How do you rotate a two dimensional array? - algorithm

Inspired by Raymond Chen's post, say you have a 4x4 two dimensional array, write a function that rotates it 90 degrees. Raymond links to a solution in pseudo code, but I'd like to see some real world stuff.
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
Becomes:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
Update: Nick's answer is the most straightforward, but is there a way to do it better than n^2? What if the matrix was 10000x10000?

O(n^2) time and O(1) space algorithm ( without any workarounds and hanky-panky stuff! )
Rotate by +90:
Transpose
Reverse each row
Rotate by -90:
Method 1 :
Transpose
Reverse each column
Method 2 :
Reverse each row
Transpose
Rotate by +180:
Method 1: Rotate by +90 twice
Method 2: Reverse each row and then reverse each column (Transpose)
Rotate by -180:
Method 1: Rotate by -90 twice
Method 2: Reverse each column and then reverse each row
Method 3: Rotate by +180 as they are same

I’d like to add a little more detail. In this answer, key concepts are repeated, the pace is slow and intentionally repetitive. The solution provided here is not the most syntactically compact, it is however, intended for those who wish to learn what matrix rotation is and the resulting implementation.
Firstly, what is a matrix? For the purposes of this answer, a matrix is just a grid where the width and height are the same. Note, the width and height of a matrix can be different, but for simplicity, this tutorial considers only matrices with equal width and height (square matrices). And yes, matrices is the plural of matrix.
Example matrices are: 2×2, 3×3 or 5×5. Or, more generally, N×N. A 2×2 matrix will have 4 squares because 2×2=4. A 5×5 matrix will have 25 squares because 5×5=25. Each square is called an element or entry. We’ll represent each element with a period (.) in the diagrams below:
2×2 matrix
. .
. .
3×3 matrix
. . .
. . .
. . .
4×4 matrix
. . . .
. . . .
. . . .
. . . .
So, what does it mean to rotate a matrix? Let’s take a 2×2 matrix and put some numbers in each element so the rotation can be observed:
0 1
2 3
Rotating this by 90 degrees gives us:
2 0
3 1
We literally turned the whole matrix once to the right just like turning the steering wheel of a car. It may help to think of “tipping” the matrix onto its right side. We want to write a function, in Python, that takes a matrix and rotates it once to the right. The function signature will be:
def rotate(matrix):
# Algorithm goes here.
The matrix will be defined using a two-dimensional array:
matrix = [
[0,1],
[2,3]
]
Therefore the first index position accesses the row. The second index position accesses the column:
matrix[row][column]
We’ll define a utility function to print a matrix.
def print_matrix(matrix):
for row in matrix:
print row
One method of rotating a matrix is to do it a layer at a time. But what is a layer? Think of an onion. Just like the layers of an onion, as each layer is removed, we move towards the center. Other analogies is a Matryoshka doll or a game of pass-the-parcel.
The width and height of a matrix dictate the number of layers in that matrix. Let’s use different symbols for each layer:
A 2×2 matrix has 1 layer
. .
. .
A 3×3 matrix has 2 layers
. . .
. x .
. . .
A 4×4 matrix has 2 layers
. . . .
. x x .
. x x .
. . . .
A 5×5 matrix has 3 layers
. . . . .
. x x x .
. x O x .
. x x x .
. . . . .
A 6×6 matrix has 3 layers
. . . . . .
. x x x x .
. x O O x .
. x O O x .
. x x x x .
. . . . . .
A 7×7 matrix has 4 layers
. . . . . . .
. x x x x x .
. x O O O x .
. x O - O x .
. x O O O x .
. x x x x x .
. . . . . . .
You may notice that incrementing the width and height of a matrix by one, does not always increase the number of layers. Taking the above matrices and tabulating the layers and dimensions, we see the number of layers increases once for every two increments of width and height:
+-----+--------+
| N×N | Layers |
+-----+--------+
| 1×1 | 1 |
| 2×2 | 1 |
| 3×3 | 2 |
| 4×4 | 2 |
| 5×5 | 3 |
| 6×6 | 3 |
| 7×7 | 4 |
+-----+--------+
However, not all layers need rotating. A 1×1 matrix is the same before and after rotation. The central 1×1 layer is always the same before and after rotation no matter how large the overall matrix:
+-----+--------+------------------+
| N×N | Layers | Rotatable Layers |
+-----+--------+------------------+
| 1×1 | 1 | 0 |
| 2×2 | 1 | 1 |
| 3×3 | 2 | 1 |
| 4×4 | 2 | 2 |
| 5×5 | 3 | 2 |
| 6×6 | 3 | 3 |
| 7×7 | 4 | 3 |
+-----+--------+------------------+
Given N×N matrix, how can we programmatically determine the number of layers we need to rotate? If we divide the width or height by two and ignore the remainder we get the following results.
+-----+--------+------------------+---------+
| N×N | Layers | Rotatable Layers | N/2 |
+-----+--------+------------------+---------+
| 1×1 | 1 | 0 | 1/2 = 0 |
| 2×2 | 1 | 1 | 2/2 = 1 |
| 3×3 | 2 | 1 | 3/2 = 1 |
| 4×4 | 2 | 2 | 4/2 = 2 |
| 5×5 | 3 | 2 | 5/2 = 2 |
| 6×6 | 3 | 3 | 6/2 = 3 |
| 7×7 | 4 | 3 | 7/2 = 3 |
+-----+--------+------------------+---------+
Notice how N/2 matches the number of layers that need to be rotated? Sometimes the number of rotatable layers is one less the total number of layers in the matrix. This occurs when the innermost layer is formed of only one element (i.e. a 1×1 matrix) and therefore need not be rotated. It simply gets ignored.
We will undoubtedly need this information in our function to rotate a matrix, so let’s add it now:
def rotate(matrix):
size = len(matrix)
# Rotatable layers only.
layer_count = size / 2
Now we know what layers are and how to determine the number of layers that actually need rotating, how do we isolate a single layer so we can rotate it? Firstly, we inspect a matrix from the outermost layer, inwards, to the innermost layer. A 5×5 matrix has three layers in total and two layers that need rotating:
. . . . .
. x x x .
. x O x .
. x x x .
. . . . .
Let’s look at columns first. The position of the columns defining the outermost layer, assuming we count from 0, are 0 and 4:
+--------+-----------+
| Column | 0 1 2 3 4 |
+--------+-----------+
| | . . . . . |
| | . x x x . |
| | . x O x . |
| | . x x x . |
| | . . . . . |
+--------+-----------+
0 and 4 are also the positions of the rows for the outermost layer.
+-----+-----------+
| Row | |
+-----+-----------+
| 0 | . . . . . |
| 1 | . x x x . |
| 2 | . x O x . |
| 3 | . x x x . |
| 4 | . . . . . |
+-----+-----------+
This will always be the case since the width and height are the same. Therefore we can define the column and row positions of a layer with just two values (rather than four).
Moving inwards to the second layer, the position of the columns are 1 and 3. And, yes, you guessed it, it’s the same for rows. It’s important to understand we had to both increment and decrement the row and column positions when moving inwards to the next layer.
+-----------+---------+---------+---------+
| Layer | Rows | Columns | Rotate? |
+-----------+---------+---------+---------+
| Outermost | 0 and 4 | 0 and 4 | Yes |
| Inner | 1 and 3 | 1 and 3 | Yes |
| Innermost | 2 | 2 | No |
+-----------+---------+---------+---------+
So, to inspect each layer, we want a loop with both increasing and decreasing counters that represent moving inwards, starting from the outermost layer. We’ll call this our ‘layer loop’.
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
for layer in range(0, layer_count):
first = layer
last = size - first - 1
print 'Layer %d: first: %d, last: %d' % (layer, first, last)
# 5x5 matrix
matrix = [
[ 0, 1, 2, 3, 4],
[ 5, 6, 6, 8, 9],
[10,11,12,13,14],
[15,16,17,18,19],
[20,21,22,23,24]
]
rotate(matrix)
The code above loops through the (row and column) positions of any layers that need rotating.
Layer 0: first: 0, last: 4
Layer 1: first: 1, last: 3
We now have a loop providing the positions of the rows and columns of each layer. The variables first and last identify the index position of the first and last rows and columns. Referring back to our row and column tables:
+--------+-----------+
| Column | 0 1 2 3 4 |
+--------+-----------+
| | . . . . . |
| | . x x x . |
| | . x O x . |
| | . x x x . |
| | . . . . . |
+--------+-----------+
+-----+-----------+
| Row | |
+-----+-----------+
| 0 | . . . . . |
| 1 | . x x x . |
| 2 | . x O x . |
| 3 | . x x x . |
| 4 | . . . . . |
+-----+-----------+
So we can navigate through the layers of a matrix. Now we need a way of navigating within a layer so we can move elements around that layer. Note, elements never ‘jump’ from one layer to another, but they do move within their respective layers.
Rotating each element in a layer rotates the entire layer. Rotating all layers in a matrix rotates the entire matrix. This sentence is very important, so please try your best to understand it before moving on.
Now, we need a way of actually moving elements, i.e. rotate each element, and subsequently the layer, and ultimately the matrix. For simplicity, we’ll revert to a 3x3 matrix — that has one rotatable layer.
0 1 2
3 4 5
6 7 8
Our layer loop provides the indexes of the first and last columns, as well as first and last rows:
+-----+-------+
| Col | 0 1 2 |
+-----+-------+
| | 0 1 2 |
| | 3 4 5 |
| | 6 7 8 |
+-----+-------+
+-----+-------+
| Row | |
+-----+-------+
| 0 | 0 1 2 |
| 1 | 3 4 5 |
| 2 | 6 7 8 |
+-----+-------+
Because our matrices are always square, we need just two variables, first and last, since index positions are the same for rows and columns.
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
# Our layer loop i=0, i=1, i=2
for layer in range(0, layer_count):
first = layer
last = size - first - 1
# We want to move within a layer here.
The variables first and last can easily be used to reference the four corners of a matrix. This is because the corners themselves can be defined using various permutations of first and last (with no subtraction, addition or offset of those variables):
+---------------+-------------------+-------------+
| Corner | Position | 3x3 Values |
+---------------+-------------------+-------------+
| top left | (first, first) | (0,0) |
| top right | (first, last) | (0,2) |
| bottom right | (last, last) | (2,2) |
| bottom left | (last, first) | (2,0) |
+---------------+-------------------+-------------+
For this reason, we start our rotation at the outer four corners — we’ll rotate those first. Let’s highlight them with *.
* 1 *
3 4 5
* 7 *
We want to swap each * with the * to the right of it. So let’s go ahead a print out our corners defined using only various permutations of first and last:
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
for layer in range(0, layer_count):
first = layer
last = size - first - 1
top_left = (first, first)
top_right = (first, last)
bottom_right = (last, last)
bottom_left = (last, first)
print 'top_left: %s' % (top_left)
print 'top_right: %s' % (top_right)
print 'bottom_right: %s' % (bottom_right)
print 'bottom_left: %s' % (bottom_left)
matrix = [
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]
]
rotate(matrix)
Output should be:
top_left: (0, 0)
top_right: (0, 2)
bottom_right: (2, 2)
bottom_left: (2, 0)
Now we could quite easily swap each of the corners from within our layer loop:
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
for layer in range(0, layer_count):
first = layer
last = size - first - 1
top_left = matrix[first][first]
top_right = matrix[first][last]
bottom_right = matrix[last][last]
bottom_left = matrix[last][first]
# bottom_left -> top_left
matrix[first][first] = bottom_left
# top_left -> top_right
matrix[first][last] = top_left
# top_right -> bottom_right
matrix[last][last] = top_right
# bottom_right -> bottom_left
matrix[last][first] = bottom_right
print_matrix(matrix)
print '---------'
rotate(matrix)
print_matrix(matrix)
Matrix before rotating corners:
[0, 1, 2]
[3, 4, 5]
[6, 7, 8]
Matrix after rotating corners:
[6, 1, 0]
[3, 4, 5]
[8, 7, 2]
Great! We have successfully rotated each corner of the matrix. But, we haven’t rotated the elements in the middle of each layer. Clearly we need a way of iterating within a layer.
The problem is, the only loop in our function so far (our layer loop), moves to the next layer on each iteration. Since our matrix has only one rotatable layer, the layer loop exits after rotating only the corners. Let’s look at what happens with a larger, 5×5 matrix (where two layers need rotating). The function code has been omitted, but it remains the same as above:
matrix = [
[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]
]
print_matrix(matrix)
print '--------------------'
rotate(matrix)
print_matrix(matrix)
The output is:
[20, 1, 2, 3, 0]
[ 5, 16, 7, 6, 9]
[10, 11, 12, 13, 14]
[15, 18, 17, 8, 19]
[24, 21, 22, 23, 4]
It shouldn’t be a surprise that the corners of the outermost layer have been rotated, but, you may also notice the corners of the next layer (inwards) have also been rotated. This makes sense. We’ve written code to navigate through layers and also to rotate the corners of each layer. This feels like progress, but unfortunately we must take a step back. It’s just no good moving onto the next layer until the previous (outer) layer has been fully rotated. That is, until each element in the layer has been rotated. Rotating only the corners won’t do!
Take a deep breath. We need another loop. A nested loop no less. The new, nested loop, will use the first and last variables, plus an offset to navigate within a layer. We’ll call this new loop our ‘element loop’. The element loop will visit each element along the top row, each element down the right side, each element along the bottom row and each element up the left side.
Moving forwards along the top row requires the column
index to be incremented.
Moving down the right side requires the row index to be
incremented.
Moving backwards along the bottom requires the column
index to be decremented.
Moving up the left side requires the row index to be
decremented.
This sounds complex, but it’s made easy because the number of times we increment and decrement to achieve the above remains the same along all four sides of the matrix. For example:
Move 1 element across the top row.
Move 1 element down the right side.
Move 1 element backwards along the bottom row.
Move 1 element up the left side.
This means we can use a single variable in combination with the first and last variables to move within a layer. It may help to note that moving across the top row and down the right side both require incrementing. While moving backwards along the bottom and up the left side both require decrementing.
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
# Move through layers (i.e. layer loop).
for layer in range(0, layer_count):
first = layer
last = size - first - 1
# Move within a single layer (i.e. element loop).
for element in range(first, last):
offset = element - first
# 'element' increments column (across right)
top = (first, element)
# 'element' increments row (move down)
right_side = (element, last)
# 'last-offset' decrements column (across left)
bottom = (last, last-offset)
# 'last-offset' decrements row (move up)
left_side = (last-offset, first)
print 'top: %s' % (top)
print 'right_side: %s' % (right_side)
print 'bottom: %s' % (bottom)
print 'left_side: %s' % (left_side)
Now we simply need to assign the top to the right side, right side to the bottom, bottom to the left side, and left side to the top. Putting this all together we get:
def rotate(matrix):
size = len(matrix)
layer_count = size / 2
for layer in range(0, layer_count):
first = layer
last = size - first - 1
for element in range(first, last):
offset = element - first
top = matrix[first][element]
right_side = matrix[element][last]
bottom = matrix[last][last-offset]
left_side = matrix[last-offset][first]
matrix[first][element] = left_side
matrix[element][last] = top
matrix[last][last-offset] = right_side
matrix[last-offset][first] = bottom
Given the matrix:
0, 1, 2
3, 4, 5
6, 7, 8
Our rotate function results in:
6, 3, 0
7, 4, 1
8, 5, 2

