I have a network C++ program in Windows that I'd like to test for network disconnects at various times. What are my options?
Currently I am:
Actually disconnecting the network wire from the back of my computer
using ipconfig /release
Using the cports program to close out the socket completely
None of these methods though are ideal for me, and I'd like to emulate network problems more easily.
I would like for sometimes connects to fail, sometimes socket reads to fail, and sometimes socket writes to fail. It would be great if there was some utility I could use to emulate these types of problems.
It would also be nice to be able to build some automated unit tests while this emulated bad network is up.
You might want to abstract the network layer, and then you can have unit tests that inject interesting failure events at appropriate points.
The closest I can think of is doing something similar with VEDekstop from Shunra..
Simulating High Latency and Low Bandwidth in Testing of Database Applications
Shunra VE Desktop Standard is a Windows-based client software solution that simulates a wide area network link so that you can test applications under a variety of current and potential network conditions – directly from your desktop.
You can subclass whatever library class you are using to manage your sockets (presumably CAsyncSocket or CSocket if you are using MFC), override the methods whose failure you want to test, and insert appropriate test code in your overrides.
There are some methods you can use, it is depend on which level you want to test. For function level, you can use XUNIT testing framework to mock a responce. For software level, you can use a local proxy server to contral connection.
Related
I am testing .NET version of ZeroMQ to understand how to handle network failures. I put the server (pub socket) to one external machine and debugging the client (sub socket). If I stop my local Wi-Fi connection for seconds, then ZeroMQ automatically recovers and I even get remaining values. However, if I disable Wi-Fi for longer time like a minute, then it just gets stuck on a frame waiting. How can I configure this period when ZeroMQ is still able to recover? And how can I reconnect manually after, say, several minutes? How can I understand that the socket is locked and I need to kill/open again?
Q :" How can I configure this ... ?"
A :Use the .NET versions of zmq_setsockopt() detailed parameter settings - family of link-management parameters alike ZMQ_RECONNECT_IVL, ZMQ_RCVTIMEO and the likes.
All other questions depend on your code.
If using blocking-forms of the .recv()-methods, you can easily throw yourself into unsalvageable deadlocks, best never block your own code ( why one would ever deliberately lose one's own code domain-of-control ).
If in a need to indeed understand low-level internal link-management details, do not hesitate to use zmq_socket_monitor() instrumentation ( if not available in .NET binding, still may use another language to see details the monitor-instance reports about link-state and related events ).
I was able to find an answer on their GitHub https://github.com/zeromq/netmq/issues/845. Seems that the behavior is by design as I got the same with native zmq lib via .NET binding.
I'm building an application that uses TCP sockets to communicate. I want to test how it behaves under slow-speed conditions.
There are similar question on the site, but as I understand it, they deal with HTTP traffic, or are about Linux. My traffic is not HTTP, just ordinary TCP sockets, and the OS is Windows.
I tried using fiddler's setting for Modem Speed but it didn't work, it seems to work only for HTTP connections.
While it is true that you probably want to invest in an extensive set of unit tests, You can simulate various network conditions using VMWare Workstation:
You will have to install a virtual machine for testing, setup bridged networking (for the vm to access your real network) and upload your code to the vm.
After that you can start changing the settings and see how your application performs.
NetLimiter can also be used, but it has fewer options (in your case, packet loss is very interesting to test and is not available in netlimiter).
There is an excellent utility for Windows that can do throttling and much more:
https://jagt.github.io/clumsy/
I think you're taking the wrong approach here.
You can achieve everything that you need with some well designed unit tests. All of the things that a slow network link causes can be simulated in a unit test environment in controlled conditions.
Things that your code MUST handle to deal with "slow" links are just things that you should be dealing with anyway, including:
The correct handling of fragmented messages. All of your network reading code needs to correctly assume that each read will return between 1 byte and the size of your read buffer. You should never assume that you'll get complete 'messages' as TCP knows nothing of your concept of messages.
TCP flow control causing either your synchronous sends to fail with some form of 'try later' error or your async sends to succeed and potentially use an uncontrolled amount of resources (see here for more details). Note that this can happen even on 'fast' links if you are sending faster than the receiver is consuming.
Timeouts - again this isn't limited to "slow" links. All of your timeout handling code should be robust and tested. You may want to make sure that any read timeout is based on any read completing rather than reading a complete message in x time. You may be getting your data at a slow rate but whilst you're still getting data the link is alive.
