Thread safe mutable configuration in Go - go

I'm surprised to see the lack of (in any) modules for a configuration module in Go which is thread safe for concurrent reads/writes.
I'm surprised there is no easy method to basically have something like https://github.com/spf13/viper, but thread safe.. where the Get/Set holds a Lock.
what's the right Go way to handle this without bloating code?
I normally use: https://github.com/spf13/viper however if the program for example as a GUI configuration is changeable during runtime, this package doesn't work.
I started doing the following
var config struct {
lock sync.RWMutex
myString string
myInt int
}
func main() {
config.lock.RLock()
_ = config.myString // any read
config.lock.RUnlock()
}
however this becomes very very tedious when accessing members to each time Lock/Unlock every single access for a read or a write and code becomes bloated and repetitive.

I typically use a configuration struct that is retrieved and updated atomically. This allows multiple fields to be updated in a single "transaction" and is easy to implement/use.
With Go1.18 and earlier this can be implemented with atomic.Value and wrap with some simple helper functions to convert the type from interface{} to your *config.
It is even simpler with atomic.Pointer in Go 1.19:
package main
import (
"sync/atomic"
)
type config struct {
str string
num int
}
var cfg atomic.Pointer[config]
func main() {
// Store initial configuration.
cfg.Store(&config{str: "foo", num: 42})
// Clone and modify multiple fields.
newCfg := *cfg.Load()
newCfg.str = "bar"
newCfg.num++
cfg.Store(&newCfg)
// Retrieve a value.
_ = cfg.Load().str
}
With Go1.18 and earlier you can use atomic.Value and wrap them with some simple helper functions to convert the type from interface{} to your *config.

Related

When to store pointers to structs in variables instead of the struct itself

I'm currently learning Go and am following a tutorial about how to use Go with Stripe. There is this example code:
package main
import (
"fmt"
"github.com/stripe/stripe-go"
"github.com/stripe-go/customer"
)
func main() {
sc := &client.API{}
sc.Init("somekey")
c, _ := sc.Customers.Get("customerid", nil)
// ...
}
What is/could be the reason that sc stores the pointer to the struct and not the struct itself?
[To supplement the comment you received]
While in this case with the small code sample it's hard to say, in most scenarios you'll see non-trivial types passed around by pointer to enable modification. As an anti-example, consider this code which uses a variable of a struct type by value:
type S struct {
ID int
}
func (s S) UpdateID(i int) {
s.ID = i
}
func main() {
s := S{}
s.UpdateID(99)
fmt.Println(s.ID)
}
What do you think this will print? It will print 0, because methods with value receivers cannot modify the underlying type.
There's much information about this in Go - read about pointers, and about how methods should be written. This is a good reference: https://golang.org/doc/faq#methods_on_values_or_pointers, and also https://golang.org/doc/effective_go#pointers_vs_values
Back to your example: typically non-trivial types such as those representing a "client" for some services will be using pointers because method calls on such types should be able to modify the types themselves.

Can I get a variable of a type based on reflect.Type [duplicate]

I have a function which takes an interface, like this:
func method(data interface{})
.. because I need to process different structs which have common fields/methods. In this function I use data tens or hundreds of times, in different places. It's really unpleasant to add switch a.(type) { case .. case .. all the time.
Is there a way to create a variable with just one switch with needed type and then just use this variable everywhere later? Something like:
var a .... // something here
switch data.(type) {
case *Struct1:
a = data.(*Struct1)
case *Struct2:
a = data.(*Struct2)
}
// Continue with 'a' only
a.Param = 15
fmt.Println(a.String())
Go is a statically typed language, the type of a must be known at compile time. And since Go does not support generics yet, you can't do what you want.
Try to come up with some other solution, e.g. abstract away the things you want to do with a into an interface, and have the concrete types implement that interface. Then a can be a variable of this interface type, and you can call methods of it.
If you can achieve this, actually you can even change the parameter of the data type to this interface, and no type assertion or type switch is needed.
Alternatively you could use reflection to access common fields (either for get or set) identified by their name, but reflection provides no compile-time guarantee, and it's usually less efficient. For an example how to do that, see this question: Assert interface to its type
You can't do what you ask for in your question directly, go is statically typed, so you can't have one variable that can hold different types, and still access that variable as if it is typed.
If you're only working on the common struct fields in your method, you are perhaps better off gathering all the common variables in its own struct, illustrated below as the commons struct and have your method take that type as an argument
package main
import (
"fmt"
)
type commons struct {
name string
age int
}
type structA struct {
commons
other_stuff int
}
type structB struct {
commons
foo string
}
func method(c* commons) {
fmt.Println(c)
c.age +=1
}
func main() {
a := structA{commons{"foo", 44}, 1}
b := structB{commons{"bar", 33}, "test"}
method(&a.commons)
method(&b.commons)
fmt.Println(a)
}
Go playground
I can't figure out what is your real goal but if the "method" you want to write handles common fields from similar structures, and you cannot fix original structures using Type Embedding, as #nos said above, then you can try to make another structure for method-internal use:
var v Vehicle // with common fields
switch data.(type) {
case *Car:
v.Handle = data.(*Car).Handle // or CircleHandle
case *Motorcycle:
v.Handle = data.(*Motorcycle).Handle // or BarHandle
}
v.Degree = 15
v.Speed = 50
v.Direction = "left"
v.Style = "rough"
/// so many things on `v`...
steering(v)
I think it is not a good approach but sometimes... :-)