Here it is in C#
int[,] array = new int[4,4] {
{ 1,2,3,4 },
{ 5,6,7,8 },
{ 9,0,1,2 },
{ 3,4,5,6 }
};
int[,] rotated = RotateMatrix(array, 4);
static int[,] RotateMatrix(int[,] matrix, int n) {
int[,] ret = new int[n, n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
ret[i, j] = matrix[n - j - 1, i];
}
}
return ret;
}

Python:
rotated = list(zip(*original[::-1]))
and counterclockwise:
rotated_ccw = list(zip(*original))[::-1]
How this works:
zip(*original) will swap axes of 2d arrays by stacking corresponding items from lists into new lists. (The * operator tells the function to distribute the contained lists into arguments)
>>> list(zip(*[[1,2,3],[4,5,6],[7,8,9]]))
[[1,4,7],[2,5,8],[3,6,9]]
The [::-1] statement reverses array elements (please see Extended Slices or this question):
>>> [[1,2,3],[4,5,6],[7,8,9]][::-1]
[[7,8,9],[4,5,6],[1,2,3]]
Finally, combining the two will result in the rotation transformation.
The change in placement of [::-1] will reverse lists in different levels of the matrix.

Here is one that does the rotation in place instead of using a completely new array to hold the result. I've left off initialization of the array and printing it out. This only works for square arrays but they can be of any size. Memory overhead is equal to the size of one element of the array so you can do the rotation of as large an array as you want.
int a[4][4];
int n = 4;
int tmp;
for (int i = 0; i < n / 2; i++)
{
for (int j = i; j < n - i - 1; j++)
{
tmp = a[i][j];
a[i][j] = a[j][n-i-1];
a[j][n-i-1] = a[n-i-1][n-j-1];
a[n-i-1][n-j-1] = a[n-j-1][i];
a[n-j-1][i] = tmp;
}
}

There are tons of good code here but I just want to show what's going on geometrically so you can understand the code logic a little better. Here is how I would approach this.
first of all, do not confuse this with transposition which is very easy..
the basica idea is to treat it as layers and we rotate one layer at a time..
say we have a 4x4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
after we rotate it clockwise by 90 we get
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4
so let's decompose this, first we rotate the 4 corners essentially
1 4
13 16
then we rotate the following diamond which is sort of askew
2
8
9
15
and then the 2nd skewed diamond
3
5
12
14
so that takes care of the outer edge so essentially we do that one shell at a time until
finally the middle square (or if it's odd just the final element which does not move)
6 7
10 11
so now let's figure out the indices of each layer, assume we always work with the outermost layer, we are doing
[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]
so on and so on
until we are halfway through the edge
so in general the pattern is
[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]

As I said in my previous post, here's some code in C# that implements an O(1) matrix rotation for any size matrix. For brevity and readability there's no error checking or range checking. The code:
static void Main (string [] args)
{
int [,]
// create an arbitrary matrix
m = {{0, 1}, {2, 3}, {4, 5}};
Matrix
// create wrappers for the data
m1 = new Matrix (m),
m2 = new Matrix (m),
m3 = new Matrix (m);
// rotate the matricies in various ways - all are O(1)
m1.RotateClockwise90 ();
m2.Rotate180 ();
m3.RotateAnitclockwise90 ();
// output the result of transforms
System.Diagnostics.Trace.WriteLine (m1.ToString ());
System.Diagnostics.Trace.WriteLine (m2.ToString ());
System.Diagnostics.Trace.WriteLine (m3.ToString ());
}
class Matrix
{
enum Rotation
{
None,
Clockwise90,
Clockwise180,
Clockwise270
}
public Matrix (int [,] matrix)
{
m_matrix = matrix;
m_rotation = Rotation.None;
}
// the transformation routines
public void RotateClockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 1) & 3);
}
public void Rotate180 ()
{
m_rotation = (Rotation) (((int) m_rotation + 2) & 3);
}
public void RotateAnitclockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 3) & 3);
}
// accessor property to make class look like a two dimensional array
public int this [int row, int column]
{
get
{
int
value = 0;
switch (m_rotation)
{
case Rotation.None:
value = m_matrix [row, column];
break;
case Rotation.Clockwise90:
value = m_matrix [m_matrix.GetUpperBound (0) - column, row];
break;
case Rotation.Clockwise180:
value = m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column];
break;
case Rotation.Clockwise270:
value = m_matrix [column, m_matrix.GetUpperBound (1) - row];
break;
}
return value;
}
set
{
switch (m_rotation)
{
case Rotation.None:
m_matrix [row, column] = value;
break;
case Rotation.Clockwise90:
m_matrix [m_matrix.GetUpperBound (0) - column, row] = value;
break;
case Rotation.Clockwise180:
m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column] = value;
break;
case Rotation.Clockwise270:
m_matrix [column, m_matrix.GetUpperBound (1) - row] = value;
break;
}
}
}
// creates a string with the matrix values
public override string ToString ()
{
int
num_rows = 0,
num_columns = 0;
switch (m_rotation)
{
case Rotation.None:
case Rotation.Clockwise180:
num_rows = m_matrix.GetUpperBound (0);
num_columns = m_matrix.GetUpperBound (1);
break;
case Rotation.Clockwise90:
case Rotation.Clockwise270:
num_rows = m_matrix.GetUpperBound (1);
num_columns = m_matrix.GetUpperBound (0);
break;
}
StringBuilder
output = new StringBuilder ();
output.Append ("{");
for (int row = 0 ; row <= num_rows ; ++row)
{
if (row != 0)
{
output.Append (", ");
}
output.Append ("{");
for (int column = 0 ; column <= num_columns ; ++column)
{
if (column != 0)
{
output.Append (", ");
}
output.Append (this [row, column].ToString ());
}
output.Append ("}");
}
output.Append ("}");
return output.ToString ();
}
int [,]
// the original matrix
m_matrix;
Rotation
// the current view of the matrix
m_rotation;
}
OK, I'll put my hand up, it doesn't actually do any modifications to the original array when rotating. But, in an OO system that doesn't matter as long as the object looks like it's been rotated to the clients of the class. At the moment, the Matrix class uses references to the original array data so changing any value of m1 will also change m2 and m3. A small change to the constructor to create a new array and copy the values to it will sort that out.

Whilst rotating the data in place might be necessary (perhaps to update the physically stored representation), it becomes simpler and possibly more performant to add a layer of indirection onto the array access, perhaps an interface:
interface IReadableMatrix
{
int GetValue(int x, int y);
}
If your Matrix already implements this interface, then it can be rotated via a decorator class like this:
class RotatedMatrix : IReadableMatrix
{
private readonly IReadableMatrix _baseMatrix;
public RotatedMatrix(IReadableMatrix baseMatrix)
{
_baseMatrix = baseMatrix;
}
int GetValue(int x, int y)
{
// transpose x and y dimensions
return _baseMatrix(y, x);
}
}
Rotating +90/-90/180 degrees, flipping horizontally/vertically and scaling can all be achieved in this fashion as well.
Performance would need to be measured in your specific scenario. However the O(n^2) operation has now been replaced with an O(1) call. It's a virtual method call which is slower than direct array access, so it depends upon how frequently the rotated array is used after rotation. If it's used once, then this approach would definitely win. If it's rotated then used in a long-running system for days, then in-place rotation might perform better. It also depends whether you can accept the up-front cost.
As with all performance issues, measure, measure, measure!

