Method access in Ruby - ruby

How is it that Ruby allows a class access methods outside of the class implicitly?
Example:
class Candy
def land
homer
end
end
def homer
puts "Hello"
end
Candy.new.land #Outputs Hello

The definition of the "homer" method is adding the method to the Object class. It is not defining a free function.
Class Candy implicitly inherits from Object, and so has access to the methods in Object. When you call "homer" in the "land" method, the method resolution can't find a definition in the current class, goes to the super class, finds the method you have added to Object, and calls it.

A simple way to find out what happens
What classes/modules are searched to resolve methods used in Candy objects?
p Candy.ancestors #=> [Candy, Object, Kernel]
Does Candy have method called homer?
p Candy.instance_methods(false).grep("homer") #=> []
p Candy.private_instance_methods(false).grep("homer") #=> []
OK Candy does not have any method called 'homer'.
What's next in the lookup chain (see 1) => "Object"
Does Object have a method called "homer" ?
p Object.instance_methods(false).grep("homer") #=> []
p Object.private_instance_methods(false).grep("homer") #=> ["homer"]
Candy has Object in its lookup chain which in turn has a private instance method "homer" so method resolution succeeds
The def statement always defines the method in the class of whatever self is at the point of definition
What is self just before homer is defined ?
p self #=> main
def homer
puts "Hello"
end
So what is its type ?
p self.class #=> Object
Which is why homer ends up on Object

Technically, the definition of the homer method is actually on the Kernel module which is mixed into Object, not on Object directly. So when homer is not a local variable or an instance method defined on Candy, the Ruby method inheritance chain is followed up through Object and then to the mixed-in Kernel module and then this code is run.
Edit: Sorry, I don't know why I thought this. It appears that the method really lives on Object. Not sure it makes too much of a difference in practice but I should have confirmed things before posting.

Ruby has no free-floating functions. Every method belongs to some object. Methods that you def at the top level are actually becoming instance methods of class Object. Because everything is an Object at some level, all objects have access to Object's instance methods.

Related

Ruby’s secret trick to avoid “class methods” and keep its type system simple and elegant