How to create a variable with needed type instead of type assertion

I have a function which takes an interface, like this:
func method(data interface{})
.. because I need to process different structs which have common fields/methods. In this function I use data tens or hundreds of times, in different places. It's really unpleasant to add switch a.(type) { case .. case .. all the time.
Is there a way to create a variable with just one switch with needed type and then just use this variable everywhere later? Something like:
var a .... // something here
switch data.(type) {
case *Struct1:
a = data.(*Struct1)
case *Struct2:
a = data.(*Struct2)
}
// Continue with 'a' only
a.Param = 15
fmt.Println(a.String())
Go is a statically typed language, the type of a must be known at compile time. And since Go does not support generics yet, you can't do what you want.
Try to come up with some other solution, e.g. abstract away the things you want to do with a into an interface, and have the concrete types implement that interface. Then a can be a variable of this interface type, and you can call methods of it.
If you can achieve this, actually you can even change the parameter of the data type to this interface, and no type assertion or type switch is needed.
Alternatively you could use reflection to access common fields (either for get or set) identified by their name, but reflection provides no compile-time guarantee, and it's usually less efficient. For an example how to do that, see this question: Assert interface to its type
You can't do what you ask for in your question directly, go is statically typed, so you can't have one variable that can hold different types, and still access that variable as if it is typed.
If you're only working on the common struct fields in your method, you are perhaps better off gathering all the common variables in its own struct, illustrated below as the commons struct and have your method take that type as an argument
package main
import (
"fmt"
)
type commons struct {
name string
age int
}
type structA struct {
commons
other_stuff int
}
type structB struct {
commons
foo string
}
func method(c* commons) {
fmt.Println(c)
c.age +=1
}
func main() {
a := structA{commons{"foo", 44}, 1}
b := structB{commons{"bar", 33}, "test"}
method(&a.commons)
method(&b.commons)
fmt.Println(a)
}
Go playground
I can't figure out what is your real goal but if the "method" you want to write handles common fields from similar structures, and you cannot fix original structures using Type Embedding, as #nos said above, then you can try to make another structure for method-internal use:
var v Vehicle // with common fields
switch data.(type) {
case *Car:
v.Handle = data.(*Car).Handle // or CircleHandle
case *Motorcycle:
v.Handle = data.(*Motorcycle).Handle // or BarHandle
}
v.Degree = 15
v.Speed = 50
v.Direction = "left"
v.Style = "rough"
/// so many things on `v`...
steering(v)
I think it is not a good approach but sometimes... :-)

When to use global variables

I've heard many times that you should avoid global variables.
In my example I declared a global myTypes variable only to avoid declaring that variable over and over again in a function call or something similar.
Is this how it should be done? Is there a better way? A more testable way?
var myTypes = map[string]string{
"type1": "tpl1",
"type2": "tpl2",
}
func AFunc(someType string) string {
fmt.Sprintf("this is your type %s", myTypes[someType])
}
func main() {
AFunc("type1")
}
Not all global variables are bad. In your case:
The global variable is in the main package and therefore only accessible by a single program. This is ok.
The global variable is initialized once and not modified thereafter. This is ok.
On the other hand, whenever a global variable is modified during the program’s execution, the program becomes more difficult to understand. Therefore it should be avoided.
In a package that is meant to be reusable, global variables should be avoided since then two users of that package might influence each other. Imagine if the json package had a global variable var Indent bool. Such a variable is better to be hidden inside a data structure like JsonFormatter that gets created anew each time someone wants to format some JSON.
One usual way is to use Method Value
Consider a struct type T with two methods, Mv, whose receiver is of type T, and Mp, whose receiver is of type *T.
type T struct {
a int
}
func (tv T) Mv(a int) int { return 0 } // value receiver
func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver
var t T
The expression
T.Mv
yields a function equivalent to Mv but with an explicit receiver as its first argument; it has signature
func(tv T, a int) int
You can see an example of Method Value in this thread
// TODO: Get rid of the global variable.
var foo service
func handleFoo(w http.ResponseWriter, req *http.Request) {
// code that uses foo
}
func main() {
foo = initFoo()
http.HandleFunc("/foo", handleFoo)
}
One way to get rid of that global variable is to use method values:
type fooHandler struct {
foo service
}
func (h fooHandler) handle(w http.ResponseWriter, req *http.Request) {
// code that uses h.foo
}
func main() {
foo := initFoo()
http.HandleFunc("/foo", fooHandler{foo}.handle)
}
A new official approach for your global values is introduced in Go 1.7 with context.Context#Values.
Use context Values only for request-scoped data that transits processes and APIs, not for passing optional parameters to functions.
See "How to correctly use context.Context in Go 1.7"
Finally, in addition of being hard to test, global values can prevent vendoring.
See "To vendor or not to vendor, that is a question"
Many Go’s libaries have exported package variables. Those variables can be viewed as certain global states of a certain package.
Prior vendoring era, we can go get each imported package once and the global state of each imported package can be shared within all other imported packages.
Some devs may take it as granted and simply manipulate those global states at will.
However, with vendoring each imported package may have its own view of global states. Now a dev may found it impossible to change other package’s view of global state
You're not modifying myTypes, just reading it, so it's not a variable at all, it's a constant, and would be defined as such if Go supported it (and make sure you don't mutate it -- unfortunately Go doesn't allow you to enforce "constness" like other languages do). Global constants are mostly fine.
If you were to modify myTypes, e.g. by providing a function to add new types at runtime, then yes, it's a bad idea to retain myTypes as global state. You might just get away with it as long as you do it only in your "main program" which you're sure will never be a package to be imported by other code, but you don't know where this code might end up / get copied to (or even just used from multiple places in the same package), so why risk it. If this becomes a package that gets imported by other packages, things may work fine as long as there's not more than one such "client" package is active at runtime, but as soon as somebody links together several such packages into one binary, all those user packages will stomp over each other's data in the global myTypes. If a client package expects to only see the myTypes that it put in earlier, this will break if there's another client with different expectations. So packages that work fine when used individually may break when used together, with no way to fix this except changing the shared code. So just don't do it. It's a shame that Google themselves use global state in some of their own public stuff, e.g. in the standard "flag" package and things like "glog" which uses it and thus inherits the problem. Don't do it.