This a better version of it in Java: I've made it for a matrix with a different width and height
h is here the height of the matrix after rotating
w is here the width of the matrix after rotating
public int[][] rotateMatrixRight(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[w - j - 1][i];
}
}
return ret;
}
public int[][] rotateMatrixLeft(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[j][h - i - 1];
}
}
return ret;
}
This code is based on Nick Berardi's post.

Ruby-way: .transpose.map &:reverse

There are a lot of answers already, and I found two claiming O(1) time complexity. The real O(1) algorithm is to leave the array storage untouched, and change how you index its elements. The goal here is that it does not consume additional memory, nor does it require additional time to iterate the data.
Rotations of 90, -90 and 180 degrees are simple transformations which can be performed as long as you know how many rows and columns are in your 2D array; To rotate any vector by 90 degrees, swap the axes and negate the Y axis. For -90 degree, swap the axes and negate the X axis. For 180 degrees, negate both axes without swapping.
Further transformations are possible, such as mirroring horizontally and/or vertically by negating the axes independently.
This can be done through e.g. an accessor method. The examples below are JavaScript functions, but the concepts apply equally to all languages.
// Get an array element in column/row order
var getArray2d = function(a, x, y) {
return a[y][x];
};
//demo
var arr = [
[5, 4, 6],
[1, 7, 9],
[-2, 11, 0],
[8, 21, -3],
[3, -1, 2]
];
var newarr = [];
arr[0].forEach(() => newarr.push(new Array(arr.length)));
for (var i = 0; i < newarr.length; i++) {
for (var j = 0; j < newarr[0].length; j++) {
newarr[i][j] = getArray2d(arr, i, j);
}
}
console.log(newarr);
// Get an array element rotated 90 degrees clockwise
function getArray2dCW(a, x, y) {
var t = x;
x = y;
y = a.length - t - 1;
return a[y][x];
}
//demo
var arr = [
[5, 4, 6],
[1, 7, 9],
[-2, 11, 0],
[8, 21, -3],
[3, -1, 2]
];
var newarr = [];
arr[0].forEach(() => newarr.push(new Array(arr.length)));
for (var i = 0; i < newarr[0].length; i++) {
for (var j = 0; j < newarr.length; j++) {
newarr[j][i] = getArray2dCW(arr, i, j);
}
}
console.log(newarr);
// Get an array element rotated 90 degrees counter-clockwise
function getArray2dCCW(a, x, y) {
var t = x;
x = a[0].length - y - 1;
y = t;
return a[y][x];
}
//demo
var arr = [
[5, 4, 6],
[1, 7, 9],
[-2, 11, 0],
[8, 21, -3],
[3, -1, 2]
];
var newarr = [];
arr[0].forEach(() => newarr.push(new Array(arr.length)));
for (var i = 0; i < newarr[0].length; i++) {
for (var j = 0; j < newarr.length; j++) {
newarr[j][i] = getArray2dCCW(arr, i, j);
}
}
console.log(newarr);
// Get an array element rotated 180 degrees
function getArray2d180(a, x, y) {
x = a[0].length - x - 1;
y = a.length - y - 1;
return a[y][x];
}
//demo
var arr = [
[5, 4, 6],
[1, 7, 9],
[-2, 11, 0],
[8, 21, -3],
[3, -1, 2]
];
var newarr = [];
arr.forEach(() => newarr.push(new Array(arr[0].length)));
for (var i = 0; i < newarr[0].length; i++) {
for (var j = 0; j < newarr.length; j++) {
newarr[j][i] = getArray2d180(arr, i, j);
}
}
console.log(newarr);
This code assumes an array of nested arrays, where each inner array is a row.
The method allows you to read (or write) elements (even in random order) as if the array has been rotated or transformed. Now just pick the right function to call, probably by reference, and away you go!
The concept can be extended to apply transformations additively (and non-destructively) through the accessor methods. Including arbitrary angle rotations and scaling.

A couple of people have already put up examples which involve making a new array.
A few other things to consider:
(a) Instead of actually moving the data, simply traverse the "rotated" array differently.
(b) Doing the rotation in-place can be a little trickier. You'll need a bit of scratch place (probably roughly equal to one row or column in size). There's an ancient ACM paper about doing in-place transposes (http://doi.acm.org/10.1145/355719.355729), but their example code is nasty goto-laden FORTRAN.
Addendum:
http://doi.acm.org/10.1145/355611.355612 is another, supposedly superior, in-place transpose algorithm.

Nick's answer would work for an NxM array too with only a small modification (as opposed to an NxN).
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
One way to think about this is that you have moved the center of the axis (0,0) from the top left corner to the top right corner. You're simply transposing from one to the other.

Time - O(N), Space - O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
int last = n - 1 - i;
for (int j = i; j < last; j++) {
int top = matrix[i][j];
matrix[i][j] = matrix[last - j][i];
matrix[last - j][i] = matrix[last][last - j];
matrix[last][last - j] = matrix[j][last];
matrix[j][last] = top;
}
}
}

A common method to rotate a 2D array clockwise or anticlockwise.
clockwise rotate
first reverse up to down, then swap the symmetry
1 2 3 7 8 9 7 4 1
4 5 6 => 4 5 6 => 8 5 2
7 8 9 1 2 3 9 6 3
void rotate(vector<vector<int> > &matrix) {
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
anticlockwise rotate
first reverse left to right, then swap the symmetry
1 2 3 3 2 1 3 6 9
4 5 6 => 6 5 4 => 2 5 8
7 8 9 9 8 7 1 4 7
void anti_rotate(vector<vector<int> > &matrix) {
for (auto vi : matrix) reverse(vi.begin(), vi.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}

Here's my Ruby version (note the values aren't displayed the same, but it still rotates as described).
def rotate(matrix)
result = []
4.times { |x|
result[x] = []
4.times { |y|
result[x][y] = matrix[y][3 - x]
}
}
result
end
matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]
def print_matrix(matrix)
4.times { |y|
4.times { |x|
print "#{matrix[x][y]} "
}
puts ""
}
end
print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))
The output:
1 5 9 3
2 6 0 4
3 7 1 5
4 8 2 6
4 3 2 1
8 7 6 5
2 1 0 9
6 5 4 3

here's a in-space rotate method, by java, only for square. for non-square 2d array, you will have to create new array anyway.
private void rotateInSpace(int[][] arr) {
int z = arr.length;
for (int i = 0; i < z / 2; i++) {
for (int j = 0; j < (z / 2 + z % 2); j++) {
int x = i, y = j;
int temp = arr[x][y];
for (int k = 0; k < 4; k++) {
int temptemp = arr[y][z - x - 1];
arr[y][z - x - 1] = temp;
temp = temptemp;
int tempX = y;
y = z - x - 1;
x = tempX;
}
}
}
}
code to rotate any size 2d array by creating new array:
private int[][] rotate(int[][] arr) {
int width = arr[0].length;
int depth = arr.length;
int[][] re = new int[width][depth];
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width; j++) {
re[j][depth - i - 1] = arr[i][j];
}
}
return re;
}

You can do this in 3 easy steps:
1)Suppose we have a matrix
1 2 3
4 5 6
7 8 9
2)Take the transpose of the matrix
1 4 7
2 5 8
3 6 9
3)Interchange rows to get rotated matrix
3 6 9
2 5 8
1 4 7
Java source code for this:
public class MyClass {
public static void main(String args[]) {
Demo obj = new Demo();
/*initial matrix to rotate*/
int[][] matrix = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
int[][] transpose = new int[3][3]; // matrix to store transpose
obj.display(matrix); // initial matrix
obj.rotate(matrix, transpose); // call rotate method
System.out.println();
obj.display(transpose); // display the rotated matix
}
}
class Demo {
public void rotate(int[][] mat, int[][] tran) {
/* First take the transpose of the matrix */
for (int i = 0; i < mat.length; i++) {
for (int j = 0; j < mat.length; j++) {
tran[i][j] = mat[j][i];
}
}
/*
* Interchange the rows of the transpose matrix to get rotated
* matrix
*/
for (int i = 0, j = tran.length - 1; i != j; i++, j--) {
for (int k = 0; k < tran.length; k++) {
swap(i, k, j, k, tran);
}
}
}
public void swap(int a, int b, int c, int d, int[][] arr) {
int temp = arr[a][b];
arr[a][b] = arr[c][d];
arr[c][d] = temp;
}
/* Method to display the matrix */
public void display(int[][] arr) {
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr.length; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
}
}
Output:
1 2 3
4 5 6
7 8 9
3 6 9
2 5 8
1 4 7

Implementation of dimple's +90 pseudocode (e.g. transpose then reverse each row) in JavaScript:
function rotate90(a){
// transpose from http://www.codesuck.com/2012/02/transpose-javascript-array-in-one-line.html
a = Object.keys(a[0]).map(function (c) { return a.map(function (r) { return r[c]; }); });
// row reverse
for (i in a){
a[i] = a[i].reverse();
}
return a;
}

In python:
import numpy as np
a = np.array(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
]
)
print(a)
print(b[::-1, :].T)

This is my implementation, in C, O(1) memory complexity, in place rotation, 90 degrees clockwise:
#include <stdio.h>
#define M_SIZE 5
static void initMatrix();
static void printMatrix();
static void rotateMatrix();
static int m[M_SIZE][M_SIZE];
int main(void){
initMatrix();
printMatrix();
rotateMatrix();
printMatrix();
return 0;
}
static void initMatrix(){
int i, j;
for(i = 0; i < M_SIZE; i++){
for(j = 0; j < M_SIZE; j++){
m[i][j] = M_SIZE*i + j + 1;
}
}
}
static void printMatrix(){
int i, j;
printf("Matrix\n");
for(i = 0; i < M_SIZE; i++){
for(j = 0; j < M_SIZE; j++){
printf("%02d ", m[i][j]);
}
printf("\n");
}
printf("\n");
}
static void rotateMatrix(){
int r, c;
for(r = 0; r < M_SIZE/2; r++){
for(c = r; c < M_SIZE - r - 1; c++){
int tmp = m[r][c];
m[r][c] = m[M_SIZE - c - 1][r];
m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
m[c][M_SIZE - r - 1] = tmp;
}
}
}

Here is the Java version:
public static void rightRotate(int[][] matrix, int n) {
for (int layer = 0; layer < n / 2; layer++) {
int first = layer;
int last = n - 1 - first;
for (int i = first; i < last; i++) {
int offset = i - first;
int temp = matrix[first][i];
matrix[first][i] = matrix[last-offset][first];
matrix[last-offset][first] = matrix[last][last-offset];
matrix[last][last-offset] = matrix[i][last];
matrix[i][last] = temp;
}
}
}
the method first rotate the mostouter layer, then move to the inner layer squentially.