From Wikibooks' Ruby Programming/Overview:
When I said that every Ruby object has a class, I lied. The truth is, every object has two classes: a “regular” class and a singleton class. An object’s singleton class is a nameless class whose only instance is that object. Every object has its very own singleton class, created automatically along with the object. Singleton classes inherit from their object’s regular class and are initially empty, but you can open them up and add methods to them, which can then be called on the lone object belonging to them. This is Ruby’s secret trick to avoid “class methods” and keep its type system simple and elegant
The above passage says that Ruby's secret trick to avoid class methods. I don't understand what the author means here. Where is Ruby stopping us to avoid class methods? for an example, look at the example shown below
class Raj
def self.hi
puts 'Hi'
end
def hello
puts 'hello'
end
end
object=Raj.new
object.hello
Raj.hi
As you can see in the preceding example, the class methods can still be created.
yes?
I understand that there are no true class methods in Ruby; instead, they are methods that are created for the Raj object.
But, in any case, it's allowing me to create the method 'hi,' right?
So, what does it mean when it says, 'This is Ruby's secret trick for avoiding "class methods" and keeping its type system simple and elegant'?
I understand that there are no true class methods in Ruby; instead, they are methods that are created for the Raj object.
That's exactly it, though.
def self.hi
puts 'Hi'
end
This is not a class method or static method. Those don't exist in Ruby. That's the whole point. Your class Raj defines an object of type Class. We can see its type with the #class function.
> Raj.class
=> Class
We can also see its ancestors.
> Raj.class.ancestors
=> [Class, Module, Object, PP::ObjectMixin, Kernel, BasicObject]
Class inherits from Module, since (for the most part) classes can do everything modules can. Module, in turn, inherits from Object, which has some modules of its own mixed in (PP:ObjectMixin is for pretty-printing, and Kernel gets you the nice helpers like puts) and eventually inherits from the root class BasicObject.
But this isn't the whole story, for Raj has its own class as well: its singleton class. We can see the full story by calling #singleton_class instead of #class.
> Raj.singleton_class.ancestors
=>
[#<Class:Raj>,
#<Class:Object>,
#<Class:BasicObject>,
Class,
Module,
Object,
PP::ObjectMixin,
Kernel,
BasicObject]
Now there's a lot more going on. Raj is an instance of the singleton class of Raj, which inherits from the singleton class of Object, which in turn inherits from the singleton class of BasicObject, which inherits from Class and all of the stuff we saw before.
So when you define a method on the class Raj, you're defining it (as an instance method) on the singleton class #<Class:Raj>. And that class (currently) has one instance: Raj.
By the way, it's also useful to know that the term "singleton class" is a bit of a lie. As you can see, the class is very much not a singleton in general. For instance, the singleton class of Object, called #<Class:Object> above, actually has several instances: Object, Raj, String, and most Ruby classes. Personally, I prefer to call them eigenclasses for that reason, but "singleton class" is the official (and more well-known) term.
The author is talking about the singleton class in this sentence, there is a really nice article to deep dive into ruby singleton class: https://medium.com/#leo_hetsch/demystifying-singleton-classes-in-ruby-caf3fa4c9d91
Here is a nice example extracted from this article:
class Vehicle
def initialize(kms)
#kms = kms
end
def drive
puts "let's go!"
end
end
car = Vehicle.new(1000)
bus = Vehicle.new(3000)
def car.drive
print "I'm driving a car! "
super
end
car.drive # "I'm driving a car! let's go!"
bus.drive # "let's go!"
As you can see, here the #drive method has been overridden but only for the car object, the bus object is still using the #drive method defined in the Vehicle class.
This new method is defined on the singleton class (or shadow class) of the object, this is allowing you to define new methods on the fly on an object without polluting all the objects of this class.
This means that Ruby doesn't implement class methods.
Indeed, the Ruby OBJECT Model, allows you to "emulate" the definition of class methods by defining instance methods on the Eigenclass:
class Greeting
def self.hello
'hello world!'
end
def self.eigenclass
class << self
self
end
end
end
Greeting.eigenclass # => #<Class:Greeting>
Greeting.eigenclass.name # => nil
Greeting.singleton_methods # => [:hello, :eigenclass]
Greeting.eigenclass.instance_methods(false) # => [:hello, :eigenclass]
First, we define a Greeting.eigenclass method. This method returns self in the context of the eigenclass — by using the class << self ... end syntax. In this case, self contains an unnamed instance of the class Class (a.k.a an anonymous class). This anonymous class keeps track of the class to which it is attached — the Greeting class in our case.
Then, we can see that the singleton methods of the Greeting class are the instance methods of the Greeting eigenclass.
Feel free to have a look to this very detailed article to learn more about this concept.
To illustrate #Sébastien P.'s answer:
dice = [1,2,3,4,5,6] #an ordinary array instance
def dice.throw #now it has an extra
sample
end
p dice.throw #=>3

Where is attr_accessor defined?

Currently working on a ruby minifier using Ripper's lex() method. However currently attr_accessor is defined as an identifier... I assume because it's a method.
Where is attr_accessor defined? If I know where it's defined I can easily make exceptions for methods like it.
It is defined in the Module class. (Documentation Link)
EDIT:
Just to make the answer more complete, it is a private method of the Module class, which means you cannot call it with a receiver, need to have the class opened to use it (or using some hack like send or eval):
class MyClassOrModule
attr_accessor :foobar
end
You cannot invoke it as MyClassOrModule.attr_accessor. As you already discovered in our comments below, Module.private_instance_methods will show its presence.
Yes, attr_accessor is defined in the class Module (Module#attr_accessor), but how does one go about finding it in the first place? Having to ask someone, or perhaps Googling, is not a very efficient way of going about it.
We can make use of the method Method#owner.1
owner responds to method objects (instances of the class Method), not to method names, which are symbols. Why? Because many modules/classes have methods that have the same symbolic name. For example, String, Array and Hash all have an instance method named :[]. Therefore, we cannot ask Ruby where :[] is defined. We can ask, however, where the method
m = [1,2,3].method(:[])
#=> #<Method: Array#[]
is defined, namely,
m.owner
#=> Array
The determination of m makes use of the method Object#method.
Alternatively, we could write
m = Array.instance_method(:[])
#=> #<UnboundMethod: Array#[]>
m.owner
#=> Array
This makes use of the method Module#instance_mathod.
Notice that in the first case the method :[] is bound to the instance of Array [1,2,3], whereas in the second case :[] is not bound to any particular instance of Array, so it is referred to as UnboundMethod. Either way, we see that Array#[] is defined in Array (i.e., it is not inherited from an ancestor).
Let's consider another example.
We know that 3.zero? #=> false, but do not find an instance method :zero? in the class Integer. So, where is it? We can write:
m = 3.method(:zero?)
#=> #<Method: Integer(Numeric)#zero?>
or
m = Integer.instance_method(:zero?)
#=> #<UnboundMethod: Integer(Numeric)#zero?>
then
m.owner
#=> Numeric
Aha! It's defined in Numeric, the superclass of Integer, Float, Rationale and Complex.
Notice that, in computing m, the message displayed includes, "Integer(Numeric)". Even before computing m.owner this tells us that the owner is Numeric. By contrast, in finding the owner of Array#[] the message was simply "Array". Helpful as always, Ruby parenthetically gives the owner when the owner is not the class of the receiver of method or the class that is the receiver of instance_method.
So now let us find the owner of the class method :attr_accessor. We know that this method is available for every class (e.g., Class.new.methods.include?(:attr_accessor) #=> true), so we could write, say,
m = Class.method(:attr_accessor)
#=> #<Method: Class.attr_accessor>
m.owner
#=> Module
since Class is itself a class, but we could have instead written, say,
m = Regexp.method(:attr_accessor)
#=> #<Method: Regexp.attr_accessor>
m.owner
#=> Module
or even
m = Class.instance_method(:attr_accessor)
#=> #<UnboundMethod: Class(Module)#attr_accessor>
m.owner
#=> Module
the last because methods of every class (which is an instance of Class) are instance methods of Class.
1 If one forgets where the instance method owner is defined, just remember that it is defined on methods, which are instances of the class Method.

