rule based algorithm for text classification - algorithm

I'm trying to build a rule based text classification system to speed up the manual categorization of documents.
The long term aim is to use these manually classified documents as training data for an AI.
The classification system has over 100 categories.
The idea is to manually build a list of 'words' associated for each category in the classification system.
The list of words will be built by manually classifying a small no. of documents and manually identify the common words I find in each document.
The job of the rule engine is to attempt to identify other documents that belong in the same category based on the assigned words.
I'm looking to put a weight on each word associated with a category.
The intent is to initially weight the words based on their occurrence in the manually labelled documents.
So if the word 'select' appeared in an a 1000 word document 50 times then it would get a weighting of 5% (50/1000).
The rule engines job is then to score other documents based on the occurrences of words and their relative weighting.
What I'm not certain is how this scoring process should work or how to normalize the data given the variance in document size. (From 100 words to 10,000 words would be typical).
The intent is to have an iterative process (manually validate classification/add-remove words/adjust weights/classify documents via rule-engine).
With each iteration the rule-engine will hopefully get better at correctly classifying the documents reducing the label process to a Good/Bad classification action. Providing a significant percentage (even 50% should probably be fine) are correctly label the process should proceed rapidly.
I've heard that concepts such as linear regression might apply to this type of problem but don't know enough to google effectively.
Edit:
I've had some thoughts on how to go about the normalisation process.
normalise all documents to an 'average' size of 1000 words.
count the words in a document - total word count e.g. 250 words
count each word of interest - e.g. CheckBox occurred 25 times
calculate the occurrence of each word as a percentage of the actual
documents word count e.g. checkbox = 10%
If we have three words of interest: checkbox, select, multi
We end up with a set of ratios:
checkbox: select : multi
0.05 : 0.01 : 0.02
When scoring we are now looking for documents that have the closest matching ratio.
If a document presents with the following ratio:
0.04 : 0.02 : 0.01
Then we can define the distance between the two documents as:
0.05 - 0.04 + 0.01 - 0.02 + 0.02 - 0.01 = 0.01
The problem with this approach is that we care about the over all distance so the second word is problematic as it reduces the distance as the ratio is in the opposite direction as the other words.
To counter this we need to flip the calculation on the second word so that it moves the distance in the same direction
0.05 - 0.04 + 0.02 - 0.01 + 0.02 - 0.01 = 0.03
The second equations would appear to more accurately reflect the distance between the two documents.
Given we are talking about distance rather than a vector we would always take the absolute value of the result.
A distance of zero is considered an exact match.
I'm not entirely happy with this approach as some words are 'good' words and any number of them should be considered a positive.
e.g. if the classification is checkbox then the word checkbox should always be seen to reduce the distance.
May be we deal with this by nominating one or more words as 'key words'.
When a keyword appears, if its word ratio is > than the expected ratio, then the distance for that word is considered 0.

If you have some data that is labelled, it sounds like you might want a naive Bayes classifier with a bag-of-words feature vector.
If you don't have data with labels, it sounds like you might want topic modelling, such as LDA.

Related

In general, when does TF-IDF reduce accuracy?