From a linear point of view, consider the matrices:
1 2 3 0 0 1
A = 4 5 6 B = 0 1 0
7 8 9 1 0 0
Now take A transpose
1 4 7
A' = 2 5 8
3 6 9
And consider the action of A' on B, or B on A'.
Respectively:
7 4 1 3 6 9
A'B = 8 5 2 BA' = 2 5 8
9 6 3 1 4 7
This is expandable for any n x n matrix.
And applying this concept quickly in code:
void swapInSpace(int** mat, int r1, int c1, int r2, int c2)
{
mat[r1][c1] ^= mat[r2][c2];
mat[r2][c2] ^= mat[r1][c1];
mat[r1][c1] ^= mat[r2][c2];
}
void transpose(int** mat, int size)
{
for (int i = 0; i < size; i++)
{
for (int j = (i + 1); j < size; j++)
{
swapInSpace(mat, i, j, j, i);
}
}
}
void rotate(int** mat, int size)
{
//Get transpose
transpose(mat, size);
//Swap columns
for (int i = 0; i < size / 2; i++)
{
for (int j = 0; j < size; j++)
{
swapInSpace(mat, i, j, size - (i + 1), j);
}
}
}

C# code to rotate [n,m] 2D arrays 90 deg right
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MatrixProject
{
// mattrix class
class Matrix{
private int rows;
private int cols;
private int[,] matrix;
public Matrix(int n){
this.rows = n;
this.cols = n;
this.matrix = new int[this.rows,this.cols];
}
public Matrix(int n,int m){
this.rows = n;
this.cols = m;
this.matrix = new int[this.rows,this.cols];
}
public void Show()
{
for (var i = 0; i < this.rows; i++)
{
for (var j = 0; j < this.cols; j++) {
Console.Write("{0,3}", this.matrix[i, j]);
}
Console.WriteLine();
}
}
public void ReadElements()
{
for (var i = 0; i < this.rows; i++)
for (var j = 0; j < this.cols; j++)
{
Console.Write("element[{0},{1}]=",i,j);
this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
}
}
// rotate [n,m] 2D array by 90 deg right
public void Rotate90DegRight()
{
// create a mirror of current matrix
int[,] mirror = this.matrix;
// create a new matrix
this.matrix = new int[this.cols, this.rows];
for (int i = 0; i < this.rows; i++)
{
for (int j = 0; j < this.cols; j++)
{
this.matrix[j, this.rows - i - 1] = mirror[i, j];
}
}
// replace cols count with rows count
int tmp = this.rows;
this.rows = this.cols;
this.cols = tmp;
}
}
class Program
{
static void Main(string[] args)
{
Matrix myMatrix = new Matrix(3,4);
Console.WriteLine("Enter matrix elements:");
myMatrix.ReadElements();
Console.WriteLine("Matrix elements are:");
myMatrix.Show();
myMatrix.Rotate90DegRight();
Console.WriteLine("Matrix rotated at 90 deg are:");
myMatrix.Show();
Console.ReadLine();
}
}
}
Result:
Enter matrix elements:
element[0,0]=1
element[0,1]=2
element[0,2]=3
element[0,3]=4
element[1,0]=5
element[1,1]=6
element[1,2]=7
element[1,3]=8
element[2,0]=9
element[2,1]=10
element[2,2]=11
element[2,3]=12
Matrix elements are:
1 2 3 4
5 6 7 8
9 10 11 12
Matrix rotated at 90 deg are:
9 5 1
10 6 2
11 7 3
12 8 4

Great answers but for those who are looking for a DRY JavaScript code for this - both +90 Degrees and -90 Degrees:
// Input: 1 2 3
// 4 5 6
// 7 8 9
// Transpose:
// 1 4 7
// 2 5 8
// 3 6 9
// Output:
// +90 Degree:
// 7 4 1
// 8 5 2
// 9 6 3
// -90 Degree:
// 3 6 9
// 2 5 8
// 1 4 7
// Rotate +90
function rotate90(matrix) {
matrix = transpose(matrix);
matrix.map(function(array) {
array.reverse();
});
return matrix;
}
// Rotate -90
function counterRotate90(matrix) {
var result = createEmptyMatrix(matrix.length);
matrix = transpose(matrix);
var counter = 0;
for (var i = matrix.length - 1; i >= 0; i--) {
result[counter] = matrix[i];
counter++;
}
return result;
}
// Create empty matrix
function createEmptyMatrix(len) {
var result = new Array();
for (var i = 0; i < len; i++) {
result.push([]);
}
return result;
}
// Transpose the matrix
function transpose(matrix) {
// make empty array
var len = matrix.length;
var result = createEmptyMatrix(len);
for (var i = 0; i < matrix.length; i++) {
for (var j = 0; j < matrix[i].length; j++) {
var temp = matrix[i][j];
result[j][i] = temp;
}
}
return result;
}
// Test Cases
var array1 = [
[1, 2],
[3, 4]
];
var array2 = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
];
var array3 = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]
];
// +90 degress Rotation Tests
var test1 = rotate90(array1);
var test2 = rotate90(array2);
var test3 = rotate90(array3);
console.log(test1);
console.log(test2);
console.log(test3);
// -90 degress Rotation Tests
var test1 = counterRotate90(array1);
var test2 = counterRotate90(array2);
var test3 = counterRotate90(array3);
console.log(test1);
console.log(test2);
console.log(test3);

PHP:
<?php
$a = array(array(1,2,3,4),array(5,6,7,8),array(9,0,1,2),array(3,4,5,6));
$b = array(); //result
while(count($a)>0)
{
$b[count($a[0])-1][] = array_shift($a[0]);
if (count($a[0])==0)
{
array_shift($a);
}
}
From PHP5.6, Array transposition can be performed with a sleak array_map() call. In other words, columns are converted to rows.
Code: (Demo)
$array = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
];
$transposed = array_map(null, ...$array);
$transposed:
[
[1, 5, 9, 3],
[2, 6, 0, 4],
[3, 7, 1, 5],
[4, 8, 2, 6]
]

For i:= 0 to X do
For j := 0 to X do
graphic[j][i] := graphic2[X-i][j]
X is the size of the array the graphic is in.

#transpose is a standard method of Ruby's Array class, thus:
% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]
The implementation is an n^2 transposition function written in C. You can see it here:
http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose
by choosing "click to toggle source" beside "transpose".
I recall better than O(n^2) solutions, but only for specially constructed matrices (such as sparse matrices)

C code for matrix rotation 90 degree clockwise IN PLACE for any M*N matrix
void rotateInPlace(int * arr[size][size], int row, int column){
int i, j;
int temp = row>column?row:column;
int flipTill = row < column ? row : column;
for(i=0;i<flipTill;i++){
for(j=0;j<i;j++){
swapArrayElements(arr, i, j);
}
}
temp = j+1;
for(i = row>column?i:0; i<row; i++){
for(j=row<column?temp:0; j<column; j++){
swapArrayElements(arr, i, j);
}
}
for(i=0;i<column;i++){
for(j=0;j<row/2;j++){
temp = arr[i][j];
arr[i][j] = arr[i][row-j-1];
arr[i][row-j-1] = temp;
}
}
}

here is my In Place implementation in C
void rotateRight(int matrix[][SIZE], int length) {
int layer = 0;
for (int layer = 0; layer < length / 2; ++layer) {
int first = layer;
int last = length - 1 - layer;
for (int i = first; i < last; ++i) {
int topline = matrix[first][i];
int rightcol = matrix[i][last];
int bottomline = matrix[last][length - layer - 1 - i];
int leftcol = matrix[length - layer - 1 - i][first];
matrix[first][i] = leftcol;
matrix[i][last] = topline;
matrix[last][length - layer - 1 - i] = rightcol;
matrix[length - layer - 1 - i][first] = bottomline;
}
}
}

Related

Cutting algorithm of two dimensional board

I have problem with my homework.
Given a board of dimensions m x n is given, cut this board into rectangular pieces with the best total price. A matrix gives the price for each possible board size up through the original, uncut board.
Consider a 2 x 2 board with the price matrix:
3 4
3 6
We have a constant cost for each cutting for example 1.
Piece of length 1 x 1 is worth 3.
Horizontal piece of length 1 x 2 is worth 4.
Vertical piece of length 1 x 2 is worth 3.
Whole board is worth 6.
For this example, the optimal profit is 9, because we cut board into 1 x 1 pieces. Each piece is worth 3 and we done a 3 cut, so 4 x 3 - 3 x 1 = 9.
Second example:
1 2
3 4
Now I have to consider all the solutions:
4 1x1 pieces is worth 4x1 - (cost of cutting) 3x1 = 1
2 horizontal 1x2 is worth 2x2 - (cost of cutting) 1x1 = 3
2 vertical 1x2 is worth 3x2 - (cost of cutting) 1x1 = 5 -> best optimal profit
1 horizontal 1x2 + 2 x (1x1) pieces is worth 2 + 2 - (cost of cutting) 2 = 2
1 vertical 1x2 + 2 x (1x1) pieces is worth 3 + 2 - (cost of cutting) 2 = 3
I've read a lot about rod cutting algorithm but I don't have any idea how to bite this problem.
Do you have any ideas?
I did this in Python. The algorithm is
best_val = value of current board
check each horizontal and vertical cut for better value
for cut point <= half the current dimension (if none, return initial value)
recur on the two boards formed
if sum of values > best_val
... best_val = that sum
... record cut point and direction
return result: best_val, cut point, and direction
I'm not sure what you'll want for return values; I gave back the best value and tree of boards. For your second example, this is
(5, [[2, 1], [2, 1]])
Code, with debugging traces (indent and the labeled prints):
indent = ""
indent_len = 3
value = [[1, 2],
[3, 4]]
def best_cut(high, wide):
global indent
print indent, "ENTER", high, wide
indent += " " * indent_len
best_val = value[high-1][wide-1]
print indent, "Default", best_val
cut_vert = None
cut_val = best_val
cut_list = []
# Check horizontal cuts
for h_cut in range(1, 1 + high // 2):
print indent, "H_CUT", h_cut
cut_val1, cut_list1 = best_cut(h_cut, wide)
cut_val2, cut_list2 = best_cut(high - h_cut, wide)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW H", h_cut, cut_val, cut_list
best_val = cut_val
cut_vert = False
best_h = h_cut
# Check vertical cuts
for v_cut in range(1, 1 + wide // 2):
print indent, "V_CUT", v_cut
cut_val1, cut_list1 = best_cut(high, v_cut)
cut_val2, cut_list2 = best_cut(high, wide - v_cut)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW V", v_cut, cut_val, cut_list
best_val = cut_val
cut_vert = True
best_v = v_cut
# Return result of best cut
# Remember to subtract the cut cost
if cut_vert is None:
result = best_val , [high, wide]
elif cut_vert:
result = best_val-1, cut_list
else:
result = best_val-1, cut_list
indent = indent[indent_len:]
print indent, "LEAVE", cut_vert, result
return result
print best_cut(2, 2)
Output (profit and cut sizes) for each of the two tests:
(9, [[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
(5, [[2, 1], [2, 1]])
Let f(h,w) represent the best total price achievable for a board with height h and width w with cutting price c. Then
f(h,w) = max(
price_matrix(h, w),
f(i, w) + f(h - i, w) - c,
f(h, j) + f(h, w - j) - c
)
for i = 1 to floor(h / 2)
for j = 1 to floor(w / 2)
Here's a bottom-up example in JavaScript that returns the filled table given the price matrix. The answer would be in the bottom right corner.
function f(prices, cost){
var m = new Array(prices.length);
for (let i=0; i<prices.length; i++)
m[i] = [];
for (let h=0; h<prices.length; h++){
for (let w=0; w<prices[0].length; w++){
m[h][w] = prices[h][w];
if (h == 0 && w == 0)
continue;
for (let i=1; i<(h+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[i-1][w] + m[h-i][w] - cost
);
for (let i=1; i<(w+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[h][i-1] + m[h][w-i] - cost
);
}
}
return m;
}
$('#submit').click(function(){
let prices = JSON.parse($('#input').val());
let result = f(prices, 1);
let str = result.map(line => JSON.stringify(line)).join('<br>');
$('#output').html(str);
});
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<textarea id="input">[[3, 4],
[3, 6]]</textarea>
<p><button type="button" id="submit">Submit</button></p>
<div id="output"><div>
Some thoughts on the problem rather than an answer:
It was a long time ago i studied dynamic programming, but i wrote up the following pseudo code which is think is O(n^2):
// 'Board'-class not included
val valueOfBoards: HashMap<Board, int>
fun cutBoard(b: Board, value: int) : int {
if (b.isEmpty()) return 0
if (valueOfBoards[b] > value) {
return 0;
} else {
valueOfBoards[b] = value
}
int maxValue = Integer.MIN_VALUE
for (Board piece : b.getPossiblePieces()) {
val (cuttingCost, smallerBoard) = b.cutOffPiece(piece)
val valueGained: int = piece.getPrice() - cuttingCost
maxValue = Max(maxValue, valueGained + cutBoard(smallerBoard, value + valueGained))
}
return maxValue;
}
The board class is not trivially implemented, here is some elaboration:
// returns all boards which fits in the current board
// for the initial board this will be width*height subboards
board.getPossiblePieces()
// returns a smaller board and the cutting cost of the cut
// I can see this becoming complex, depends on how one chooses to represent the board.
board.cutOffPiece(piece: Board)
It is not clear to me at the moment if cutOffPiece() breaks the algorithm in that you do not know how to optimally cut. I think since the algorithm will proceed from larger pieces to smaller pieces at some point it will be fine.
I tried to solve the re computation of sub problems (identical boards) by storing results in something like HashMap<Board, price> and comparing the new board with the stored best price before proceeding.
According to your answers I've prepared bottom-up and top-down implementation.
Bottom-up:
function bottomUp($high, $wide, $matrix){
$m = [];
for($h = 0; $h < $high; $h++){
for($w = 0; $w < $wide; $w++){
$m[$h][$w] = $matrix[$h][$w];
if($h == 0 && $w == 0){
continue;
}
for($i = 1; $i < ($h + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$i - 1][$w] + $m[$h - $i][$w] - CUT_COST
);
}
for($i = 1; $i < ($w + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$h][$i - 1] + $m[$h][$w - $i] - CUT_COST
);
}
}
}
return $m[$high-1][$wide-1];
}
Top-down:
function getBestCut($high, $wide, $matrix){
global $checked;
if(isset($checked[$high][$wide])){
return $checked[$high][$wide];
}
$bestVal = $matrix[$high-1][$wide-1];
$cutVert = CUT_VERT_NONE;
$cutVal = $bestVal;
$cutList = [];
for($hCut = 1; $hCut < 1 + floor($high/2); $hCut++){
$result1 = getBestCut($hCut, $wide, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high - $hCut, $wide, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_FALSE;
$bestH = $hCut;
}
$checked[$hCut][$wide] = $result1;
$checked[$high - $hCut][$wide] = $result2;
}
for($vCut = 1; $vCut < 1 + floor($wide/2); $vCut++){
$result1 = getBestCut($hCut, $vCut, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high, $wide - $vCut, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_TRUE;
$bestH = $vCut;
}
$checked[$hCut][$vCut] = $result1;
$checked[$high][$wide - $vCut] = $result2;
}
if($cutVert == CUT_VERT_NONE){
$result = [$bestVal, [$high, $wide]];
}else if($cutVert == CUT_VERT_TRUE){
$result = [$bestVal - CUT_COST, $cutList];
}else{
$result = [$bestVal - CUT_COST, $cutList];
}
return $result;
}
Please tell me are they correct implementation of this method?
I wonder if time complexity is O(m^2*n^2) in top-down method?

