Error: Builtins {'keccak'} are not present in layout "all" - cairo-lang

When i cairo-run cairo program(use cairo_secp func verify_eth_signature ), i got Error: Builtins {'keccak'} are not present in layout "all"(layer=small So is it), WHY?
i want to run cairo program with func verify_eth_signature

Cairo is a CPU architecture to run arbitrary code. For some specific functions, it makes sense to use "built ins", which are function specific circuits that allow running this function faster.
In your case, you are using in cairo_secp func verify_eth_signature which in turn use the keccak built in.
Combining various AIRs and Cairo gives you a layout. The default one you are using does not include the keccak built in. To specify a layout that does, you should had the flag --layout=small
You can see the documentation for layouts here https://www.cairo-lang.org/docs/how_cairo_works/builtins.html#layouts

Related

GCC [for ARM] force no floating point

I would like to create a build of my embedded C code which specifically checks that floating point operations aren't introduced into it by accident. I've tried adding +nofp to my [cortex-m3] processor architecture but GCC for ARM doesn't like that (probably because the cortex-m3 doesn't have a floating point unit). I've tried specifying -mfpu=none but that isn't a permitted option. I've tried leaving -lm off the linker command-line but the linker seems too clever to be fooled by that and is compiling code with double in it and resolving pow() anyway.
This post: https://gcc.gnu.org/legacy-ml/gcc-help/2011-07/msg00093.html from 2011 hints that GCC has no such option, since no-one is interested in it, which surprises me as it seems like a common thing to want, at least from an embedded standpoint, to avoid accidental C-library bloat.
Does anyone know of a way to do this with GCC/newlib without me having to go through and manually hack stuff out of the C library file it chooses?
It is not just a library issue. Your target will use soft-fp, and the compiler will supply floating point code to implement arithmetic operators regardless of the library.
The solution I generally apply is to scan the map file for instances of the compiler supplied floating-point routines. If your code is "fp clean" there will be no such references. The math library and any other code that perform floating-point arithmetic operations will use these operator implementations, so you only need look for these operator calls and can ignore the Newlib math library functions.
The internal soft-fp routines are listed at https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html. It is probably feasible to manually check the mapfile for fp symbols but you might write yourself a script or tool to scan the map file for these names to check your. The cross-reference section of the map file will list all modules these symbols are used in so you can use that to identify where the floating point code is used.
The Newlib stdio functions support floating-point by default. If your formatted I/O is limited to printf() you can use iprintf() instead or you can rebuild Newlib with FLOATING_POINT undefined to remove floating point support from all but scanf() (no idea why). You can then use the map file technique again to find "banned" formatted I/O functions (although these are likely to also use the floating point operator functions in any case, so you will already have spotted them indirectly).
An alternative is to use an alternative stdio library to override the Newlib versions. There are any number of "tiny printf" implementations available you could use. If you link such a library as object code or list its library ahead of Newlib in the link command, it will override the Newlib versions.

Lua - Is there a different function in the Lua library that is identical or similar to debug.getupvalues / debug.getupvalue?

Is it possible or is there a function that works similar to debug.getupvalues / debug.getupvalue in the lua library that I could use, as I won't be able to use either soon and I depend on them slightly to keep parts of the code I have working.
Also if I could get the function code for debug.getupvalue it would be a great help as I could just use that as a function instead of using the debug library anymore, although I doubt it is code in Lua.
And before you say it, yes I know the debug library is the most undependable library in all of Lua but it made my code work and I would like to find a way to stop using it before it's too late.
The debug library is not meant to be used in production code (as opposed to tests and unusual debugging situations). There are 3 possible solutions. Two of them require changes to the code where the closures are defined. The other would require you to know C:
Add more closures in the same scope as the upvalues that will give you the access that you need.
Use tables instead of closures.
Write a C library that makes use of lua_getupvalue.
To see the source code of debug.getupvalue, download Lua 5.3.5 and look at src/ldblib.c, line 260. lua_getupvalue is in src/lapi.c, line 1222.