How does Object know about the const_get method?

I was reading another question with an answer that mentions using the Module#const_get instance method to find a class in a module. For example:
module M
class C
end
end
p M.const_get 'C'
#=> M::C
I was curious about the const_get method so I used ri and found:
ri Module#const_get
...
This method will recursively look up constant names if a namespaced
class name is provided. For example:
module Foo; class Bar; end end
Object.const_get 'Foo::Bar'
...
It seems like Object::const_get is a singleton method. Using it in our context works:
module M
class C
end
end
p Object.const_get 'M::C'
#=> M::C
But there's nothing documented about that singleton method:
ri Object::const_get
Nothing known about Object::const_get
ri Object.const_get
Nothing known about Object.const_get
This confused me because I know a Module is an Object but an Object is not a Module:
Module.ancestors
#=> [Module, Object, Kernel, BasicObject]
Object.ancestors
#=> [Object, Kernel, BasicObject]
Except then I used the Object#is_a? instance method to check and saw that I was wrong about that:
Module.is_a? Object
#=> true
Object.is_a? Module
#=> true
What started as an innocent ri query has led me to be confused about the entire Ruby object model.
Why does Object.is_a? Module #=> true if Module is not in Objects ancestor chain?
How does Object know about the const_get method?
This is an artifact of the ill-understood separation between an object's class and an object's singleton class, a sort of shadow class that each class uses for things like this.
You can access this easily in Ruby 2.5+ with the singleton_class method:
Object.singleton_class.ancestors
# => [#<Class:Object>, #<Class:BasicObject>, Class, Module, Object, Kernel, BasicObject]
Where Module makes an appearance here, so that's how those methods get mixed in and are callable via Object.
Object itself has a comparatively dull inheritance chain:
Object.ancestors
#=> [Object, Kernel, BasicObject]
Every object in Ruby has a class, even Class is an Object, which also has an associated Class.
I think your confusion stems from looking at Object from two directions at once:
Object is a class so Object.ancestors can be used to look at the inheritance hierarchy. This tells you that Object < Kernel is true and Object < Module is false.
Classes in Ruby are also objects, specifically they're instances of the Class class. This tells you that Object.is_a? Class and Object.is_a? Module in the same way that 'pancakes'.is_a? String. And that Object.const_get is a method call in the same way that 'pancakes'.upcase is a method call.
You can think of some_obj.is_a? SomeClass as a shorter way of saying some_obj.class.ancestors.include? SomeClass.
Answering your specific questions:
Why does Object.is_a? Module #=> true if Module is not in Object's ancestor chain?
Because is_a? and ancestors are looking at different things.
How does Object know about the const_get method?
Because Object is an instance of the Class class and Class includes Module in its ancestors. Similarly to how 'pancakes' is an instance of the String class which has Kernel in its ancestors so 'pancakes' has an object_id method.
Object.is_a? Module #=> true
is_a? is asking whether Object is an instance (or specialised instance) of Module. Class is a subclass of Module so all instances of Class are really just specialised instances of Module. Since Object is an instance of Class, it follows that Object is also an instance of Module.
Module#const_get
const_get is an instance method defined within the Module class. Since Object is an instance of Module (for reasons discussed above), it has access to Module#const_get.