Tournament bracket placement algorithm

Given a list of opponent seeds (for example seeds 1 to 16), I'm trying to write an algorithm that will result in the top seed playing the lowest seed in that round, the 2nd seed playing the 2nd-lowest seed, etc.
Grouping 1 and 16, 2 and 15, etc. into "matches" is fairly easy, but I also need to make sure that the higher seed will play the lower seed in subsequent rounds.
An example bracket with the correct placement:
1 vs 16
1 vs 8
8 vs 9
1 vs 4
4 vs 13
4 vs 5
5 vs 12
1 vs 2
2 vs 15
2 vs 7
7 vs 10
2 vs 3
3 vs 14
3 vs 6
6 vs 11
As you can see, seed 1 and 2 only meet up in the final.
This JavaScript returns an array where each even index plays the next odd index
function seeding(numPlayers){
var rounds = Math.log(numPlayers)/Math.log(2)-1;
var pls = [1,2];
for(var i=0;i<rounds;i++){
pls = nextLayer(pls);
}
return pls;
function nextLayer(pls){
var out=[];
var length = pls.length*2+1;
pls.forEach(function(d){
out.push(d);
out.push(length-d);
});
return out;
}
}
> seeding(2)
[1, 2]
> seeding(4)
[1, 4, 2, 3]
> seeding(8)
[1, 8, 4, 5, 2, 7, 3, 6]
> seeding(16)
[1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11]
With your assumptions, players 1 and 2 will play in the final, players 1-4 in the semifinals, players 1-8 in the quarterfinals and so on, so you can build the tournament recursively backwards from the final as AakashM proposed. Think of the tournament as a tree whose root is the final.
In the root node, your players are {1, 2}.
To expand the tree recursively to the next level, take all the nodes on the bottom layer in the tree, one by one, and create two children for them each, and place one of the players of the original node to each one of the child nodes created. Then add the next layer of players and map them to the game so that the worst newly added player plays against the best pre-existing player and so on.
Here first rounds of the algorithm:
{1,2} --- create next layer
{1, _}
/ --- now fill the empty slots
{1,2}
\{2, _}
{1, 4} --- the slots filled in reverse order
/
{1,2}
\{2, 3} --- create next layer again
/{1, _}
{1, 4}
/ \{4, _}
{1,2} --- again fill
\ /{2, _}
{2, 3}
\{3, _}
/{1, 8}
{1, 4}
/ \{4, 5} --- ... and so on
{1,2}
\ /{2, 7}
{2, 3}
\{3, 6}
As you can see, it produces the same tree you posted.
I've come up with the following algorithm. It may not be super-efficient, but I don't think that it really needs to be. It's written in PHP.
<?php
$players = range(1, 32);
$count = count($players);
$numberOfRounds = log($count / 2, 2);
// Order players.
for ($i = 0; $i < $numberOfRounds; $i++) {
$out = array();
$splice = pow(2, $i);
while (count($players) > 0) {
$out = array_merge($out, array_splice($players, 0, $splice));
$out = array_merge($out, array_splice($players, -$splice));
}
$players = $out;
}
// Print match list.
for ($i = 0; $i < $count; $i++) {
printf('%s vs %s<br />%s', $players[$i], $players[++$i], PHP_EOL);
}
?>
I also wrote a solution written in PHP. I saw Patrik Bodin's answer, but thought there must be an easier way.
It does what darkangel asked for: It returns all seeds in the correct positions. The matches are the same as in his example, but in a prettier order, seed 1 and seed number 16 are on the outside of the schema (as you see in tennis tournaments).
If there are no upsets (meaning a higher seeded player always wins from a lower seeded player), you will end up with seed 1 vs seed 2 in the final.
It actually does two things more:
It shows the correct order (which is a requirement for putting byes in the correct positions)
It fills in byes in the correct positions (if required)
A perfect explanation about what a single elimination bracket should look like: http://blog.playdriven.com/2011/articles/the-not-so-simple-single-elimination-advantage-seeding/
Code example for 16 participants:
<?php
define('NUMBER_OF_PARTICIPANTS', 16);
$participants = range(1,NUMBER_OF_PARTICIPANTS);
$bracket = getBracket($participants);
var_dump($bracket);
function getBracket($participants)
{
$participantsCount = count($participants);
$rounds = ceil(log($participantsCount)/log(2));
$bracketSize = pow(2, $rounds);
$requiredByes = $bracketSize - $participantsCount;
echo sprintf('Number of participants: %d<br/>%s', $participantsCount, PHP_EOL);
echo sprintf('Number of rounds: %d<br/>%s', $rounds, PHP_EOL);
echo sprintf('Bracket size: %d<br/>%s', $bracketSize, PHP_EOL);
echo sprintf('Required number of byes: %d<br/>%s', $requiredByes, PHP_EOL);
if($participantsCount < 2)
{
return array();
}
$matches = array(array(1,2));
for($round=1; $round < $rounds; $round++)
{
$roundMatches = array();
$sum = pow(2, $round + 1) + 1;
foreach($matches as $match)
{
$home = changeIntoBye($match[0], $participantsCount);
$away = changeIntoBye($sum - $match[0], $participantsCount);
$roundMatches[] = array($home, $away);
$home = changeIntoBye($sum - $match[1], $participantsCount);
$away = changeIntoBye($match[1], $participantsCount);
$roundMatches[] = array($home, $away);
}
$matches = $roundMatches;
}
return $matches;
}
function changeIntoBye($seed, $participantsCount)
{
//return $seed <= $participantsCount ? $seed : sprintf('%d (= bye)', $seed);
return $seed <= $participantsCount ? $seed : null;
}
?>
The output:
Number of participants: 16
Number of rounds: 4
Bracket size: 16
Required number of byes: 0
C:\projects\draw\draw.php:7:
array (size=8)
0 =>
array (size=2)
0 => int 1
1 => int 16
1 =>
array (size=2)
0 => int 9
1 => int 8
2 =>
array (size=2)
0 => int 5
1 => int 12
3 =>
array (size=2)
0 => int 13
1 => int 4
4 =>
array (size=2)
0 => int 3
1 => int 14
5 =>
array (size=2)
0 => int 11
1 => int 6
6 =>
array (size=2)
0 => int 7
1 => int 10
7 =>
array (size=2)
0 => int 15
1 => int 2
If you change 16 into 6 you get:
Number of participants: 6
Number of rounds: 3
Bracket size: 8
Required number of byes: 2
C:\projects\draw\draw.php:7:
array (size=4)
0 =>
array (size=2)
0 => int 1
1 => null
1 =>
array (size=2)
0 => int 5
1 => int 4
2 =>
array (size=2)
0 => int 3
1 => int 6
3 =>
array (size=2)
0 => null
1 => int 2
# Here's one in python - it uses nested list comprehension to be succinct:
from math import log, ceil
def seed( n ):
""" returns list of n in standard tournament seed order
Note that n need not be a power of 2 - 'byes' are returned as zero
"""
ol = [1]
for i in range( ceil( log(n) / log(2) ) ):
l = 2*len(ol) + 1
ol = [e if e <= n else 0 for s in [[el, l-el] for el in ol] for e in s]
return ol
For JavaScript code, use one of the two functions below. The former embodies imperative style & is much faster. The latter is recursive & neater, but only applicable to relatively small number of teams (<16384).
// imperative style
function foo(n) {
const arr = new Array(n)
arr[0] = 0
for (let i = n >> 1, m = 1; i >= 1; i >>= 1, m = (m << 1) + 1) {
for (let j = n - i; j > 0; j -= i) {
arr[j] = m - arr[j -= i]
}
}
return arr
}
Here you fill in the spots one by one by mirroring already occupied ones. For example, the first-seeded team (that is number 0) goes to the topmost spot. The second one (1) occupies the opposite spot in the other half of the bracket. The third team (2) mirrors 1 in their half of the bracket & so on. Despite the nested loops, the algorithm has a linear time complexity depending on the number of teams.
Here is the recursive method:
// functional style
const foo = n =>
n === 1 ? [0] : foo(n >> 1).reduce((p, c) => [...p, c, n - c - 1], [])
Basically, you do the same mirroring as in the previous function, but recursively:
For n = 1 team, it's just [0].
For n = 2 teams, you apply this function to the argument n-1 (that is,
1) & get [0]. Then you double the array by inserting mirrored
elements between them at even positions. Thus, [0] becomes [0, 1].
For n = 4 teams, you do the same operation, so [0, 1] becomes [0, 3,
1, 2].
If you want to get human-readable output, increase each element of the resulting array by one:
const readableArr = arr.map(i => i + 1)
At each round sort teams by seeding criteria
(If there are n teams in a round)team at ith position plays with team n-i+1
Since this comes up when searching on the subject, and it's hopeless to find another answer that solves the problem AND puts the seeds in a "prettier" order, I will add my version of the PHP code from darkangel. I also added the possibility to give byes to the higher seed players.
This was coded in an OO environment, so the number of participants are in $this->finalists and the number of byes are in $this->byes. I have only tested the code without byes and with two byes.
public function getBracket() {
$players = range(1, $this->finalists);
for ($i = 0; $i < log($this->finalists / 2, 2); $i++) {
$out = array();
$reverse = false;
foreach ($players as $player) {
$splice = pow(2, $i);
if ($reverse) {
$out = array_merge($out, array_splice($players, -$splice));
$out = array_merge($out, array_splice($players, 0, $splice));
$reverse = false;
} else {
$out = array_merge($out, array_splice($players, 0, $splice));
$out = array_merge($out, array_splice($players, -$splice));
$reverse = true;
}
}
$players = $out;
}
if ($this->byes) {
for ($i = 0; $i < $this->byes; $i++ ) {
for ($j = (($this->finalists / pow(2, $i)) - 1); $j > 0; $j--) {
$newPlace = ($this->finalists / pow(2, $i)) - 1;
if ($players[$j] > ($this->finalists / (pow(2 ,($i + 1))))) {
$player = $players[$j];
unset($players[$j]);
array_splice($players, $newPlace, 0, $player);
}
}
}
for ($i = 0; $i < $this->finalists / (pow(2, $this->byes)); $i++ ) {
$swap[] = $players[$i];
}
for ($i = 0; $i < $this->finalists /(pow(2, $this->byes)); $i++ ) {
$players[$i] = $swap[count($swap) - 1 - $i];
}
return array_reverse($players);
}
return $players;
}
I worked on a PHP / Laravel plugin that generates brackets with / without preliminary round robin. Maybe it can be useful to you, I don't know what tech you are using. Here is the github.
https://github.com/xoco70/kendo-tournaments
Hope it helps!
A C version.
int * pctournamentSeedArray(int PlayerCnt)
{
int * Array;
int * PrevArray;
int i;
Array = meAlloc(sizeof(int) * PlayerCnt);
if (PlayerCnt == 2)
{
Array[0] = 0;
Array[1] = 1;
return Array;
}
PrevArray = pctournamentSeedArray(PlayerCnt / 2);
for (i = 0; i < PlayerCnt;i += 2)
{
Array[i] = PrevArray[i / 2];
Array[i + 1] = (PlayerCnt - 1) - Array[i] ;
}
meFree(PrevArray);
return Array;
}

