section to use findmax. Also, changed dynam_serial to use v without Tv, as there was no need to save the old version except for the diff calculation, which is now done inside the loop.
Here's the code I copied-and-pasted, provided by Dan Getz above. I include the array and scalar definitions exactly as I ran them. Performance was: 39.507005 seconds (11 allocations: 486.891 KiB) when running #time dynam_serial(E,gm,gz,beta,Zprob).
using SpecialFunctions
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = (1+r)^(-1)
sigma_range = 4
gz = 19 #15 #19
gp = 29 #19 #29
gk = 37 #25 #37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp.(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float64,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float64,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float64,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
function add_vecs_and_max!(gm::Int,r::Array{Float64},h::Int,j::Int,E::Array{Float64},
exp_v::Array{Float64},beta::Float64)
maxr = -Inf
#inbounds for i=1:gm r[i] = E[i,h,j]+beta*exp_v[i,j]
maxr = max(r[i],maxr)
end
return maxr
end
function dynam_serial(E::Array{Float64},gm::Int,gz::Int,
beta::Float64,Zprob::Array{Float64})
v = Array{Float64}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float64}(gm,gz)
r = Array{Float64}(gm)
exp_v = Array{Float64}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.0 # arbitrary initial value greater than convcrit
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
diff = -Inf
for h=1:gm
for j=1:gz
Tv[h,j]=add_vecs_and_max!(gm,r,h,j,E,exp_v,beta)
diff = max(abs(Tv[h,j]-v[h,j]),diff)
end
end
(v,Tv)=(Tv,v)
end
return v
end
Now, here's another version of the algorithm and inputs. The functions are similar to what Dan Getz suggested, except that I use findmax rather than an iterated max function to find the array maximum. In the input construction, I am using both Float32 and mixing different bit-types together. However, I've consistently achieved better performance this way: 24.905569 seconds (1.81 k allocations: 46.829 MiB, 0.01% gc time). But it's not clear at all why.
using SpecialFunctions
est_params = [.788,.288,.0034,.1519,.1615,.0041,.0077,.2,0.005,.7196]
r = 0.015
tau = 0.35
rho =est_params[1]
sigma =est_params[2]
delta = 0.15
gamma =est_params[3]
a_capital =est_params[4]
lambda1 =est_params[5]
lambda2 =est_params[6]
s =est_params[7]
theta =est_params[8]
mu =est_params[9]
p_bar_k_ss =est_params[10]
beta = Float32((1+r)^(-1))
sigma_range = 4
gz = 19
gp = 29
gk = 37
lnz=collect(linspace(-sigma_range*sigma,sigma_range*sigma,gz))
z=exp(lnz)
gk_m = fld(gk,2)
# Need to add mu somewhere to k_ss
k_ss = (theta*(1-tau)/(r+delta))^(1/(1-theta))
k=cat(1,map(i->k_ss*((1-delta)^i),collect(1:gk_m)),map(i->k_ss/((1-delta)^i),collect(1:gk_m)))
insert!(k,gk_m+1,k_ss)
sort!(k)
p_bar=p_bar_k_ss*k_ss
p = collect(linspace(-p_bar/2,p_bar,gp))
#Tauchen
N = length(z)
Z = zeros(N,1)
Zprob = zeros(Float32,N,N)
Z[N] = lnz[length(z)]
Z[1] = lnz[1]
zstep = (Z[N] - Z[1]) / (N - 1)
for i=2:(N-1)
Z[i] = Z[1] + zstep * (i - 1)
end
for a = 1 : N
for b = 1 : N
if b == 1
Zprob[a,b] = 0.5*erfc(-((Z[1] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2))
elseif b == N
Zprob[a,b] = 1 - 0.5*erfc(-((Z[N] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
else
Zprob[a,b] = 0.5*erfc(-((Z[b] - mu - rho * Z[a] + zstep / 2) / sigma)/sqrt(2)) -
0.5*erfc(-((Z[b] - mu - rho * Z[a] - zstep / 2) / sigma)/sqrt(2))
end
end
end
# Collecting tauchen results in a 2 element array of linspace and array; [2] gets array
# Zprob=collect(tauchen(gz, rho, sigma, mu, sigma_range))[2]
Zcumprob=zeros(Float32,gz,gz)
# 2 in cumsum! denotes the 2nd dimension, i.e. columns
cumsum!(Zcumprob, Zprob,2)