I'm training a corpus consisting of 200000 reviews into positive and negative reviews using a Naive Bayes model, and I noticed that performing TF-IDF actually reduced the accuracy (while testing on test set of 50000 reviews) by about 2%. So I was wondering if TF-IDF has any underlying assumptions on the data or model that it works with, i.e. any cases where accuracy is reduced by the use of it?
The IDF component of TF*IDF can harm your classification accuracy in some cases.
Let suppose the following artificial, easy classification task, made for the sake of illustration:
Class A: texts containing the word 'corn'
Class B: texts not containing the word 'corn'
Suppose now that in Class A, you have 100 000 examples and in class B, 1000 examples.
What will happen to TFIDF? The inverse document frequency of corn will be very low (because it is found in almost all documents), and the feature 'corn' will get a very small TFIDF, which is the weight of the feature used by the classifier. Obviously, 'corn' was THE best feature for this classification task. This is an example where TFIDF may reduce your classification accuracy. In more general terms:
when there is class imbalance. If you have more instances in one class, the good word features of the frequent class risk having lower IDF, thus their best features will have a lower weight
when you have words with high frequency that are very predictive of one of the classes (words found in most documents of that class)
You can heuristically determine whether the usage of IDF on your training data decreases your predictive accuracy by performing grid search as appropriate.
For example, if you are working in sklearn, and you want to determine whether IDF decreases the predictive accuracy of your model, you can perform a grid search on the use_idf parameter of the TfidfVectorizer.
As an example, this code would implement the gridsearch algorithm on the selection of IDF for classification with SGDClassifier (you must import all the objects being instantiated first):
# import all objects first
X = # your training data
y = # your labels
pipeline = Pipeline([('tfidf',TfidfVectorizer()),
('sgd',SGDClassifier())])
params = {'tfidf__use_idf':(False,True)}
gridsearch = GridSearch(pipeline,params)
gridsearch.fit(X,y)
print(gridsearch.best_params_)
The output would be either:
Parameters selected as the best fit:
{'tfidf__use_idf': False}
or
{'tfidf__use_idf': True}
TF-IDF as far as I understand is a feature. TF is term frequency i.e. frequency of occurence in a document. IDF is inverse document frequncy i.e frequency of documents in which the term occurs.
Here, the model is using the TF-IDF info in the training corpus to estimate the new documents. For a very simple example, Say a document with word bad has pretty high term frequency of word bad in training set will sentiment label as negative. So, any new document containing bad will be more likely to be negative.
For the accuracy you can manaually select training corpus which contains mostly used negative or positive words. This will boost the accuracy.

How to calculate difficulty metric?

Note: I have completely changed the original question!
I do have several texts, which consists of several words. Words are categorized into difficulty categories from 1 to 6, 1 being the easiest one and 6 the hardest (or from common to least common). However, obviously not all words can be put into these categories, because they are countless words in the english language.
Each category has twice as many words as the category before.
Level: 100 words in total (100 new)
Level: 200 words in total (100 new)
Level: 400 words in total (200 new)
Level: 800 words in total (400 new)
Level: 1600 words in total (800 new)
Level: 3200 words in total (1600 new)
When I use the term level 6 below, I mean introduced in level 6. So it is part of the 1600 new words and can't be found in the 1600 words up to level 5.
How would I rate the difficulty of an individual text? Compare these texts:
An easy one
would only consist of very basic vocabulary:
I drive a car.
Let's say these are 4 level 1 words.
A medium one
This old man is cretinous.
This is a very basic sentence which only comes with one difficult word.
A hard one
would have some advanced vocabulary in there too:
I steer a gas guzzler.
So how much more difficult is the second or third of the first one? Let's compare text 1 and text 3. I and a are still level 1 words, gas might be lvl 2, steer is 4 and guzzler is not even in the list. cretinous would be level 6.
How to calculate a difficulty of these texts, now that I've classified the vocabulary?
I hope it is more clear what I want to do now.
The problem you are trying to solve is how to quantify your qualitative data.
The search term "quantifying qualitative data" may help you.
There is no general all-purpose algorithm for this. The best way to do it will depend upon what you want to use the metric for, and what your ratings of each individual task mean for the project as a whole in terms of practical impact on the factors you are interested in.
For example if the hardest tasks are typically unsolvable, then as soon as a project involves a single type 6 task, then the project may become unsolvable, and your metric would need to reflect this.
You also need to find some way to address the missing data (unrated tasks). It's likely that a single numeric metric is not going to capture all the information you want about these projects.
Once you have understood what the metric will be used for, and how the task ratings relate to each other (linear increasing difficulty vs. categorical distinctions) then there are plenty of simple metrics that may codify this analysis.
For example, you may rate projects for risk based on a combination of the number of unknown tasks and the number of tasks with difficulty above a certain threshold. Alternatively you may rate projects for duration based on a weighted sum of task difficulty, using a default or estimated difficulty for unknown tasks.