Very interesting program of building pyramid

I have came across this very interesting program of printing numbers in pyramid.
If n = 1 then print the following,
1 2
4 3
if n = 2 then print the following,
1 2 3
8 9 4
7 6 5
if n = 3 then print the following,
1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
I can print all these using taking quite a few loops and variables but it looks very specific. You might have noticed that all these pyramid filling starts in one direction until it find path filled. As you might have noticed 1,2,3,4,5,6,7,8,9,10,11,12 filed in outer edges till it finds 1 so after it goes in second row after 12 and prints 13,14 and so on. It prints in spiral mode something like snakes game snakes keep on going until it hits itself.
I would like to know is there any algorithms behind this pyramid generation or its just tricky time consuming pyramid generation program.
Thanks in advance. This is a very interesting challenging program so I kindly request no need of pipeline of down vote :)
I made a small recursive algorithm for your problem.
public int Determine(int n, int x, int y)
{
if (y == 0) return x + 1; // Top
if (x == n) return n + y + 1; // Right
if (y == n) return 3 * n - x + 1; // Bottom
if (x == 0) return 4 * n - y + 1; // Left
return 4 * n + Determine(n - 2, x - 1, y - 1);
}
You can call it by using a double for loop. x and y start at 0:
for (int y=0; y<=n; y++)
for (int x=0; x<=n; x++)
result[x,y] = Determine(n,x,y);
Here is some C code implementing the basic algorithm submitted by #C.Zonnerberg my example uses n=6 for a 6x6 array.
I had to make a few changes to get the output the way I expected it to look. I swapped most the the x's and y's and changed several of the n's to n-1 and changed the comparisons in the for loops from <= to <
int main(){
int x,y,n;
int result[6][6];
n=6;
for (x=0; x<n; x++){
for (y=0; y<n; y++) {
result[x][y] = Determine(n,x,y);
if(y==0)
printf("\n[%d,%d] = %2d, ", x,y, result[x][y]);
else
printf("[%d,%d] = %2d, ", x,y, result[x][y]);
}
}
return 0;
}
int Determine(int n, int x, int y)
{
if (x == 0) return y + 1; // Top
if (y == n-1) return n + x; // Right
if (x == n-1) return 3 * (n-1) - y + 1; // Bottom
if (y == 0) return 4 * (n-1) - x + 1; // Left
return 4 * (n-1) + Determine(n - 2, x - 1, y- 1);
}
Output
[0,0] = 1, [0,1] = 2, [0,2] = 3, [0,3] = 4, [0,4] = 5, [0,5] = 6,
[1,0] = 20, [1,1] = 21, [1,2] = 22, [1,3] = 23, [1,4] = 24, [1,5] = 7,
[2,0] = 19, [2,1] = 32, [2,2] = 33, [2,3] = 34, [2,4] = 25, [2,5] = 8,
[3,0] = 18, [3,1] = 31, [3,2] = 36, [3,3] = 35, [3,4] = 26, [3,5] = 9,
[4,0] = 17, [4,1] = 30, [4,2] = 29, [4,3] = 28, [4,4] = 27, [4,5] = 10,
[5,0] = 16, [5,1] = 15, [5,2] = 14, [5,3] = 13, [5,4] = 12, [5,5] = 11,
With an all-zeros array, you could start with [row,col] = [0,0], fill in this space, then add [0,1] to position (one to the right) until it's at the end or runs into a non-zero.
Then go down (add [1,0]), filling in space until it's the end or runs into a non-zero.
Then go left (add [0,-1]), filling in space until it's the end or runs into a non-zero.
Then go up (add [-1,0]), filling in space until it's the end or runs into a non-zero.
and repeat...