gm = gk * gp
control=zeros(gm,2)
for i=1:gk
control[(1+gp*(i-1)):(gp*i),1]=fill(k[i],(gp,1))
control[(1+gp*(i-1)):(gp*i),2]=p
end
endog=copy(control)
E=Array(Float32,gm,gm,gz)
for h=1:gm
for m=1:gm
for j=1:gz
# set the nonzero net debt indicator
if endog[h,2]<0
p_ind=1
else
p_ind=0
end
# set the investment indicator
if (control[m,1]-(1-delta)*endog[h,1])!=0
i_ind=1
else
i_ind=0
end
E[m,h,j] = (1-tau)*z[j]*(endog[h,1]^theta) + control[m,2]-endog[h,2]*(1+r*(1-tau)) +
delta*endog[h,1]*tau-(control[m,1]-(1-delta)*endog[h,1]) -
(i_ind*gamma*endog[h,1]+endog[h,1]*(a_capital/2)*(((control[m,1]-(1-delta)*endog[h,1])/endog[h,1])^2)) +
s*endog[h,2]*p_ind
elem = E[m,h,j]
if E[m,h,j]<0
E[m,h,j]=elem+lambda1*elem-.5*lambda2*elem^2
else
E[m,h,j]=elem
end
end
end
end
function add_vecs!(gm::Int,r::Array{Float32},h::Int,j::Int,E::Array{Float32},
exp_v::Array{Float32},beta::Float32)
#inbounds #views for i=1:gm
r[i]=E[i,h,j] + beta*exp_v[i,j]
end
return r
end
function dynam_serial(E::Array{Float32},gm::Int,gz::Int,beta::Float32,Zprob::Array{Float32})
v = Array{Float32}(gm,gz)
fill!(v,E[cld(gm,2),cld(gm,2),cld(gz,2)])
Tv = Array{Float32}(gm,gz)
# Set parameters for the loop
convcrit = 0.0001 # chosen convergence criterion
diff = 1.00000 # arbitrary initial value greater than convcrit
iter=0
exp_v=Array{Float32}(gm,gz)
r=Array{Float32}(gm)
while diff>convcrit
A_mul_Bt!(exp_v,v,Zprob)
for h=1:gm
for j=1:gz
Tv[h,j]=findmax(add_vecs!(gm,r,h,j,E,exp_v,beta))[1]
end
end
diff = maximum(abs,Tv - v)
(v,Tv)=(Tv,v)
end
return v
end
Related
I am starting to use Julia mainly because of its speed. Currently, I am solving a fixed point problem. Although the current version of my code runs fast I would like to know some methods to improve its speed.
First of all, let me summarize the algorithm.
There is an initial seed called C0 that maps from the space (b,y) into an action space c, then we have C0(b,y)
There is a formula that generates a rule Ct from C0.
Then, using an additional restriction, I can obtain an updating of b [let's called it bt]. Thus,it generates a rule Ct(bt,y)
I need to interpolate the previous rule to move from the grid bt into the original grid b. It gives me an update for C0 [let's called that C1]
I will iterate until the distance between C1 and C0 is below a convergence threshold.
To implement it I created two structures:
struct Parm
lC::Array{Float64, 2} # Lower limit
uC::Array{Float64, 2} # Upper limit
γ::Float64 # CRRA coefficient
δ::Float64 # factor in the euler
γ1::Float64 #
r1::Float64 # inverse of the gross interest rate
yb1::Array{Float64, 2} # y - b(t+1)
P::Array{Float64, 2} # Transpose of transition matrix
end
mutable struct Upd1
pol::Array{Float64,2} # policy function
b::Array{Float64, 1} # exogenous grid for interpolation
dif::Float64 # updating difference
end
The first one is a set of parameters while the second one stores the decision rule C1. I also define some functions:
function eulerm(x::Upd1,p::Parm)
ct = p.δ *(x.pol.^(-p.γ)*p.P).^(-p.γ1); #Euler equation
bt = p.r1.*(ct .+ p.yb1); #Endeogenous grid for bonds
return ct,bt
end
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #simd for col in 1:size(bt,2)
F1 = LinearInterpolation(bt[:,col], ct[:,col],extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC];
polnew[polnew .> p.uC] .= p.uC[polnew .> p.uC];
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
function updating!(x::Upd1,p::Parm)
ct, bt = eulerm(x,p); # endogeneous grid
x.pol, x.dif = interp0!(bt,ct,x,p);
end
function conver(x::Upd1,p::Parm)
while x.dif>1e-8
updating!(x,p);
end
end
The first formula implements steps 2 and 3. The third one makes the updating (last part of step 4), and the last one iterates until convergence (step 5).