Location of public class method 'new' of 'Class'

Ruby's Class class lists two methods named 'new':
Class::new is a public class method
Class#new is a public instance method
But when I do:
Class.methods(false)
#=> []
which is supposed to list singleton methods (which I am assuming what class methods are), I get an empty array. Why is this so? Where is Class::new defined?
The methods shown as ::new in the documentation are usually #initialize, for example Range::new:
new(begin, end, exclude_end=false) → rng
Constructs a range using the given begin and end. If the exclude_end parameter is omitted or is false, the rng will include the end object; otherwise, it will be excluded.
This is because you create instances via:
r = Range.new(0, 2) #=> 0..2
Rather than:
r = Range.allocate #=> nil..nil
r.send(:initialize, 0, 2) #=> nil
r #=> 0..2
That's exactly what ::new does – it creates a new instance via allocate, sends it initialize (passing arguments) and returns the instance.
The actual new method is inherited from Class (since Range is an instance of Class) – Class#new:
new(args, ...) → obj
Calls allocate to create a new object of class’s class, then invokes that object’s initialize method, passing it args. This is the method that ends up getting called whenever an object is constructed using .new.
Just like allocate, inherited and superclass (and the instance methods from Class' ancestors like Module as well):
Range.method(:new)
#=> #<Method: Class#new>
Range.method(:allocate)
#=> #<Method: Class#allocate>
Range.method(:ancestors)
#=> #<Method: Class(Module)#ancestors>
So if you call Class.new:
my_string_class = Class.new(String)
#=> #<Class:0x007fdf5485b200>
you just invoke Class#new which is (again) equivalent to:
my_string_class = Class.allocate
my_string_class.send(:initialize, String)
my_string_class
#=> #<Class:0x007fdf5484beb8>
One notable exception is Struct which in fact provide its own new class method:
Struct.method(:new)
#=> #<Method: Struct.new>
Unlike other classes, Struct::new does not return instances of Struct but instances of Class (which are subclasses of Struct).
tl;dr summary:
Why is this so?
Because it's not a singleton method.
Where is Class::new defined?
It isn't. The call Class.new is just calling Class#new (since Class is an instance of itself). The documentation for Foo::new is actually the documentation for Foo#initialize for any class Foo, including Class itself.
If you want to know something about Ruby, it is often a good idea to ask her herself:
new_method = Class.method(:new)
#=> #<Method: Class#new (defined in Class at core/alpha.rb:90)>
The Object#method method returns a Method object representing the method. (Methods aren't objects in Ruby themselves, but you can get a reflective proxy object that represents a method.)
You can ask a Method where it is defined using the Method#owner method:
new_method.owner
#=> Class
As you can see, new is defined in Class and not in Class's singleton class.
You can also ask a Method about the location of its Ruby source code using the Method#source_location method:
new_method.source_location
#=> ['core/alpha.rb', 90]
What this tells us is that Class#new is defined in the file core/alpha.rb on line 90:
def new(*args)
obj = allocate()
Rubinius.asm(args, obj) do |args, obj|
run obj
run args
push_block
send_with_splat :initialize, 0, true
# no pop here, as .asm blocks imply a pop as they're not
# allowed to leak a stack value
end
obj
end
The method is partially implemented in bytecode for performance reasons, but it is basically just:
class Class
def new(*args, &block)
obj = allocate
obj.__send__(:initialize, *args, &block) # because initialize is private
#obj.initialize(*args, &block)
obj
end
end
Now, you might ask yourself: why is there an entry for Class::new in the RDoc documentation, if that method doesn't exist? Well, RDoc knows about the relationship between #initialize which is the method you define but usually don't call directly and Class#new which is the method you call but usually don't define, and it will document #initialize as ::new if it exists.
So, what we really want to look at, is Class#initialize:
initialize_method = Class.method(:initialize)
#=> #<Method: Class#initialize (defined in Class at core/class.rb:15)>
initialize_method.owner
#=> Class
initialize_method.source_location
#=> ['core/class.rb', 15]
This is the source:
def initialize(sclass=Object, name=nil, under=nil)
raise TypeError, "already initialized class" if #instance_type
raise TypeError, "can't make subclass of Class" if Class.equal?(sclass)
set_superclass sclass
# Things (rails) depend on the fact that a normal class is in the constant
# table and have a name BEFORE inherited is run.
under.const_set name, self if under
if sclass
Rubinius.privately do
sclass.inherited self
end
end
super()
end
private :initialize
Class#initialize essentially does three things:
set the superclass
optionally assign the class to a constant to give it a name
call the Class#inherited hook method of the superclass
If you want to know what the relationships between some of the core classes that magically spring into existence at the beginning are, you can take a look at the initialization code of some Ruby execution engines, e.g.
Rubinius: VM::bootstrap_class in machine/ontology.cpp
JRuby: org.jruby.Ruby.initRoot in core/src/main/java/org/jruby/Ruby.java
IronRuby: the initial classes are generated by a program, the generator is in the directory Src/ClassInitGenerator
MRuby: mrb_init_class in src/class.c
Note: depending on what Ruby implementation you use, obviously the places where those methods are defined and how exactly they are defined may vary.
new is defined as a instance method of Class class, rather than a singleton method:
Class.instance_method :new # => #<UnboundMethod: Class#new>
Tricky to note: Class (object) itself is also an instance of Class (class).
Class.instance_of? Class # => true