How to convert raw score to standardized score "sensibly"?

I want to convert about 7,000 raw scores (0 to 20,000) to a standardized score (0 to 100).
The distribution of the scores is not normal. The median is 270 but the top dozen scores are:
18586,
17151,
9690,
8034,
7723,
7026,
7027,
6725,
6722,
5637,
4996,
4452.
How do I do this conversion in a "sensible" way such that the standardized scores (from 0 to 100) both reflect the raw scores AND the fact that half of the scores are below 270?
I don't have a definition of "sensible" and want to have your suggestions as to what is sensible in this case.
I would suggest doing a histogram. It is basically bin numbers together to get the frequency. Here is the link to the Wiki http://en.wikipedia.org/wiki/Histogram. If you google histogram, there are links to several other site which may be helpful.
Given the range of the data, you may want to take to log of each number and used that for the historgram. That may help decrease the range and then scale that between 0 and 100.

Classifying english words into rare and common

I'm trying to devise a method that will be able to classify a given number of english words into 2 sets - "rare" and "common" - the reference being to how much they are used in the language.
The number of words I would like to classify is bounded - currently at around 10,000, and include everything from articles, to proper nouns that could be borrowed from other languages (and would thus be classified as "rare"). I've done some frequency analysis from within the corpus, and I have a distribution of these words (ranging from 1 use, to tops about 100).
My intuition for such a system was to use word lists (such as the BNC word frequency corpus, wordnet, internal corpus frequency), and assign weights to its occurrence in one of them.
For instance, a word that has a mid level frequency in the corpus, (say 50), but appears in a word list W - can be regarded as common since its one of the most frequent in the entire language. My question was - whats the best way to create a weighted score for something like this? Should I go discrete or continuous? In either case, what kind of a classification system would work best for this?
Or do you recommend an alternative method?
Thanks!
EDIT:
To answer Vinko's question on the intended use of the classification -
These words are tokenized from a phrase (eg: book title) - and the intent is to figure out a strategy to generate a search query string for the phrase, searching a text corpus. The query string can support multiple parameters such as proximity, etc - so if a word is common, these params can be tweaked.
To answer Igor's question -
(1) how big is your corpus?
Currently, the list is limited to 10k tokens, but this is just a training set. It could go up to a few 100k once I start testing it on the test set.
2) do you have some kind of expected proportion of common/rare words in the corpus?
Hmm, I do not.
Assuming you have a way to evaluate the classification, you can use the "boosting" approach to machine learning. Boosting classifiers use a set of weak classifiers combined to a strong classifier.
Say, you have your corpus and K external wordlists you can use.
Pick N frequency thresholds. For example, you may have 10 thresholds: 0.1%, 0.2%, ..., 1.0%.
For your corpus and each of the external word lists, create N "experts", one expert per threshold per wordlist/corpus, total of N*(K+1) experts. Each expert is a weak classifier, with a very simple rule: if the frequency of the word is higher than its threshold, they consider the word to be "common". Each expert has a weight.
The learning process is as follows: assign the weight 1 to each expert. For each word in your corpus, make the experts vote. Sum their votes: 1 * weight(i) for "common" votes and (-1) * weight(i) for "rare" votes. If the result is positive, mark the word as common.
Now, the overall idea is to evaluate the classification and increase the weight of experts that were right and decrease the weight of the experts that were wrong. Then repeat the process again and again, until your evaluation is good enough.
The specifics of the weight adjustment depends on the way how you evaluate the classification. For example, if you don't have per-word evaluation, you may still evaluate the classification as "too many common" or "too many rare" words. In the first case, promote all the pro-"rare" experts and demote all pro-"common" experts, or vice-versa.
Your distribution is most likely a Pareto distribution (a superset of Zipf's law as mentioned above). I am shocked that the most common word is used only 100 times - this is including "a" and "the" and words like that? You must have a small corpus if that is the same.
Anyways, you will have to choose a cutoff for "rare" and "common". One potential choice is the mean expected number of appearances (see the linked wiki article above to calculate the mean). Because of the "fat tail" of the distribution, a fairly small number of words will have appearances above the mean -- these are the "common". The rest are "rare". This will have the effect that many more words are rare than common. Not sure if that is what you are going for but you can just move the cutoff up and down to get your desired distribution (say, all words with > 50% of expected value are "common").
While this is not an answer to your question, you should know that you are inventing a wheel here.
Information Retrieval experts have devised ways to weight search words according to their frequency. A very popular weight is TF-IDF, which uses a word's frequency in a document and its frequency in a corpus. TF-IDF is also explained here.
An alternative score is the Okapi BM25, which uses similar factors.
See also the Lucene Similarity documentation for how TF-IDF is implemented in a popular search library.