The most important function is the second one. It makes the interpolation. While I was running the function #time and #btime I realized that the largest number of allocations are in the loop inside this function. I tried to reduce it by not defining polnew and goes directly to x.pol but in this case, the results are not correct since it only need two iterations to converge (I think that Julia is thinking that polold is exactly the same than x.pol and it is updating both at the same time).
Any advice is well received.
To anyone that wants to run it by themselves, I add the rest of the required code:
function rouwen(ρ::Float64, σ2::Float64, N::Int64)
if (N % 2 != 1)
return "N should be an odd number"
end
sigz = sqrt(σ2/(1-ρ^2));
zn = sigz*sqrt(N-1);
z = range(-zn,zn,N);
p = (1+ρ)/2;
q = p;
Rho = [p 1-p;1-q q];
for i = 3:N
zz = zeros(i-1,1);
Rho = p*[Rho zz; zz' 0] + (1-p)*[zz Rho; 0 zz'] + (1-q)*[zz' 0; Rho zz] + q *[0 zz'; zz Rho];
Rho[2:end-1,:] = Rho[2:end-1,:]/2;
end
return z,Rho;
end
#############################################################
# Parameters of the model
############################################################
lb = 0; ub = 1000; pivb = 0.25; nb = 500;
ρ = 0.988; σz = 0.0439; μz =-σz/2; nz = 7;
ϕ = 0.0; σe = 0.6376; μe =-σe/2; ne = 7;
β = 0.98; r = 1/400; γ = 1;
b = exp10.(range(start=log10(lb+pivb), stop=log10(ub+pivb), length=nb)) .- pivb;
#=========================================================
Algorithm
======================================================== =#
(z,Pz) = rouwen(ρ,σz, nz);
μZ = μz/(1-ρ);
z = z .+ μZ;
(ee,Pe) = rouwen(ϕ,σe,ne);
ee = ee .+ μe;
y = exp.(vec((z .+ ee')'));
P = kron(Pz,Pe);
R = 1 + r;
r1 = R^(-1);
γ1 = 1/γ;
δ = (β*R)^(-γ1);
m = R*b .+ y';
lC = max.(m .- ub,0);
uC = m .- lb;
by1 = b .- y';
# initial guess for C0
c0 = 0.1*(m);
# Set of parameters
pp = Parm(lC,uC,γ,δ,γ1,r1,by1,P');
# Container of results
up1 = Upd1(c0,b,1);
# Fixed point problem
conver(up1,pp)
UPDATE As it was reccomend, I made the following changes to the third function
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds for col in 1:size(bt,2)
F1 = LinearInterpolation(#view(bt[:,col]), #view(ct[:,col]),extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
for j in eachindex(polnew)
polnew[j] < p.lC[j] ? polnew[j] = p.lC[j] : nothing
polnew[j] > p.uC[j] ? polnew[j] = p.uC[j] : nothing
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
This leads to an improvement in the speed (from ~1.5 to ~1.3 seconds). And a reduction in the number of allocations. Somethings that I noted were:
Changing from polnew[:,col] = F1(x.b) to polnew[:,col] .= F1(x.b) can reduce the total allocations but the time is slower, why is that?
How should I understand the difference between #time and #btime. For this case, I have:
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
1.338042 seconds (385.72 k allocations: 1.157 GiB, 3.37% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
Just to be precise, in both cases, I run it several times and I choose representative numbers for each line.
Does it mean that all the time is due allocations during the compilation?
Start going through the "performance tips" as advised by #DNF but below you will find most important comments for your code.
Vectorize vector assignments - a small dot makes big difference
julia> julia> a = rand(3,4);
julia> #btime $a[3,:] = $a[3,:] ./ 2;
40.726 ns (2 allocations: 192 bytes)
julia> #btime $a[3,:] .= $a[3,:] ./ 2;
20.562 ns (1 allocation: 96 bytes)
Use views when doing something with subarrays:
julia> #btime sum($a[3,:]);
18.719 ns (1 allocation: 96 bytes)
julia> #btime sum(#view($a[3,:]));
5.600 ns (0 allocations: 0 bytes)
Your code around a lines polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC]; will make much less allocations when you do it with a for loop over each element of polnew
#simd will have no effect on conditionals (point 3) neither when code is calling complex external functions
I want to give an update about this problem. I made two main changes to my code: (i) I define my own linear interpolation function and (ii) I include the check of bounds in the interpolation.