Will go compilers ignore unused functions

If there is a function from an external package that is not used at all in my project, will the compiler remove the function from the generated machine code?
This question could be targeted at any language compiler in general. But, I think the behaviour may vary language to language. So, I am interested in knowing what does go compilers do.
I would appreciate any help on understanding this.
The language spec does not mention this anywhere, and from a correctness point of view this is irrelevant.
But know that the current version does remove certain constructs that the compiler can prove is not used and will not change the runtime behaviour of the app.
Quoting from The Go Blog: Smaller Go 1.7 binaries:
The second change is method pruning. Until 1.6, all methods on all used types were kept, even if some of the methods were never called. This is because they might be called through an interface, or called dynamically using the reflect package. Now the compiler discards any unexported methods that do not match an interface. Similarly the linker can discard other exported methods, those that are only accessible through reflection, if the corresponding reflection features are not used anywhere in the program. That change shrinks binaries by 5–20%.
Methods are a "harder" case than functions because methods can be listed and called with reflection (unlike functions), but the Go tools do what they can even to remove unused methods too.
You can see examples and proof of removed / unlinked code in this answer:
How to remove unused code at compile time?
Also see other relevant questions:
Splitting client/server code
Call all functions with special prefix or suffix in Golang

Trying to make SCons Ada Builder work with VariantDir

I'm struggling with the last pieces of logic to make our Ada builder work as expectedly with variantdir. The problem is caused by the fact that the inflexible tools gnatbind and gnatlink doesn't allow the binder files to be placed in a directory other than the current one. This leaves me with two options:
Let gnatbind write the the binder files to topdir and then let gnatlink pick it from there. This may however cause race conditions if we want to allow simulatenous builds for different architectures and compiler versions which we want.
Modify the calls to gnatbind and gnatlink to temporarily go down to the build directory, in our case build/$ARCH/src-path. I successfully fixed the gnatbind step as this is explicitly called using a env.Execute from within the Ada builder. To try to fix the linking step I've modified the Program env using
env["LINKCOM"] = SCons.Action.Action(ada_linkcom)
where ada_linkcom is defined as
def ada_linkcom(source, target,env ):
....
return ret
where ret is a string describing what should be done in the shell. I need this to be a function it contains a bit complicated logic to convert paths from being relative to top-level to just containing their basenames.
This however fails with an error in scons-2.3.1/SCons/Executor.py on line 347 in function do_execute. Isn't env["LINKCOM"] allowed to be a function with ada_linkcom's signature?
No, it's not. You seem to think that 'env["LINKCOM"]' is what actually calls/executes the final build command, and that's not quite correct. Instead, environment variables like LINKCOM get expanded by the Executor/Builder for each specified Action, and are then executed.
You can have Python functions as Actions, and also use a so-called "generator" to create your Action strings on-the-fly. But you have to assign this Action to a Builder, and can't set it as an environment variable directly.
Please also have a look at the UserGuide ( http://www.scons.org/doc/production/HTML/scons-user.html ), especially section 18.4 "Builders That Execute Python Functions". Our basic guide for writing Builders and Tools might also prove to be helpful: http://www.scons.org/wiki/ToolsForFools

In What Windows Library is glCreateProgramObjectARB Defined?

I'm trying to do some shader programming on windows. All the code I've been able to find online says you have to use wglGetProcAddress to figure out where these functions are, but i'm not sure what library to link against.
Ben Voigt's answer is nearly correct, with two exceptions:
All OpenGL 1.0 and 1.1 functionality is inlcuded in opengl32.lib, only 1.3 and upwards and all extension must be loaded dynamically.
WGL guarantees that all contexts sharing the same pixel format share identical function pointers. This is an important detail, as otherwise any application using either OpenGL 3.x/4.x or multisampling would necessarily be malformed.
However, in short, forget all this blah blah. Download GLEW and be done in 5 minutes. It just works and you need not care about petty implementation details. Call one init function at program start, and everything is good.
You link against opengl32.lib to get wglGetProcAddress. All the rest must be dynamically obtained via wglGetProcAddress after you have made a context current, since different contexts can use different implementations of the various functions.
An extension loader such as GLee or GLEW can do the function-pointer details for you, but you still need to be linking opengl32.lib.

Resources