Algorithm to score similarness of sets of numbers

What is an algorithm to compare multiple sets of numbers against a target set to determine which ones are the most "similar"?
One use of this algorithm would be to compare today's hourly weather forecast against historical weather recordings to find a day that had similar weather.
The similarity of two sets is a bit subjective, so the algorithm really just needs to diferentiate between good matches and bad matches. We have a lot of historical data, so I would like to try to narrow down the amount of days the users need to look through by automatically throwing out sets that aren't close and trying to put the "best" matches at the top of the list.
Edit:
Ideally the result of the algorithm would be comparable to results using different data sets. For example using the mean square error as suggested by Niles produces pretty good results, but the numbers generated when comparing the temperature can not be compared to numbers generated with other data such as Wind Speed or Precipitation because the scale of the data is different. Some of the non-weather data being is very large, so the mean square error algorithm generates numbers in the hundreds of thousands compared to the tens or hundreds that is generated by using temperature.
I think the mean square error metric might work for applications such as weather compares. It's easy to calculate and gives numbers that do make sense.
Since your want to compare measurements over time you can just leave out missing values from the calculation.
For values that are not time-bound or even unsorted, multi-dimensional scatter data it's a bit more difficult. Choosing a good distance metric becomes part of the art of analysing such data.
Use the pearson correlation coefficient. I figured out how to calculate it in an SQL query which can be found here: http://vanheusden.com/misc/pearson.php
In finance they use Beta to measure the correlation of 2 series of numbers. EG, Beta could answer the question "Over the last year, how much would the price of IBM go up on a day that the price of the S&P 500 index went up 5%?" It deals with the percentage of the move, so the 2 series can have different scales.
In my example, the Beta is Covariance(IBM, S&P 500) / Variance(S&P 500).
Wikipedia has pages explaining Covariance, Variance, and Beta: http://en.wikipedia.org/wiki/Beta_(finance)
Look at statistical sites. I think you are looking for correlation.
As an example, I'll assume you're measuring temp, wind, and precip. We'll call these items "features". So valid values might be:
Temp: -50 to 100F (I'm in Minnesota, USA)
Wind: 0 to 120 Miles/hr (not sure if this is realistic but bear with me)
Precip: 0 to 100
Start by normalizing your data. Temp has a range of 150 units, Wind 120 units, and Precip 100 units. Multiply your wind units by 1.25 and Precip by 1.5 to make them roughly the same "scale" as your temp. You can get fancy here and make rules that weigh one feature as more valuable than others. In this example, wind might have a huge range but usually stays in a smaller range so you want to weigh it less to prevent it from skewing your results.
Now, imagine each measurement as a point in multi-dimensional space. This example measures 3d space (temp, wind, precip). The nice thing is, if we add more features, we simply increase the dimensionality of our space but the math stays the same. Anyway, we want to find the historical points that are closest to our current point. The easiest way to do that is Euclidean distance. So measure the distance from our current point to each historical point and keep the closest matches:
for each historicalpoint
distance = sqrt(
pow(currentpoint.temp - historicalpoint.temp, 2) +
pow(currentpoint.wind - historicalpoint.wind, 2) +
pow(currentpoint.precip - historicalpoint.precip, 2))
if distance is smaller than the largest distance in our match collection
add historicalpoint to our match collection
remove the match with the largest distance from our match collection
next
This is a brute-force approach. If you have the time, you could get a lot fancier. Multi-dimensional data can be represented as trees like kd-trees or r-trees. If you have a lot of data, comparing your current observation with every historical observation would be too slow. Trees speed up your search. You might want to take a look at Data Clustering and Nearest Neighbor Search.