With this the new function three is
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #views for col in 1:size(bt,2)
polnew[:,col] = myint(bt[:,col], ct[:,col],x.b[:],p.lC[:,col],p.uC[:,col]);
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
And the interpolation is now:
function myint(x0,y0,x1,ly,uy)
y1 = similar(x1);
n = size(x0,1);
j = 1;
#simd for i in eachindex(x1)
while (j <= n) && (x1[i] > x0[j])
j+=1;
end
if j == 1
y1[i] = y0[1] + ((y0[2]-y0[1])/(x0[2]-x0[1]))*(x1[i]-x0[1]) ;
elseif j == n+1
y1[i] = y0[n] + ((y0[n]-y0[n-1])/(x0[n]-x0[n-1]))*(x1[i]-x0[n]);
else
y1[i] = y0[j-1]+ ((x1[i]-x0[j-1])/(x0[j]-x0[j-1]))*(y0[j]-y0[j-1]);
end
y1[i] > uy[i] ? y1[i] = uy[i] : nothing;
y1[i] < ly[i] ? y1[i] = ly[i] : nothing;
end
return y1;
end
As you can see, I am taking advantage (and assuming) that both vectors that we use as basis are ordered while the two last lines in the outer loops checks the bounds imposed by lC and uC.
With that I get the following total time
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
0.734630 seconds (28.93 k allocations: 752.214 MiB, 3.82% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
which is almost as twice faster with ~8% of the total allocations. the use of views in the loop of the function interp0! also helps a lot.
I cannot seem to figure out why IPOPT cannot find a solution to this. Initially, I thought the problem was totally infeasible but when I reduce the value of col_total to any number below 161000 or comment out the last constraint equation that contains col_total, it solves and EXITs with an Optimal Solution Found and a final objective value function of -161775.256826753. I have solved the same Maximization problem using Artificial Bee Colony and Particle Swamp Optimization techniques, and they solve and return optimal objective value function at least 225000 and 226000 respectively. Could it be that another solver is required? I have also tried APOPT, BPOPT, and IPOPT and have tinkered around with the tolerance values, but no combination none seems to work just yet. The code is posted below. Any guidance will be hugely appreciated.
from gekko import GEKKO
import numpy as np
distances = np.array([[[0, 0],[0,0],[0,0],[0,0]],\
[[155,0],[0,0],[0,0],[0,0]],\
[[310,0],[155,0],[0,0],[0,0]],\
[[465,0],[310,0],[155,0],[0,0]],\
[[620,0],[465,0],[310,0],[155,0]]])
alpha = 0.5 / np.log(30/0.075)
diam = 31
free = 7
rho = 1.2253
area = np.pi * (diam / 2)**2
min_v = 5.5
axi_max = 0.32485226746
col_total = 176542.96546512868
rat = 14
nn = 5
u_hub_lowerbound = 5.777777777777778
c_pow = 0.59230249
p_max = 0.5 * rho * area * c_pow * free**3
# Initialize Model
m = GEKKO(remote=True)
#initialize variables, Set lower and upper bounds
x = [m.Var(value = 0.03902278, lb = 0, ub = axi_max) \
for i in range(nn)]
# i = 0
b = 1
c = 0
v_s = list()
for i in range(nn-1): # Loop runs for nn-1 times
# print(i)
# print(i,b,c)
squared_defs = list()
while i < b:
d = distances[b][c][0]
r = distances[b][c][1]
ss = (2 * (alpha * d) / diam)
tt = r / ((diam/2) + (alpha * d))
squared_defs.append((2 * x[i] / (1 + ss**2)) * np.exp(-(tt**2)) ** 2)
i+=1
c+=1
#Equations
m.Equation((free * (1 - (sum(squared_defs))**0.5)) - rat <= 0)
m.Equation((free * (1 - (sum(squared_defs))**0.5)) - u_hub_lowerbound >= 0)
v_s.append(free * (1 - (sum(squared_defs))**0.5))
squared_defs.clear()
b+=1
c=0
# Inserts free as the first item on the v_s list to
# increase len(v_s) to nn, so that 'v_s' and 'x'
# are of same length
v_s.insert(0, free)
gamma = list()
for i in range(len(x)):
bet = (4*x[i]*((1-x[i])**2) * rho * area) / 2
gam = bet * v_s[i]**3
gamma.append(gam)
#Equations
m.Equation(x[i] - axi_max <= 0)
m.Equation((((4*x[i]*((1-x[i])**2) * rho * area) / 2) \
* v_s[i]**3) - p_max <= 0)
m.Equation((((4*x[i]*((1-x[i])**2) * rho * area) / 2) * \
v_s[i]**3) > 0)
#Equation
m.Equation(col_total - sum(gamma) <= 0)
#Objective
y = sum(gamma)
m.Maximize(y) # Maximize
#Set global options
m.options.IMODE = 3 #steady state optimization
#Solve simulation
m.options.SOLVER = 3
m.solver_options = ['linear_solver ma27','mu_strategy adaptive','max_iter 2500', 'tol 1.0e-5' ]
m.solve()
Built the equations without .value in the expressions. The x[i].value is only needed at the end to view the solution after the solution is complete or to initialize the value of x[i]. The expression m.Maximize(y) is more readable than m.Obj(-y) although they are equivalent.