How to calculate the index (lexicographical order) when the combination is given

I know that there is an algorithm that permits, given a combination of number (no repetitions, no order), calculates the index of the lexicographic order.
It would be very useful for my application to speedup things...
For example:
combination(10, 5)
1 - 1 2 3 4 5
2 - 1 2 3 4 6
3 - 1 2 3 4 7
....
251 - 5 7 8 9 10
252 - 6 7 8 9 10
I need that the algorithm returns the index of the given combination.
es: index( 2, 5, 7, 8, 10 ) --> index
EDIT: actually I'm using a java application that generates all combinations C(53, 5) and inserts them into a TreeMap.
My idea is to create an array that contains all combinations (and related data) that I can index with this algorithm.
Everything is to speedup combination searching.
However I tried some (not all) of your solutions and the algorithms that you proposed are slower that a get() from TreeMap.
If it helps: my needs are for a combination of 5 from 53 starting from 0 to 52.
Thank you again to all :-)
Here is a snippet that will do the work.
#include <iostream>
int main()
{
const int n = 10;
const int k = 5;
int combination[k] = {2, 5, 7, 8, 10};
int index = 0;
int j = 0;
for (int i = 0; i != k; ++i)
{
for (++j; j != combination[i]; ++j)
{
index += c(n - j, k - i - 1);
}
}
std::cout << index + 1 << std::endl;
return 0;
}
It assumes you have a function
int c(int n, int k);
that will return the number of combinations of choosing k elements out of n elements.
The loop calculates the number of combinations preceding the given combination.
By adding one at the end we get the actual index.
For the given combination there are
c(9, 4) = 126 combinations containing 1 and hence preceding it in lexicographic order.
Of the combinations containing 2 as the smallest number there are
c(7, 3) = 35 combinations having 3 as the second smallest number
c(6, 3) = 20 combinations having 4 as the second smallest number
All of these are preceding the given combination.
Of the combinations containing 2 and 5 as the two smallest numbers there are
c(4, 2) = 6 combinations having 6 as the third smallest number.
All of these are preceding the given combination.
Etc.
If you put a print statement in the inner loop you will get the numbers
126, 35, 20, 6, 1.
Hope that explains the code.
Convert your number selections to a factorial base number. This number will be the index you want. Technically this calculates the lexicographical index of all permutations, but if you only give it combinations, the indexes will still be well ordered, just with some large gaps for all the permutations that come in between each combination.
Edit: pseudocode removed, it was incorrect, but the method above should work. Too tired to come up with correct pseudocode at the moment.
Edit 2: Here's an example. Say we were choosing a combination of 5 elements from a set of 10 elements, like in your example above. If the combination was 2 3 4 6 8, you would get the related factorial base number like so:
Take the unselected elements and count how many you have to pass by to get to the one you are selecting.
1 2 3 4 5 6 7 8 9 10
2 -> 1
1 3 4 5 6 7 8 9 10
3 -> 1
1 4 5 6 7 8 9 10
4 -> 1
1 5 6 7 8 9 10
6 -> 2
1 5 7 8 9 10
8 -> 3
So the index in factorial base is 1112300000
In decimal base, it's
1*9! + 1*8! + 1*7! + 2*6! + 3*5! = 410040
This is Algorithm 2.7 kSubsetLexRank on page 44 of Combinatorial Algorithms by Kreher and Stinson.
r = 0
t[0] = 0
for i from 1 to k
if t[i - 1] + 1 <= t[i] - 1
for j from t[i - 1] to t[i] - 1
r = r + choose(n - j, k - i)
return r
The array t holds your values, for example [5 7 8 9 10]. The function choose(n, k) calculates the number "n choose k". The result value r will be the index, 251 for the example. Other inputs are n and k, for the example they would be 10 and 5.
zero-base,
# v: array of length k consisting of numbers between 0 and n-1 (ascending)
def index_of_combination(n,k,v):
idx = 0
for p in range(k-1):
if p == 0: arrg = range(1,v[p]+1)
else: arrg = range(v[p-1]+2, v[p]+1)
for a in arrg:
idx += combi[n-a, k-1-p]
idx += v[k-1] - v[k-2] - 1
return idx
Null Set has the right approach. The index corresponds to the factorial-base number of the sequence. You build a factorial-base number just like any other base number, except that the base decreases for each digit.
Now, the value of each digit in the factorial-base number is the number of elements less than it that have not yet been used. So, for combination(10, 5):
(1 2 3 4 5) == 0*9!/5! + 0*8!/5! + 0*7!/5! + 0*6!/5! + 0*5!/5!
== 0*3024 + 0*336 + 0*42 + 0*6 + 0*1
== 0
(10 9 8 7 6) == 9*3024 + 8*336 + 7*42 + 6*6 + 5*1
== 30239
It should be pretty easy to calculate the index incrementally.
If you have a set of positive integers 0<=x_1 < x_2< ... < x_k , then you could use something called the squashed order:
I = sum(j=1..k) Choose(x_j,j)
The beauty of the squashed order is that it works independent of the largest value in the parent set.
The squashed order is not the order you are looking for, but it is related.
To use the squashed order to get the lexicographic order in the set of k-subsets of {1,...,n) is by taking
1 <= x1 < ... < x_k <=n
compute
0 <= n-x_k < n-x_(k-1) ... < n-x_1
Then compute the squashed order index of (n-x_k,...,n-k_1)
Then subtract the squashed order index from Choose(n,k) to get your result, which is the lexicographic index.
If you have relatively small values of n and k, you can cache all the values Choose(a,b) with a
See Anderson, Combinatorics on Finite Sets, pp 112-119
I needed also the same for a project of mine and the fastest solution I found was (Python):
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def index(comb,n,k):
r=nCr(n,k)
for i in range(k):
if n-comb[i]<k-i:continue
r=r-nCr(n-comb[i],k-i)
return r
My input "comb" contained elements in increasing order You can test the code with for example:
import itertools
k=3
t=[1,2,3,4,5]
for x in itertools.combinations(t, k):
print x,index(x,len(t),k)
It is not hard to prove that if comb=(a1,a2,a3...,ak) (in increasing order) then:
index=[nCk-(n-a1+1)Ck] + [(n-a1)C(k-1)-(n-a2+1)C(k-1)] + ... =
nCk -(n-a1)Ck -(n-a2)C(k-1) - .... -(n-ak)C1
There's another way to do all this. You could generate all possible combinations and write them into a binary file where each comb is represented by it's index starting from zero. Then, when you need to find an index, and the combination is given, you apply a binary search on the file. Here's the function. It's written in VB.NET 2010 for my lotto program, it works with Israel lottery system so there's a bonus (7th) number; just ignore it.
Public Function Comb2Index( _
ByVal gAr() As Byte) As UInt32
Dim mxPntr As UInt32 = WHL.AMT.WHL_SYS_00 '(16.273.488)
Dim mdPntr As UInt32 = mxPntr \ 2
Dim eqCntr As Byte
Dim rdAr() As Byte
modBinary.OpenFile(WHL.WHL_SYS_00, _
FileMode.Open, FileAccess.Read)
Do
modBinary.ReadBlock(mdPntr, rdAr)
RP: If eqCntr = 7 Then GoTo EX
If gAr(eqCntr) = rdAr(eqCntr) Then
eqCntr += 1
GoTo RP
ElseIf gAr(eqCntr) < rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mxPntr = mdPntr
mdPntr \= 2
ElseIf gAr(eqCntr) > rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mdPntr += (mxPntr - mdPntr) \ 2
End If
Loop Until eqCntr = 7
EX: modBinary.CloseFile()
Return mdPntr
End Function
P.S. It takes 5 to 10 mins to generate 16 million combs on a Core 2 Duo. To find the index using binary search on file takes 397 milliseconds on a SATA drive.
Assuming the maximum setSize is not too large, you can simply generate a lookup table, where the inputs are encoded this way:
int index(a,b,c,...)
{
int key = 0;
key |= 1<<a;
key |= 1<<b;
key |= 1<<c;
//repeat for all arguments
return Lookup[key];
}
To generate the lookup table, look at this "banker's order" algorithm. Generate all the combinations, and also store the base index for each nItems. (For the example on p6, this would be [0,1,5,11,15]). Note that by you storing the answers in the opposite order from the example (LSBs set first) you will only need one table, sized for the largest possible set.
Populate the lookup table by walking through the combinations doing Lookup[combination[i]]=i-baseIdx[nItems]
EDIT: Never mind. This is completely wrong.
Let your combination be (a1, a2, ..., ak-1, ak) where a1 < a2 < ... < ak. Let choose(a,b) = a!/(b!*(a-b)!) if a >= b and 0 otherwise. Then, the index you are looking for is
choose(ak-1, k) + choose(ak-1-1, k-1) + choose(ak-2-1, k-2) + ... + choose (a2-1, 2) + choose (a1-1, 1) + 1
The first term counts the number of k-element combinations such that the largest element is less than ak. The second term counts the number of (k-1)-element combinations such that the largest element is less than ak-1. And, so on.
Notice that the size of the universe of elements to be chosen from (10 in your example) does not play a role in the computation of the index. Can you see why?
Sample solution:
class Program
{
static void Main(string[] args)
{
// The input
var n = 5;
var t = new[] { 2, 4, 5 };
// Helping transformations
ComputeDistances(t);
CorrectDistances(t);
// The algorithm
var r = CalculateRank(t, n);
Console.WriteLine("n = 5");
Console.WriteLine("t = {2, 4, 5}");
Console.WriteLine("r = {0}", r);
Console.ReadKey();
}
static void ComputeDistances(int[] t)
{
var k = t.Length;
while (--k >= 0)
t[k] -= (k + 1);
}
static void CorrectDistances(int[] t)
{
var k = t.Length;
while (--k > 0)
t[k] -= t[k - 1];
}
static int CalculateRank(int[] t, int n)
{
int k = t.Length - 1, r = 0;
for (var i = 0; i < t.Length; i++)
{
if (t[i] == 0)
{
n--;
k--;
continue;
}
for (var j = 0; j < t[i]; j++)
{
n--;
r += CalculateBinomialCoefficient(n, k);
}
n--;
k--;
}
return r;
}
static int CalculateBinomialCoefficient(int n, int k)
{
int i, l = 1, m, x, y;
if (n - k < k)
{
x = k;
y = n - k;
}
else
{
x = n - k;
y = k;
}
for (i = x + 1; i <= n; i++)
l *= i;
m = CalculateFactorial(y);
return l/m;
}
static int CalculateFactorial(int n)
{
int i, w = 1;
for (i = 1; i <= n; i++)
w *= i;
return w;
}
}
The idea behind the scenes is to associate a k-subset with an operation of drawing k-elements from the n-size set. It is a combination, so the overall count of possible items will be (n k). It is a clue that we could seek the solution in Pascal Triangle. After a while of comparing manually written examples with the appropriate numbers from the Pascal Triangle, we will find the pattern and hence the algorithm.
I used user515430's answer and converted to python3. Also this supports non-continuous values so you could pass in [1,3,5,7,9] as your pool instead of range(1,11)
from itertools import combinations
from scipy.special import comb
from pandas import Index
debugcombinations = False
class IndexedCombination:
def __init__(self, _setsize, _poolvalues):
self.setsize = _setsize
self.poolvals = Index(_poolvalues)
self.poolsize = len(self.poolvals)
self.totalcombinations = 1
fast_k = min(self.setsize, self.poolsize - self.setsize)
for i in range(1, fast_k + 1):
self.totalcombinations = self.totalcombinations * (self.poolsize - fast_k + i) // i
#fill the nCr cache
self.choose_cache = {}
n = self.poolsize
k = self.setsize
for i in range(k + 1):
for j in range(n + 1):
if n - j >= k - i:
self.choose_cache[n - j,k - i] = comb(n - j,k - i, exact=True)
if debugcombinations:
print('testnth = ' + str(self.testnth()))
def get_nth_combination(self,index):
n = self.poolsize
r = self.setsize
c = self.totalcombinations
#if index < 0 or index >= c:
# raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(self.poolvals[-1 - n])
return tuple(result)
def get_n_from_combination(self,someset):
n = self.poolsize
k = self.setsize
index = 0
j = 0
for i in range(k):
setidx = self.poolvals.get_loc(someset[i])
for j in range(j + 1, setidx + 1):
index += self.choose_cache[n - j, k - i - 1]
j += 1
return index
#just used to test whether nth_combination from the internet actually works
def testnth(self):
n = 0
_setsize = self.setsize
mainset = self.poolvals
for someset in combinations(mainset, _setsize):
nthset = self.get_nth_combination(n)
n2 = self.get_n_from_combination(nthset)
if debugcombinations:
print(str(n) + ': ' + str(someset) + ' vs ' + str(n2) + ': ' + str(nthset))
if n != n2:
return False
for x in range(_setsize):
if someset[x] != nthset[x]:
return False
n += 1
return True
setcombination = IndexedCombination(5, list(range(1,10+1)))
print( str(setcombination.get_n_from_combination([2,5,7,8,10])))
returns 188

Algorithm for iterating over an outward spiral on a discrete 2D grid from the origin