Cheers.
Talk to a statistician.
Seriously.
They do this type of thing for a living.
You write that the "similarity of two sets is a bit subjective", but it's not subjective at all-- it's a matter of determining the appropriate criteria for similarity for your problem domain.
This is one of those situation where you are much better off speaking to a professional than asking a bunch of programmers.
First of all, ask yourself if these are sets, or ordered collections.
I assume that these are ordered collections with duplicates. The most obvious algorithm is to select a tolerance within which numbers are considered the same, and count the number of slots where the numbers are the same under that measure.
I do have a solution implemented for this in my application, but I'm looking to see if there is something that is better or more "correct". For each historical day I do the following:
function calculate_score(historical_set, forecast_set)
{
double c = correlation(historical_set, forecast_set);
double avg_history = average(historical_set);
double avg_forecast = average(forecast_set);
double penalty = abs(avg_history - avg_forecast) / avg_forecast
return c - penalty;
}
I then sort all the results from high to low.
Since the correlation is a value from -1 to 1 that says whether the numbers fall or rise together, I then "penalize" that with the percentage difference the averages of the two sets of numbers.
A couple of times, you've mentioned that you don't know the distribution of the data, which is of course true. I mean, tomorrow there could be a day that is 150 degree F, with 2000km/hr winds, but it seems pretty unlikely.
I would argue that you have a very good idea of the distribution, since you have a long historical record. Given that, you can put everything in terms of quantiles of the historical distribution, and do something with absolute or squared difference of the quantiles on all measures. This is another normalization method, but one that accounts for the non-linearities in the data.
Normalization in any style should make all variables comparable.
As example, let's say that a day it's a windy, hot day: that might have a temp quantile of .75, and a wind quantile of .75. The .76 quantile for heat might be 1 degree away, and the one for wind might be 3kmh away.
This focus on the empirical distribution is easy to understand as well, and could be more robust than normal estimation (like Mean-square-error).
Are the two data sets ordered, or not?
If ordered, are the indices the same? equally spaced?
If the indices are common (temperatures measured on the same days (but different locations), for example, you can regress the first data set against the second,
and then test that the slope is equal to 1, and that the intercept is 0.
http://stattrek.com/AP-Statistics-4/Test-Slope.aspx?Tutorial=AP
Otherwise, you can do two regressions, of the y=values against their indices. http://en.wikipedia.org/wiki/Correlation. You'd still want to compare slopes and intercepts.
====
If unordered, I think you want to look at the cumulative distribution functions
http://en.wikipedia.org/wiki/Cumulative_distribution_function
One relevant test is Kolmogorov-Smirnov:
http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
You could also look at
Student's t-test,
http://en.wikipedia.org/wiki/Student%27s_t-test
or a Wilcoxon signed-rank test http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
to test equality of means between the two samples.
And you could test for equality of variances with a Levene test http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
Note: it is possible for dissimilar sets of data to have the same mean and variance -- depending on how rigorous you want to be (and how much data you have), you could consider testing for equality of higher moments, as well.
Maybe you can see your set of numbers as a vector (each number of the set being a componant of the vector).
Then you can simply use dot product to compute the similarity of 2 given vectors (i.e. set of numbers).
You might need to normalize your vectors.
More : Cosine similarity

Resources