from gekko import GEKKO
import numpy as np
distances = np.array([[[0, 0],[0,0],[0,0],[0,0]],\
[[155,0],[0,0],[0,0],[0,0]],\
[[310,0],[155,0],[0,0],[0,0]],\
[[465,0],[310,0],[155,0],[0,0]],\
[[620,0],[465,0],[310,0],[155,0]]])
alpha = 0.5 / np.log(30/0.075)
diam = 31
free = 7
rho = 1.2253
area = np.pi * (diam / 2)**2
min_v = 5.5
axi_max = 0.069262150781
col_total = 20000
p_max = 4000
rat = 14
nn = 5
# Initialize Model
m = GEKKO(remote=True)
#initialize variables, Set lower and upper bounds
x = [m.Var(value = 0.03902278, lb = 0, ub = axi_max) \
for i in range(nn)]
i = 0
b = 1
c = 0
v_s = list()
for turbs in range(nn-1): # Loop runs for nn-1 times
squared_defs = list()
while i < b:
d = distances[b][c][0]
r = distances[b][c][1]
ss = (2 * (alpha * d) / diam)
tt = r / ((diam/2) + (alpha * d))
squared_defs.append((2 * x[i] / (1 + ss**2)) \
* m.exp(-(tt**2)) ** 2)
i+=1
c+=1
#Equations
m.Equation((free * (1 - (sum(squared_defs))**0.5)) - rat <= 0)
m.Equation(min_v - (free * (1 - (sum(squared_defs))**0.5)) <= 0 )
v_s.append(free * (1 - (sum(squared_defs))**0.5))
squared_defs.clear()
b+=1
a=0
c=0
# Inserts free as the first item on the v_s list to
# increase len(v_s) to nn, so that 'v_s' and 'x'
# are of same length
v_s.insert(0, free)
beta = list()
gamma = list()
for i in range(len(x)):
bet = (4*x[i]*((1-x[i])**2) * rho * area) / 2
gam = bet * v_s[i]**3
#Equations
m.Equation((((4*x[i]*((1-x[i])**2) * rho * area) / 2) \
* v_s[i]**3) - p_max <= 0)
m.Equation((((4*x[i]*((1-x[i])**2) * rho * area) / 2) \
* v_s[i]**3) > 0)
gamma.append(gam)
#Equation
m.Equation(col_total - sum(gamma) <= 0)
#Objective
y = sum(gamma)
m.Maximize(y) # Maximize
#Set global options
m.options.IMODE = 3 #steady state optimization
#Solve simulation
m.options.SOLVER = 3
m.solve()
This gives a successful solution with maximized objective 20,000:
Number of Iterations....: 12
(scaled) (unscaled)
Objective...............: -4.7394814741924645e+00 -1.9999999999929641e+04
Dual infeasibility......: 4.4698510326511536e-07 1.8862194343304290e-03
Constraint violation....: 3.8275766582203308e-11 1.2941979026166479e-07
Complementarity.........: 2.1543608536533588e-09 9.0911246952931704e-06
Overall NLP error.......: 4.6245685940749926e-10 1.8862194343304290e-03
Number of objective function evaluations = 80
Number of objective gradient evaluations = 13
Number of equality constraint evaluations = 80
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 13
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 12
Total CPU secs in IPOPT (w/o function evaluations) = 0.010
Total CPU secs in NLP function evaluations = 0.011
EXIT: Optimal Solution Found.
The solution was found.
The final value of the objective function is -19999.9999999296
---------------------------------------------------
Solver : IPOPT (v3.12)
Solution time : 3.210000000399305E-002 sec
Objective : -19999.9999999296
Successful solution
---------------------------------------------------
I got stuck with below task and spent about 3 hours trying to figure it out.
Task description: A man has a rather old car being worth $2000. He saw a secondhand car being worth $8000. He wants to keep his old car until he can buy the secondhand one.
He thinks he can save $1000 each month but the prices of his old car and of the new one decrease of 1.5 percent per month. Furthermore this percent of loss increases by 0.5 percent at the end of every two months. Our man finds it difficult to make all these calculations.