For example, here is the shape of intended spiral (and each step of the iteration)
y
|
|
16 15 14 13 12
17 4 3 2 11
-- 18 5 0 1 10 --- x
19 6 7 8 9
20 21 22 23 24
|
|
Where the lines are the x and y axes.
Here would be the actual values the algorithm would "return" with each iteration (the coordinates of the points):
[0,0],
[1,0], [1,1], [0,1], [-1,1], [-1,0], [-1,-1], [0,-1], [1,-1],
[2,-1], [2,0], [2,1], [2,2], [1,2], [0,2], [-1,2], [-2,2], [-2,1], [-2,0]..
etc.
I've tried searching, but I'm not exactly sure what to search for exactly, and what searches I've tried have come up with dead ends.
I'm not even sure where to start, other than something messy and inelegant and ad-hoc, like creating/coding a new spiral for each layer.
Can anyone help me get started?
Also, is there a way that can easily switch between clockwise and counter-clockwise (the orientation), and which direction to "start" the spiral from? (the rotation)
Also, is there a way to do this recursively?
My application
I have a sparse grid filled with data points, and I want to add a new data point to the grid, and have it be "as close as possible" to a given other point.
To do that, I'll call grid.find_closest_available_point_to(point), which will iterate over the spiral given above and return the first position that is empty and available.
So first, it'll check point+[0,0] (just for completeness's sake). Then it'll check point+[1,0]. Then it'll check point+[1,1]. Then point+[0,1], etc. And return the first one for which the position in the grid is empty (or not occupied already by a data point).
There is no upper bound to grid size.
There's nothing wrong with direct, "ad-hoc" solution. It can be clean enough too.
Just notice that spiral is built from segments. And you can get next segment from current one rotating it by 90 degrees. And each two rotations, length of segment grows by 1.
edit Illustration, those segments numbered
... 11 10
7 7 7 7 6 10
8 3 3 2 6 10
8 4 . 1 6 10
8 4 5 5 5 10
8 9 9 9 9 9
// (di, dj) is a vector - direction in which we move right now
int di = 1;
int dj = 0;
// length of current segment
int segment_length = 1;
// current position (i, j) and how much of current segment we passed
int i = 0;
int j = 0;
int segment_passed = 0;
for (int k = 0; k < NUMBER_OF_POINTS; ++k) {
// make a step, add 'direction' vector (di, dj) to current position (i, j)
i += di;
j += dj;
++segment_passed;
System.out.println(i + " " + j);
if (segment_passed == segment_length) {
// done with current segment
segment_passed = 0;
// 'rotate' directions
int buffer = di;
di = -dj;
dj = buffer;
// increase segment length if necessary
if (dj == 0) {
++segment_length;
}
}
}
To change original direction, look at original values of di and dj. To switch rotation to clockwise, see how those values are modified.
Here's a stab at it in C++, a stateful iterator.
class SpiralOut{
protected:
unsigned layer;
unsigned leg;
public:
int x, y; //read these as output from next, do not modify.
SpiralOut():layer(1),leg(0),x(0),y(0){}
void goNext(){
switch(leg){
case 0: ++x; if(x == layer) ++leg; break;
case 1: ++y; if(y == layer) ++leg; break;
case 2: --x; if(-x == layer) ++leg; break;
case 3: --y; if(-y == layer){ leg = 0; ++layer; } break;
}
}
};
Should be about as efficient as it gets.
This is the javascript solution based on the answer at
Looping in a spiral
var x = 0,
y = 0,
delta = [0, -1],
// spiral width
width = 6,
// spiral height
height = 6;
for (i = Math.pow(Math.max(width, height), 2); i>0; i--) {
if ((-width/2 < x && x <= width/2)
&& (-height/2 < y && y <= height/2)) {
console.debug('POINT', x, y);
}
if (x === y
|| (x < 0 && x === -y)
|| (x > 0 && x === 1-y)){
// change direction
delta = [-delta[1], delta[0]]
}
x += delta[0];
y += delta[1];
}
fiddle: http://jsfiddle.net/N9gEC/18/
This problem is best understood by analyzing how changes coordinates of spiral corners. Consider this table of first 8 spiral corners (excluding origin):
x,y | dx,dy | k-th corner | N | Sign |
___________________________________________
1,0 | 1,0 | 1 | 1 | +
1,1 | 0,1 | 2 | 1 | +
-1,1 | -2,0 | 3 | 2 | -
-1,-1 | 0,-2 | 4 | 2 | -
2,-1 | 3,0 | 5 | 3 | +
2,2 | 0,3 | 6 | 3 | +
-2,2 | -4,0 | 7 | 4 | -
-2,-2 | 0,-4 | 8 | 4 | -
By looking at this table we can calculate X,Y of k-th corner given X,Y of (k-1) corner:
N = INT((1+k)/2)
Sign = | +1 when N is Odd
| -1 when N is Even
[dx,dy] = | [N*Sign,0] when k is Odd
| [0,N*Sign] when k is Even
[X(k),Y(k)] = [X(k-1)+dx,Y(k-1)+dy]
Now when you know coordinates of k and k+1 spiral corner you can get all data points in between k and k+1 by simply adding 1 or -1 to x or y of last point.
Thats it.
good luck.
I would solve it using some math. Here is Ruby code (with input and output):
(0..($*.pop.to_i)).each do |i|
j = Math.sqrt(i).round
k = (j ** 2 - i).abs - j
p = [k, -k].map {|l| (l + j ** 2 - i - (j % 2)) * 0.5 * (-1) ** j}.map(&:to_i)
puts "p => #{p[0]}, #{p[1]}"
end
E.g.
$ ruby spiral.rb 10
p => 0, 0
p => 1, 0
p => 1, 1
p => 0, 1
p => -1, 1
p => -1, 0
p => -1, -1
p => 0, -1
p => 1, -1
p => 2, -1
p => 2, 0
And golfed version:
p (0..$*.pop.to_i).map{|i|j=Math.sqrt(i).round;k=(j**2-i).abs-j;[k,-k].map{|l|(l+j**2-i-j%2)*0.5*(-1)**j}.map(&:to_i)}
Edit
First try to approach the problem functionally. What do you need to know, at each step, to get to the next step?
Focus on plane's first diagonal x = y. k tells you how many steps you must take before touching it: negative values mean you have to move abs(k) steps vertically, while positive mean you have to move k steps horizontally.
Now focus on the length of the segment you're currently in (spiral's vertices - when the inclination of segments change - are considered as part of the "next" segment). It's 0 the first time, then 1 for the next two segments (= 2 points), then 2 for the next two segments (= 4 points), etc. It changes every two segments and each time the number of points part of that segments increase. That's what j is used for.
Accidentally, this can be used for getting another bit of information: (-1)**j is just a shorthand to "1 if you're decreasing some coordinate to get to this step; -1 if you're increasing" (Note that only one coordinate is changed at each step). Same holds for j%2, just replace 1 with 0 and -1 with 1 in this case. This mean they swap between two values: one for segments "heading" up or right and one for those going down or left.
This is a familiar reasoning, if you're used to functional programming: the rest is just a little bit of simple math.
It can be done in a fairly straightforward way using recursion. We just need some basic 2D vector math and tools for generating and mapping over (possibly infinite) sequences:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
And now we can express a spiral recursively by generating a flat line, plus a rotated (flat line, plus a rotated (flat line, plus a rotated ...)):
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
Which produces an infinite list of the coordinates you're interested in. Here's a sample of the contents:
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const points = [...take(5)(spiralOut(0))];
console.log(points);
// => [[0,0],[1,0],[1,1],[0,1],[-1,1]]
You can also negate the rotation angle to go in the other direction, or play around with the transform and leg length to get more complex shapes.
For example, the same technique works for inward spirals as well. It's just a slightly different transform, and a slightly different scheme for changing the length of the leg:
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
Which produces (this spiral is finite, so we don't need to take some arbitrary number):
const points = [...spiralIn([3, 3])];
console.log(points);
// => [[0,0],[1,0],[2,0],[2,1],[2,2],[1,2],[0,2],[0,1],[1,1]]
Here's the whole thing together as a live snippet if you want play around with it:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
// Outward spiral
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
// Test
{
const points = [...take(5)(spiralOut(0))];
console.log(JSON.stringify(points));
}
// Inward spiral
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
// Test
{
const points = [...spiralIn([3, 3])];
console.log(JSON.stringify(points));
}
Here is a Python implementation based on the answer by #mako.
def spiral_iterator(iteration_limit=999):
x = 0
y = 0
layer = 1
leg = 0
iteration = 0
yield 0, 0
while iteration < iteration_limit:
iteration += 1
if leg == 0:
x += 1
if (x == layer):
leg += 1
elif leg == 1:
y += 1
if (y == layer):
leg += 1
elif leg == 2:
x -= 1
if -x == layer:
leg += 1
elif leg == 3:
y -= 1
if -y == layer:
leg = 0
layer += 1
yield x, y
Running this code:
for x, y in spiral_iterator(10):
print(x, y)
Yields:
0 0
1 0
1 1
0 1
-1 1
-1 0
-1 -1
0 -1
1 -1
2 -1
2 0
Try searching for either parametric or polar equations. Both are suitable to plotting spirally things. Here's a page that has plenty of examples, with pictures (and equations). It should give you some more ideas of what to look for.
I've done pretty much the same thin as a training exercise, with some differences in the output and the spiral orientation, and with an extra requirement, that the functions spatial complexity has to be O(1).
After think for a while I came to the idea that by knowing where does the spiral start and the position I was calculating the value for, I could simplify the problem by subtracting all the complete "circles" of the spiral, and then just calculate a simpler value.
Here is my implementation of that algorithm in ruby:
def print_spiral(n)
(0...n).each do |y|
(0...n).each do |x|
printf("%02d ", get_value(x, y, n))
end
print "\n"
end
end
def distance_to_border(x, y, n)
[x, y, n - 1 - x, n - 1 - y].min
end
def get_value(x, y, n)
dist = distance_to_border(x, y, n)
initial = n * n - 1
(0...dist).each do |i|
initial -= 2 * (n - 2 * i) + 2 * (n - 2 * i - 2)
end
x -= dist
y -= dist
n -= dist * 2
if y == 0 then
initial - x # If we are in the upper row
elsif y == n - 1 then
initial - n - (n - 2) - ((n - 1) - x) # If we are in the lower row
elsif x == n - 1 then
initial - n - y + 1# If we are in the right column
else
initial - 2 * n - (n - 2) - ((n - 1) - y - 1) # If we are in the left column
end
end
print_spiral 5
This is not exactly the thing you asked for, but I believe it'll help you to think your problem
I had a similar problem, but I didn't want to loop over the entire spiral each time to find the next new coordinate. The requirement is that you know your last coordinate.
Here is what I came up with with a lot of reading up on the other solutions:
function getNextCoord(coord) {
// required info
var x = coord.x,
y = coord.y,
level = Math.max(Math.abs(x), Math.abs(y));
delta = {x:0, y:0};
// calculate current direction (start up)
if (-x === level)
delta.y = 1; // going up
else if (y === level)
delta.x = 1; // going right
else if (x === level)
delta.y = -1; // going down
else if (-y === level)
delta.x = -1; // going left
// check if we need to turn down or left
if (x > 0 && (x === y || x === -y)) {
// change direction (clockwise)
delta = {x: delta.y,
y: -delta.x};
}
// move to next coordinate
x += delta.x;
y += delta.y;
return {x: x,
y: y};
}
coord = {x: 0, y: 0}
for (i = 0; i < 40; i++) {
console.log('['+ coord.x +', ' + coord.y + ']');
coord = getNextCoord(coord);
}
Still not sure if it is the most elegant solution. Perhaps some elegant maths could remove some of the if statements. Some limitations would be needing some modification to change spiral direction, doesn't take into account non-square spirals and can't spiral around a fixed coordinate.
I have an algorithm in java that outputs a similar output to yours, except that it prioritizes the number on the right, then the number on the left.
public static String[] rationals(int amount){
String[] numberList=new String[amount];
int currentNumberLeft=0;
int newNumberLeft=0;
int currentNumberRight=0;
int newNumberRight=0;
int state=1;
numberList[0]="("+newNumberLeft+","+newNumberRight+")";
boolean direction=false;
for(int count=1;count<amount;count++){
if(direction==true&&newNumberLeft==state){direction=false;state=(state<=0?(-state)+1:-state);}
else if(direction==false&&newNumberRight==state){direction=true;}
if(direction){newNumberLeft=currentNumberLeft+sign(state);}else{newNumberRight=currentNumberRight+sign(state);}
currentNumberLeft=newNumberLeft;
currentNumberRight=newNumberRight;
numberList[count]="("+newNumberLeft+","+newNumberRight+")";
}
return numberList;
}
Here's the algorithm. It rotates clockwise, but could easily rotate anticlockwise, with a few alterations. I made it in just under an hour.
// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
a = max(sqrt(sqr(sx)),sqrt(sqr(sy)));
c = -b;
d = (b*2)+1;
us = (sy==c and sx !=c);
rs = (sx==b and sy !=c);
bs = (sy==b and sx !=b);
ls = (sx==c and sy !=b);
ra = rs*((b)*2);
ba = bs*((b)*4);
la = ls*((b)*6);
ax = (us*sx)+(bs*-sx);
ay = (rs*sy)+(ls*-sy);
add = ra+ba+la+ax+ay;
value = add+sqr(d-2)+b;
return(value);`
It will handle any x / y values (infinite).
It's written in GML (Game Maker Language), but the actual logic is sound in any programming language.
The single line algorithm only has 2 variables (sx and sy) for the x and y inputs. I basically expanded brackets, a lot. It makes it easier for you to paste it into notepad and change 'sx' for your x argument / variable name and 'sy' to your y argument / variable name.
`// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
value = ((((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*2))+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*4))+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*6))+((((sy==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sx !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sx)+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sx))+(((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sy)+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sy))+sqr(((max(sqrt(sqr(sx)),sqrt(sqr(sy)))*2)+1)-2)+max(sqrt(sqr(sx)),sqrt(sqr(sy)));
return(value);`
I know the reply is awfully late :D but i hope it helps future visitors.

Resources