Why does instance_eval() define a class method when called on a class?

Foo = Class.new
Foo.instance_eval do
def instance_bar
"instance_bar"
end
end
puts Foo.instance_bar #=> "instance_bar"
puts Foo.new.instance_bar #=> undefined method ‘instance_bar’
My understanding is that calling instance_eval on an object is supposed to allow you to define an instance variable or method for that object.
But in the example above, when you call it on class Foo to define the instance_bar method, instance_bar becomes a class method that can be invoked with "Foo.instance_bar". It is clear that this code has not created an instance method because Foo.new.instance_bar results in "undefined method ‘instance_bar’".
Why does instance_eval define a class method rather than an instance method in this context?
x.instance_eval changes your context so self evaluates to x.
This allows you to do many things, including defining instance variables and instance methods but only for x.
x = Object.new
y = Object.new
# define instance variables for x and y
x.instance_eval { #var = 1 }
y.instance_eval { #var = 2 }
# define an instance method for all Objects
class Object
def var
#var
end
end
x.var #=> 1
y.var #=> 2
Ruby lets you define instance methods for an object in a couple places. Normally,
one defines them in a class, and those instance methods are shared among all instances
of that class (like def var above).
However, we can also define an instance method for just a single object:
# here's one way to do it
def x.foo
"foo!"
end
# here's another
x.instance_eval do
# remember, in here self is x, so bar is attached to x.
def bar
"bar!"
end
end
Even though x and y have the same class, they don't share these methods, since they were only defined for x.
x.foo #=> "foo!"
x.bar #=> "bar!"
y.foo #=> raises NoMethodError
y.bar #=> raises NoMethodError
Now in ruby, everything's an object, even classes. Class methods are just instance methods
for that class object.
# we have two ways of creating a class:
class A
end
# the former is just syntatic sugar for the latter
B = Class.new
# we have do ways of defining class methods:
# the first two are the same as for any other object
def A.baz
"baz!"
end
A.instance_eval do
def frog
"frog!"
end
end
# the others are in the class context, which is slightly different
class A
def self.marco
"polo!"
end
# since A == self in here, this is the same as the last one.
def A.red_light
"green light!"
end
# unlike instance_eval, class context is special in that methods that
# aren't attached to a specific object are taken as instance methods for instances
# of the class
def example
"I'm an instance of A, not A itself"
end
end
# class_eval opens up the class context in the same way
A.class_eval do
def self.telegram
"not a land shark"
end
end
Note again, that all these methods are A-specific, B doesn't get access to any of them:
A.baz #=> "baz!"
B.telegram #=> raises NoMethodError
The important thing to take away from here is that
class methods are just instance methods of an object of class Class
The purpose of 'instance_eval' is to extend objects, but the purpose of 'class_eval' is to extend classes. And because classes are also objects, you can apply instance_eval on classes.
I guess that extending of classes is just more understandable in classic OOP. Dynamic languages allow us to easily specify behaviour of particular objects. Fact that each object can have own behaviour adds a lot of flexibility designing an application. Not only data can vary for objects of the same class. Two humans differ not only because they were born in different years, not only because they have different parents but they can think different and thus behave different.
Ability to change the behaviour of each object is fundamental. It exists in many languages.
Thinking about instance_eval think about objects first. Then you'll realize that classes are also objects - objects which additional purpose to create new objects, to hold description of common behaviour (methods). You can not only use definition of a class, but can also assign class to a variable, pass class as an argument, call method on a class, program a class!
I would recommend articles written by Yehuda Katz and Yugui to dive deeper into it:
http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/
http://yugui.jp/articles/846

Resources