How many months will it take him to save up enough money to buy the car he wants, and how much money will he have left over?
My code so far:
def nbMonths(startPriceOld, startPriceNew, savingperMonth, percentLossByMonth)
dep_value_old = startPriceOld
mth_count = 0
total_savings = 0
dep_value_new = startPriceNew
mth_count_new = 0
while startPriceOld != startPriceNew do
if startPriceOld >= startPriceNew
return mth_count = 0, startPriceOld - startPriceNew
end
dep_value_new = dep_value_new - (dep_value_new * percentLossByMonth / 100)
mth_count_new += 1
if mth_count_new % 2 == 0
dep_value_new = dep_value_new - (dep_value_new * 0.5) / 100
end
dep_value_old = dep_value_old - (dep_value_old * percentLossByMonth / 100)
mth_count += 1
total_savings += savingperMonth
if mth_count % 2 == 0
dep_value_old = dep_value_old - (dep_value_old * 0.5) / 100
end
affordability = total_savings + dep_value_old
if affordability >= dep_value_new
return mth_count, affordability - dep_value_new
end
end
end
print nbMonths(2000, 8000, 1000, 1.5) # Expected result[6, 766])
The data are as follows.
op = 2000.0 # current old car value
np = 8000.0 # current new car price
sv = 1000.0 # annual savings
dr = 0.015 # annual depreciation, both cars (1.5%)
cr = 0.005. # additional depreciation every two years, both cars (0.5%)
After n >= 0 months the man's (let's call him "Rufus") savings plus the value of his car equal
sv*n + op*(1 - n*dr - (cr + 2*cr + 3*cr +...+ (n/2)*cr))
where n/2 is integer division. As
cr + 2*cr + 3*cr +...+ (n/2)*cr = cr*((1+2+..+n)/2) = cr*(1+n/2)*(n/2)
the expression becomes
sv*n + op*(1 - n*dr - cr*(1+(n/2))*(n/2))
Similarly, after n years the cost of the car he wants to purchase will fall to
np * (1 - n*dr - cr*(1+(n/2))*(n/2))
If we set these two expressions equal we obtain the following.
sv*n + op - op*dr*n - op*cr*(n/2) - op*cr*(n/2)**2 =
np - np*dr*n - np*cr*(n/2) - np*cr*(n/2)**2
which reduces to
cr*(np-op)*(n/2)**2 + (sv + dr*(np-op))*n + cr*(np-op)*(n/2) - (np-op) = 0
or
cr*(n/2)**2 + (sv/(np-op) + dr)*n + cr*(n/2) - 1 = 0
If we momentarily treat (n/2) as a float division, this expression reduces to a quadratic.
(cr/4)*n**2 + (sv/(np-op) + dr + cr/2)*n - 1 = 0
= a*n**2 + b*n + c = 0
where
a = cr/4 = 0.005/4 = 0.00125
b = sv/(np-op) + dr + cr/(2*a) = 1000.0/(8000-2000) + 0.015 + 0.005/2 = 0.18417
c = -1
Incidentally, Rufus doesn't have a computer, but he does have an HP 12c calculator his grandfather gave him when he was a kid, which is perfectly adequate for these simple calculations.
The roots are computed as follows.
(-b + Math.sqrt(b**2 - 4*a*c))/(2*a) #=> 5.24
(-b - Math.sqrt(b**2 - 4*a*c))/(2*a) #=> -152.58
It appears that Rufus can purchase the new vehicle (if it's still for sale) in six years. Had we been able able to solve the above equation for n/2 using integer division it might have turned out that Rufus would have had to wait longer. That’s because for a given n both cars would have depreciated less (or at least not not more), and because the car to be purchased is more expensive than the current car, the difference in values would be greater than that obtained with the float approximation for 1/n. We need to check that, however. After n years, Rufus' savings and the value of his beater will equal
sv*n + op*(1 - dr*n - cr*(1+(n/2))*(n/2))
= 1000*n + 2000*(1 - 0.015*n - 0.005*(1+(n/2))*(n/2))
For n = 6 this equals
1000*6 + 2000*(1 - 0.015*6 - 0.005*(1+(6/2))*(6/2))
= 1000*6 + 2000*(1 - 0.015*6 - 0.005*(1+3)*3)
= 1000*6 + 2000*0.85
= 7700
The cost of Rufus' dream car after n years will be
np * (1 - dr*n - cr*(1+(n/2))*(n/2))
= 8000 * (1 - 0.015*n - 0.005*(1+(n/2))*(n/2))
For n=6 this becomes
8000 * (1 - 0.015*6 - 0.005*(1+(6/2))*(6/2))
= 8000*0.85
= 6800
(Notice that the factor 0.85 is the same in both calculations.)
