algorithm to measure symmetricity of 2d vector field - algorithm

I am looking for a way to "measure" the rotational symmetry of a 2-dimensional vector field.
For example, a rotating vector field with the same center as the frame is "symmetric" as in the following image. On the other hand, if the center is off from the center of the frame, or if some of the vectors have a snaky orbit that is not a regular circle, it can be said to be "not symmetric".
The above definition may be intuitive and ambiguous, but in any case, as far as I know, there are studies that "detect" rotational symmetry, but there are no studies that "measure" it. Is there an indicator like in the example above, where the measure in the former case is 0 and the measure in the latter case is 1? If anyone knows, I would appreciate it if you could share it. Or if there is any mathematical uncertainty in this question, that is still fine. Being able to implement the algorithm is also important in this question.

Related

Ray tracing: Bresenham's vs Siddon's algorithm

I'm developping a tool for radiotherapy inverse planning based in a pencil-beam approach. An important step in these methods (particularly in dose calculation) is a ray-tracing from many sources and one of the most used algorithms is Siddon's one (here there is a nice short description http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4218_CT_reconstruction_iterative_algebraic.pdf). Now, I will try to simplify my question:
The input data is a CT image (a 3D matrix with values) and some source positions around the image. You can imagine a cube and many points around, all at same distance but different orientation angles, where the radiation rays come from. Each ray will go through the volume and a value is assigned to each voxel according to the distance from the source. The advantage of Siddon's algorithm is that the length is calculated on-time during the iterative process of the ray-tracing. However, I know that Bresenham's algorithm is an efficient way to evaluate the path from one point to another in a matrix. Thus, the length from the source to a specific voxel could be easily calculated as the euclidean distance two points, even during Bresenham's iterative process.
So then, knowing that both are methods quite old already and efficient, there is a definitive advantage of using Siddon instead of Bresenham? Maybe I'm missing an important detail here but it is weird to me that in these dose calculation procedures Bresenham is not really an option and always Siddon appears as the gold standard.
Thanks for any comment or reply!
Good day.
It seems to me that in most applications involving medical ray tracing, you want not only the distance from a source to a particular voxel, but also the intersection lengths of that path with every single voxel on its way. Now, Bresenham gives you the voxels on that path, but not the intersection lengths, while Siddon does.

Check for point inside/outside in concave 3d model

What is best way to find given 3d Point is inside/outside in concave/convex model ?
I tried vtkSelectEnclosedPoints but it seems it can only handle convex case.
Alex
Rayshooting, as already suggested. A spatial search structure like an R-Tree will speed up the search. Make sure you don't hit low dimensional elements (edges and vertices) or the hit count may be wrong. An alternative to counting the hits is to find the closest pierced triangle. Then check if the angle enclosed by the direction of the ray and the normal vector of the pierced triangle is less or more than 90 degrees. Numeric issues are a problem for both versions, you may want to use multi-precision number type if robustness is vital.
This is the topic of Section 7.5 in Computational Geometry in C. The problem is generally called "Point in Polyhedron." It is not a straightforward issue, but it is by now well-explored. Code is available for the computation at the book link.
At a high level, one shoots a ray from the point p and counts intersections: if odd, then p is inside; if even, outside. But there are delicate issues about how to "count" correctly.

What "boundary conditions" can make a rectangle "look" like a circle?

I am solving a fourth order non-linear partial differential equation in time and space (t, x) on a square domain with periodic or free boundary conditions with MATHEMATICA.
WITHOUT using conformal mapping, what boundary conditions at the edge or corner could I use to make the square domain "seem" like a circular domain for my non-linear partial differential equation which is cartesian?
The options I would NOT like to use are:
Conformal mapping
changing my equation to polar/cylindrical coordinates?
This is something I am pursuing purely out of interest just in case someone screams bloody murder if misconstrued as a homework problem! :P
That question was asked on the time people found out that the world was spherical. They wanted to make rectangular maps of the surface of the world...
It is not possible.
The reason why is not possible is because the sphere has an intrinsic curvature, while the cube/parallelepiped has not. It can be shown that for two elements with different intrinsic curvatures, their surfaces cannot be mapped while either keeping constant infinitesimal distances, either the distance between two points is given by the euclidean distance.
The easiest way to understand this problem is to pick some rectangular piece of paper and try to make a sphere of it without locally stretch it or compress it (you can fold). You can't. On the other hand, you can make a cylinder surface, because the cylinder has also no intrinsic curvature.
In maps, normally people use one of the two options:
approximate the local surface of the sphere by a tangent plane and make a rectangle out of it. (a local map of some region)
make world maps but implement some curved lines everywhere identifying that the measuring distances must be made according to those lines.
This is also the main reason why when traveling from Europe to North America the airplanes seems to make a curve always trying to pass near canada. If we measured the distance from the rectangular map, we see that they should go on a strait line to minimize the distance. However, because we are mapping two different intrinsic curvatures, the real distance must be measured in a different way (and not via a strait line).
For 2D (in fact for nD) the same reasoning applies.