Connection failure - again not something specific to "slow" links. You need to know how you deal with connections being reset at any time.
In summary nothing you can achieve by running your client and server on a simulated slow network cannot be achieved with a decent set of unit tests and everything that you would want to test on such a link is something that could affect any of your connections on any speed of link.
Background
I want to create a test application to test the network performance of different systems. To do this I plan to have that machine send out Ethernet frames over a private (otherwise non-busy) network to another machine (or device) that simply receives the message and sends it back. The sending application will record total roundtrip time (among other things).
The purpose of the tests is to see how a particular system (OS + components etc.) performs when it comes to networking traffic. This is illustrated as machine A in the picture below. Note that I'm not interested in the performance of the networking infrastructure (switches, cables etc) - I'm trying to test the performance of network traffic inside Machine A (i.e from when it hits the network card until it reaches user space)
We will (try to) measure all kind of things, one thing is the total roundtrip of the message but also things like interrupt latency of Machine A, general driver overhead etc. Machine A will be a real-time system. But to support these tests, I need a separate machine that can bounce back messages and in other ways add network stimuli to the tested system. This separate machine is Machine B in the picture below and is what this question is about.
My problem
I want to develop an application that can receive and return these messages with as consistent (and preferably low) latency as possible. I'm hoping to get latencies that are consistent within a few microseconds at least. For simplicity, I'd like to do this on a general purpose OS like Windows or Linux but I'm open for other suggestions. There will be no other load (CPU or otherwise) on the machine besides the operating system and my test application.
I've thought of the following approaches:
A normal application running in user space with a high priority
A thread running in kernel space to avoid the userspace/kernelspace transitions
An of-the-shelf device that already does this (I haven't found one though)
Questions
Are there any other approaches or perhaps frameworks that already does this? What else do I need to think of to gain a consistent and low latency? What approach is recommended?
You mentioned that you want to test the internal performance of Machine A, but "need a separate machine"; yet, you don't want to test network infrastructure performance.
You know much more about your requirements than I do; however, if I was testing network infrastructure in Machine A, I would set up my test like this:
There are couple of reasons for this:
You can use an Ethernet loopback cable to simulate the "pong" function performed by Machine B
Eliminating transit through infrastructure you don't care about is almost always a better solution when measuring performance
If you use this test method, be sure to note these points:
Ethernet performs a signal to noise test on the copper before it sets up a link. If you make your loopback bends too tight, you could introduce more latency if ethernet decides to fall back to a lower speed due to the kinks in the cable. There is no minimum length for copper ethernet cabling.
As you're probably aware, combinations of NICs / driver versions / OS can have a significant affect on intra-host latency. I work for a network equipment manufacturer, and one of the guys in the office used to work as an applications engineer for SolarFlare. He claims that many of the Wall Street trading systems use SolarFlare's NICs due to the low latency SolarFlare engineers their products for; he also said SolarFlare's drivers give you user-space access to the NIC buffers. Caveat: third-hand info, and I cannot verify myself.
If you loop the frames to Machine A, set the source and destination mac-address to the burned-in-address on the NIC
Even if you need to receive a modified "pong" frame from Machine B, you could still use this topology and simply rewrite packet fields on the receive-side of your code in Machine A. Put as many (or few) instrumentation points as you like in Machine A's "modules" to compare frame timestamps.
FYI:
The embedded systems I mentioned in my comments on your question are for measuring latency of network infrastructure, not end hosts. This is the best method I can think of for instrumenting host latency.
As an off the shelf solution, I would suggest taking a look at Solace, Tibco and AMQP. These are all enterprise messaging frameworks used extensively in trading applications. AMQP is open source and capable of handling throughputs of up to 100,000 messages per second. I am not sure of the latencies of other frameworks. There is a Java or C++ implementation of the AMQP message router. The C++ one of course returns higher performance.
Edit I've just heard of a new product called UltraMessaging which can provide 7,000,000 messages per second throughput with Java, C++ or C# clients. Crikey.
Best regards,
I'm looking for a mechanism to use to create a simple many-to-many messaging system to allow Windows applications to communicate on a single machine but across sessions and desktops.
I have the following hard requirements:
Must work across all Windows sessions on a single machine.