Yes, Rufus will be able to buy the car in 6 years.
def nbMonths(old, new, savings, percent)
percent = percent.fdiv(100)
current_savings = 0
months = 0
loop do
break if current_savings + old >= new
current_savings += savings
old -= old * percent
new -= new * percent
months += 1
percent += 0.005 if months.odd?
end
[months, (current_savings + old - new).round]
end
In the problem Im working on there is such a part of code, as shown below. The definition part is just to show you the sizes of arrays. Below I pasted vectorized version - and it is >2x slower. Why it happens so? I know that i happens if vectorization requiers large temporary variables, but (it seems) it is not true here.
And generally, what (other than parfor, with I already use) can I do to speed up this code?
maxN = 100;
levels = maxN+1;
xElements = 101;
umn = complex(zeros(levels, levels));
umn2 = umn;
bessels = ones(xElements, xElements, levels); % 1.09 GB
posMcontainer = ones(xElements, xElements, maxN);
tic
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
nn = n + 1;
mm = 1;
for m = 1 : 2 : n
umn(nn, mm) = bessels(i, j, nn) * posMcontainer(i, j, m);
mm = mm + 1;
end
end
end
end
toc % 0.520594 seconds
tic
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
umn2(nn, 1:numOfEl) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
end
end
toc % 1.275926 seconds
sum(sum(umn-umn2)) % veryfying, if all done right
Best regards,
Alex
From the profiler:
Edit:
In reply to #Jason answer, this alternative takes the same time:
for n = 1:2:maxN
nn(n) = n + 1;
numOfEl(n) = ceil(n/2);
end
for j = 1 : xElements
for i = 1 : xElements
for n = 1 : 2 : maxN
umn2(nn(n), 1:numOfEl(n)) = bessels(i, j, nn(n)) * posMcontainer(i, j, 1:2:n);
end
end
end
Edit2:
In reply to #EBH :
The point is to do the following:
parfor i = 1 : xElements
for j = 1 : xElements
umn = complex(zeros(levels, levels)); % cleaning
for n = 0:maxN
mm = 1;
for m = -n:2:n
nn = n + 1; % for indexing
if m < 0
umn(nn, mm) = bessels(i, j, nn) * negMcontainer(i, j, abs(m));
end
if m > 0
umn(nn, mm) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
if m == 0
umn(nn, mm) = bessels(i, j, nn);
end
mm = mm + 1; % for indexing
end % m
end % n
beta1 = sum(sum(Aj1.*umn));
betaSumSq1(i, j) = abs(beta1).^2;
beta2 = sum(sum(Aj2.*umn));
betaSumSq2(i, j) = abs(beta2).^2;
end % j
end % i
I speeded it up as much, as I was able to. What you have written is taking only the last bessels and posMcontainer values, so it does not produce the same result. In the real code, those two containers are filled not with 1, but with some precalculated values.
After your edit, I can see that umn is just a temporary variable for another calculation. It still can be mostly vectorizable:
betaSumSq1 = zeros(xElements); % preallocating
betaSumSq2 = zeros(xElements); % preallocating
% an index matrix to fetch the right values from negMcontainer and
% posMcontainer:
indmat = tril(repmat([0 1;1 0],ceil((maxN+1)/2),floor(levels/2)));
indmat(end,:) = [];
% an index matrix to fetch the values in correct order for umn:
b_ind = repmat([1;0],ceil((maxN+1)/2),1);
b_ind(end) = [];
tempind = logical([fliplr(indmat) b_ind indmat+triu(ones(size(indmat)))]);
% permute the arrays to prevent squeeze:
PM = permute(posMcontainer,[3 1 2]);
NM = permute(negMcontainer,[3 1 2]);
B = permute(bessels,[3 1 2]);
for k = 1 : maxN+1 % third dim
for jj = 1 : xElements % columns
b = B(:,jj,k); % get one vector of B
% perform b*NM for every row of NM*indmat, than flip the result:
neg = fliplr(bsxfun(#times,bsxfun(#times,indmat,NM(:,jj,k).'),b));
% perform b*PM for every row of PM*indmat:
pos = bsxfun(#times,bsxfun(#times,indmat,PM(:,jj,k).'),b);
temp = [neg mod(1:levels,2).'.*b pos].'; % concat neg and pos
% assign them to the right place in umn:
umn = reshape(temp(tempind.'),[levels levels]).';
beta1 = Aj1.*umn;
betaSumSq1(jj,k) = abs(sum(beta1(:))).^2;
beta2 = Aj2.*umn;
betaSumSq2(jj,k) = abs(sum(beta2(:))).^2;
end
end
This reduce running time from ~95 seconds to less 3 seconds (both without parfor), so it improves in almost 97%.