Continuous Physics Engine's Collision Detection Techniques

I'm working on a purely continuous physics engine, and I need to choose algorithms for broad and narrow phase collision detection. "Purely continuous" means I never do intersection tests, but instead want to find ways to catch every collision before it happens, and put each into "planned collisions" stack that is ordered by TOI.
Broad Phase
The only continuous broad-phase method I can think of is encasing each body in a circle and testing if each circle will ever overlap another. This seems horribly inefficient however, and lacks any culling.
I have no idea what continuous analogs might exist for today's discrete collision culling methods such as quad-trees either. How might I go about preventing inappropriate and pointless broad test's such as a discrete engine does?
Narrow Phase
I've managed to adapt the narrow SAT to a continuous check rather than discrete, but I'm sure there's other better algorithms out there in papers or sites you guys might have come across.
What various fast or accurate algorithm's do you suggest I use and what are the advantages / disatvantages of each?
Final Note:
I say techniques and not algorithms because I have not yet decided on how I will store different polygons which might be concave, convex, round, or even have holes. I plan to make a decision on this based on what the algorithm requires (for instance if I choose an algorithm that breaks down a polygon into triangles or convex shapes I will simply store the polygon data in this form).
You said circles, so I'm assuming you have 2D objects. You could extend your 2D object (or their bounding shapes) into 3D by adding a time dimension, and then you can use the normal techniques for checking for static collisions among a set of 3D objects.
For example, if you have a circle in (x, y) moving to the right (+x) with constant velocity, then, when you extend that with a time dimension, you have a diagonal cylinder in (x, y, t). By doing intersections between these 3D objects (just treat time as z), you can see if two objects will ever intersect. If point P is a point of intersection, then you know the time of that intersection simply by looking at P.t.
This generalizes into higher dimensions, too, though the math gets hard (for me anyway).
The collision detection might be tricky if objects have complex paths. For example, if your circle is influenced by gravity, then the extruded space-time object is a parabolic sphere sweep rather than a simple cylinder. You could pad the bounding objects a bit and use linear approximations over shorter periods of time and iterate, but I'm not sure if that violates what you mean by continuous.
I am going to assume you want things like gravity or other conservative forces in your simulation. If that's the case the trajectories of your objects are most likely not going to be lines, in which case, just like Adrian pointed out, the math will be somewhat harder. I can't think of a way to avoid checking all possible combinations of curves for collisions, but you can calculate the minimum distance between two curves rather easily, as long as both are solutions to linear systems (or, in general, if you have a closed form solution for the curves). If you know that x1(t) = f(t) and x2(t) = g(t) then what you'll want to
do is calculate the distance ||x1(t) - x2(t)|| and set its derivative to zero. This should be an expression that depends on f(t), g(t) and their derivatives and will give you a time tmin (or maybe a few possible ones) at which you then evaluate the distance and check to see if it is greater or smaller than r1+r2 --- the sum of the radii of the two bounding circles. If it is smaller, then you have a potential collision at that time so you run the narrow phase algorithm.

Algorithm for simplifying 3d surface?

I have a set of 3d points that approximate a surface. Each point, however, are subject to some error. Furthermore, the set of points contain a lot more points than is actually needed to represent the underlying surface.
What I am looking for is an algorithm to create a new (much smaller) set of points representing a simplified, smoother version of the surface (pardon for not having a better definition than "simplified, smoother"). The underlying surface is not a mathematical one so I'm not hoping to fit the data set to some mathematical function.
Instead of dealing with it as a point cloud, I would recommend triangulating a mesh using Delaunay triangulation: http://en.wikipedia.org/wiki/Delaunay_triangulation
Then decimate the mesh. You can research decimation algorithms, but you can get pretty good quick and dirty results with an algorithm that just merges adjacent tris that have similar normals.
I think you are looking for 'Level of detail' algorithms.
A simple one to implement is to break your volume (surface) into some number of sub-volumes. From the points in each sub-volume, choose a representative point (such as the one closest to center, or the closest to the average, or the average etc). use these points to redraw your surface.
You can tweak the number of sub-volumes to increase/decrease detail on the fly.
I'd approach this by looking for vertices (points) that contribute little to the curvature of the surface. Find all the sides emerging from each vertex and take the dot products of pairs (?) of them. The points representing very shallow "hills" will subtend huge angles (near 180 degrees) and have small dot products.
Those vertices with the smallest numbers would then be candidates for removal. The vertices around them will then form a plane.
Or something like that.
Google for Hugues Hoppe and his "surface reconstruction" work.
Surface reconstruction is used to find a meshed surface to fit the point cloud; however, this method yields lots of triangles. You can then apply mesh a reduction technique to reduce the polygon count in a way to minimize error. As an example, you can look at OpenMesh's decimation methods.
OpenMesh
Hugues Hoppe
There exist several different techniques for point-based surface model simplification, including:
clustering;
particle simulation;
iterative simplification.
See the survey:
M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02,
pages 163–170, Washington, DC, 2002. IEEE.
unless you parametrise your surface in some way i'm not sure how you can decide which points carry similar information (and can thus be thrown away).
i guess you can choose a bunch of points at random to get rid of, but that doesn't sound like what you want to do.
maybe points near each other (for some definition of 'near') can be considered to contain similar information, and so reduced to single representatives for each such group.
could you give some more details?
It's simpler to simplify a point cloud without the constraints of mesh triangles and indices.
smoothing and simplification are different tasks though. To simplify the cloud you should first get rid of noise artefacts by making a profile of the kind of noise that you have, it's frequency and directional caracteristics and do a noise profile compared type reduction. good normal vectors are helfpul for that.
here is a document about 5-6 simplifications using delauney, voronoi, and k nearest neighbour maths:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.9640&rep=rep1&type=pdf
A later version from 2008:
http://www.wseas.us/e-library/transactions/research/2008/30-705.pdf
here is a recent c++ version:
https://github.com/tudelft3d/masbcpp/blob/master/src/simplify.cpp

Resources