Must work on Windows XP and later.
No global configuration required.
No central coordinator/broker/server.
Must not require elevated privileges from the applications.
I do not require guaranteed delivery of messages.
I have looked at many, many options. This is my last-ditch request for ideas.
The following have been rejected for violating one or more of the above requirements:
ZeroMQ: In order to do many-to-many messaging a central broker is required.
Named pipes: Requires a central server to receive messages and forward them on.
Multicast sockets: Requires a properly configured network card with a valid IP address, i.e. a global configuration.
Shared Memory Queue: To create shared memory in the global namespace requires elevated privileges.
Multicast sockets so nearly works. What else can anyone suggest? I'd consider anything from pre-packaged libraries to bare-metal Windows API functionality.
(Edit 27 September) A bit more context:
By 'central coordinator/broker/server', I mean a separate process that must be running at the time that an application tries to send a message. The problem I see with this is that it is impossible to guarantee that this process really will be running when it is needed. Typically a Windows service would be used, but there is no way to guarantee that a particular service will always be started before any user has logged in, or to guarantee that it has not been stopped for some reason. Run on demand introduces a delay when the first message is sent while the service starts, and raises issues with privileges.
Multicast sockets nearly worked because it manages to avoid completely the need for a central coordinator process and does not require elevated privileges from the applications sending or receiving multicast packets. But you have to have a configured IP address - you can't do multicast on the loopback interface (even though multicast with TTL=0 on a configured NIC behaves as one would expect of loopback multicast) - and that is the deal-breaker.
Maybe I am completely misunderstanding the problem, especially the "no central broker", but have you considered something based on tuple spaces?
--
After the comments exchange, please consider the following as my "definitive" answer, then:
Use a file-based solution, and host the directory tree on a Ramdisk to insure good performance.
I'd also suggest to have a look at the following StackOverflow discussion (even if it's Java based) for possible pointers to how to manage locking and transactions on the filesystem.
This one (.NET based) may be of help, too.
How about UDP broadcasting?
Couldn't you use a localhost socket ?
/Tony
In the end I decided that one of the hard requirements had to go, as the problem could not be solved in any reasonable way as originally stated.
My final solution is a Windows service running a named pipe server. Any application or service can connect to an instance of the pipe and send messages. Any message received by the server is echoed to all pipe instances.
I really liked p.marino's answer, but in the end it looked like a lot of complexity for what is really a very basic piece of functionality.
The other possibility that appealed to me, though again it fell on the complexity hurdle, was to write a kernel driver to manage the multicasting. There would have been several mechanisms possible in this case, but the overhead of writing a bug-free kernel driver was just too high.
In my computer, there are two network adapters, connecting to different subnet. As below:
adapter A: 10.20.30.201
adapter B: 10.20.31.201
I want to make all outgoing data of a special process (for example Process A) through adapter A. That is I want to make adapter A as the process's default route.
I know, I can modify route table for some special destination, But what I want to do here is very different. Process A may communicate with many different IP and I don't know in advance.
Winsock2 provides LSP as a way to lay a dll in TCP/IP stack. I'm not familiar with LSP and don't know whether LSP can do what I want to do.
Can anybody give me some suggestion, Thanks.
A quick background on LSP:
An application, which uses Winsock2 API, calls a combination of WSA-prefix functions, eg WSAConnect, WSASocket, WSASend, WSARecv, etc.
If an application still use old winsock functions, these functions are mapped to Winsock2 behind the scene anyway. For instances: send() is mapped to WSASend(), recv() to WSARecv(), etc
WSA-prefix functions will internally call their corresponding WSP-prefix functions provided by LSP. For instances WSASend() calls WSPSend(), WSASocket() call WSPSocket(), etc. In short, WSAWhateverFunction() will calls WSPWhateverFunction(). Their parameters/returns are also the same (Not quite, but kind of).
LSP is a dll with these WSP-prefix functions implemented, eg. modify outbound/inbound traffic, filtering, etc. However an LSP is still a userspace dll. It's as limited as other userspace programs, and has no higher privilege than its host application, eg internet browsers. It has access to same set of system functions that is available to other programs, eg. winsock etc.
Conclusion is if your program can direct out-coming traffic to specific NIC, LSP can do it too. If it can't, neither can LSP. LSP therefore is irrelevant to your problem.