I would suspect it is memory allocation. You are re-allocating the m array in a 3 deep loop.
try rearranging the code:
tic
for n = 1 : 2 : maxN
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
for j = 1 : xElements
for i = 1 : xElements
umn2(nn, 1:numOfEl) = bessels(i, j, nn) * posMcontainer(i, j, m);
end
end
end
toc % 1.275926 seconds
I was trying this in Igor pro, which a similar language, but with different optimizations. So the direct translations don't time the same way as Matlab (vectorized was slightly faster in Igor). But reordering the loops did speed up the vectorized form.
In your second part of the code, that is setting umn2, inside the loops, you have:
nn = n + 1;
m = 1:2:n;
numOfEl = ceil(n/2);
Those 3 lines don't require any input from the i and j loops, they only use the n loop. So reordering the loops such that i and j are inside the n loop will mean that those 3 lines are done xElements^2 (100^2) times less often. I suspect it is that m = 1:2:n line that takes time, since that is allocating an array.
For a school's assignment I am trying to calculate pi using the Gauss Legendre algorithm to test cpu efficiency.
Therefore, I have written a program in Ruby.
This program should iterate 500000000 times and display the the time used for it. But everytime it executes within a second.
My question:
Is there a better way to iterate so it really does repeat 500 million times and display pi and the time?
include Math
a = 1
b = 1/sqrt(2)
t = 0.25
p = 1
i = 0
imax = 500000000
start = Time.now
until i = imax
an = (a/2) + (b/2)
bn = sqrt(a) * sqrt(b)
tn = t - p * ((a-an) * (a-an))
pn = 2 * p
a = an
b = bn
t = tn
p = pn
i +=1
PI = ((a+b)*(a+b))/(4*t)
end
finish = Time.now
time = finish - start
puts PI
puts time
Start by not making i equal imax right away:
until i = imax
Should be
until i == imax
Even better, just do
500000000.times do
Instead of that line.
In addition to the issues raised by #Nick and #sawa your algorithm is flawed: the square root of the product of a and b is not equal to the product of the square roots of a and b.
In ruby:
include Math
a, b, t, p = 1, 1/sqrt(2), 0.25, 1
imax = 5
imax.times do |i|
an = (a+b) / 2
bn = sqrt(a * b)
tn = t - p * ((a-an) * (a-an))
pn = 2 * p
a, b, t, p = an, bn, tn, pn
pi = ((a+b)*(a+b))/(4*t)
printf "%d : %10.60f\n", i, pi
end
Running this gives me:
0 : 3.140579250522168575088244324433617293834686279296875000000000
1 : 3.141592646213542838751209274050779640674591064453125000000000
2 : 3.141592653589794004176383168669417500495910644531250000000000
3 : 3.141592653589794004176383168669417500495910644531250000000000
4 : 3.141592653589794004176383168669417500495910644531250000000000
So clearly you need more accuracy, hence BigDecimal. As this is your homework assignment I'll leave that up to you :-). (If unsure which variables to change, try all except i and imax. Also check out http://www.ruby-doc.org/stdlib-1.9.3/libdoc/bigdecimal/rdoc/BigDecimal.html)
Another thing you are doing wrong is assigning a constant PI within a loop. Although it is possible to reassign a constant, it is not correct to do so. Either use a variable or move the assignment to outside of the loop so that it would be assigned only once.
Even if I remove the assignment and print out the result for each iteration like this:
include Math
a = 1
b = 1/sqrt(2)
t = 0.25
p = 1
i = 0
imax = 500000000
until i == imax
an = (a/2) + (b/2)
bn = sqrt(a) * sqrt(b)
tn = t - p * ((a-an) * (a-an))
pn = 2 * p
a = an
b = bn
t = tn
p = pn
i +=1
puts ((a+b)*(a+b))/(4*t)
end
I get the wrong result. It goes like this:
-2.1244311544725596
-1.1383928808463357
-1.1265990444799223
-1.1265961703346379
-1.126596170334544
-1.126596170334544
... # very long repetition of the same number
-1.126596170334544
-1.126596170334544
NaN
NaN
... # NaN forever
Something must be wrong with your algorithm.