Constants in Go established during init

In my Go program, there are configuration values that I want to be constant for the duration of program execution, but that I want to be able to change at the deployment site. As far as I can tell, there's no way to achieve this with the const keyword, since (again, as far as I can tell) its value must be a constant specified at compile time. This means that the only way to achieve what I want would be to declare normal variables and initialize them during the package's init function. It's not that that won't work, but rather that there will now be nothing to prevent these pseudo-constant's values from changing.
My two questions are:
Am I missing something about how const works?
Assuming I'm not, what's the preferred way to handle this? A public function that returns a private variable that I never expose, never changing it? Just hoping people don't alter the variables, since they're really configuration settings?
Create a file "config.go" and create the vars you want to expose.
Don't export them (make them all lower case). Instead create public (upper case) funcs that give access to each item.
package config
var x = 10
func X() int {
return x
}
When you want those variables you simply import ./config and use them in code as follows:
if config.X()
Obviously, you can set the variables in the package init.
The following code is almost the same as the second method of #Christopher, except that it is not a module, it located in the main package.
package main
import (
"os"
)
type Config struct {
debug bool
key string
proxyNumber int
}
func (c *Config) Debug() bool {
return c.debug
}
func (c *Config) Key() string {
return c.key
}
func (c *Config) ProxyNumber() int {
return c.proxyNumber
}
const (
CONFIG_NAME = "config.ini"
)
var config *Config
func init() {
DefaultConfig()
if Exists(CONFIG_NAME) {
//try to save the config file
}else {
//try to load from the config file
}
}
func DefaultConfig() {
config = &Config{debug:true, key:"abcde",
proxyNumber:5,
}
}
//Exist: check the file exist
func Exists(path string) bool {
_, err := os.Stat(path)
if err == nil { return true }
if os.IsNotExist(err) { return false }
return false
}
you can use config to load and save the config file.
This is a very good question because it delves into what I suspect may be an omission from Go - immutable state.
From the language reference, "constant expressions may contain only constant operands and are evaluated at compile-time."
You cannot make vars constant, which is a shame. Joe's answer proposes encapsulation as a solution, which will work well - but it's verbose, tedious and might introduce errors.
By comparison, many impure functional languages combine mutable variables with single-assignment immutable values. For example, Scala has the keywords 'val' and 'var'; the meaning of Scala's 'var' is quite similar to Go's 'var'. Immutability is a useful tool in the toolbox because referentially-transparent side-effect-free functions can be written, alongside stateful mutable procedural code. Both have their place. Immutability is also an valuable tool for concurrency because there is no worry about possible race conditions if immutable values are shared between goroutines.
So in my opinion, amongst its many strengths, this is one of Go's shortcomings. It would presumably not be hard to support vals as well as vars, the difference being that the compiler checks that each val is assigned exactly once.
Until that feature is added, you have encapsulation as your only option.
You can do something like this:
package main
import (
"fmt"
"strconv"
)
var a string
func main() {
myvar, err := strconv.Atoi(a)
if err != nil {
fmt.Println(err)
}
fmt.Println(myvar)
}
and compile the program with
go build -ldflags '-X main.a 10' test.go
That way you can define a constant during compile time.
Just use standard go flags with iniflags. Standard go flags allow setting arbitrary config variables at program start via passing command-line flags, while iniflags "magically" add support for reading config variables from ini files.
You can wrap the variable in a function that returns its value:
func genConst(x int) func() int {
return func() int {
return x
}
}
var Constx = genConst(5)
var x1 = Constx()
This way the value cannot be changed by accident, even in the file where it's defined

Resources