Any XPath like /NodeName/position() would give you the position of the Node w.r.t it's parent node.
There is no method on the XElement (Linq to XML) object that can get the position of the Element. Is there?
Actually NodesBeforeSelf().Count doesn't work because it gets everything even of type XText
Question was about XElement object.
So I figured it's
int position = obj.ElementsBeforeSelf().Count();
that should be used,
Thanks to Bryant for the direction.
You could use the NodesBeforeSelf method to do this:
XElement root = new XElement("root",
new XElement("one",
new XElement("oneA"),
new XElement("oneB")
),
new XElement("two"),
new XElement("three")
);
foreach (XElement x in root.Elements())
{
Console.WriteLine(x.Name);
Console.WriteLine(x.NodesBeforeSelf().Count());
}
Update: If you really just want a Position method, just add an extension method.
public static class ExMethods
{
public static int Position(this XNode node)
{
return node.NodesBeforeSelf().Count();
}
}
Now you can just call x.Position(). :)
Actually in the Load method of XDocument you can set a load option of SetLineInfo, you can then typecast XElements to IXMLLineInfo to get the line number.
you could do something like
var list = from xe in xmldoc.Descendants("SomeElem")
let info = (IXmlLineInfo)xe
select new
{
LineNum = info.LineNumber,
Element = xe
}
static int Position(this XNode node) {
var position = 0;
foreach(var n in node.Parent.Nodes()) {
if(n == node) {
return position;
}
position++;
}
return -1;
}
Related
I have an MVC application with a dynamic table on one of the pages, which the users defines how many columns the table has, the columns order and where to get the data from for each field.
I have written some very bad code in order to keep it dynamic and now I would like it to be more efficient.
My problem is that I don't know how to define the columns I should get back into my IEnumerable on runtime. My main issue is that I don't know how many columns I might have.
I have a reference to a class which gets the field's text. I also have a dictionary of each field's order with the exact property It should get the data from.
My code should look something like that:
var docsRes3 = from d in docs
select new[]
{
for (int i=0; i<numOfCols; i++)
{
gen.getFieldText(d, res.FieldSourceDic[i]);
}
};
where:
docs = List from which I would like to get only specific fields
res.FieldSourceDic = Dictionary in which the key is the order of the column and the value is the property
gen.getFieldText = The function which gets the entity and the property and returns the value
Obviously, it doesn't work.
I also tried
StringBuilder fieldsSB = new StringBuilder();
for (int i = 0; i < numOfCols; i++)
{
string field = "d." + res.FieldSourceDic[i] + ".ToString()";
if (!string.IsNullOrEmpty(fieldsSB.ToString()))
{
fieldsSB.Append(",");
}
fieldsSB.Append(field);
}
var docsRes2 = from d in docs
select new[] { fieldsSB.ToString() };
It also didn't work.
The only thing that worked for me so far was:
List<string[]> docsRes = new List<string[]>();
foreach (NewOriginDocumentManagment d in docs)
{
string[] row = new string[numOfCols];
for (int i = 0; i < numOfCols; i++)
{
row[i] = gen.getFieldText(d, res.FieldSourceDic[i]);
}
docsRes.Add(row);
}
Any idea how can I pass the linq the list of fields and it'll cut the needed data out of it efficiently?
Thanks, Hoe I was clear about what I need....
Try following:
var docsRes3 = from d in docs
select (
from k in res.FieldSourceDic.Keys.Take(numOfCols)
select gen.getFieldText(d, res.FieldSourceDic[k]));
I got my answer with some help from the following link:
http://www.codeproject.com/Questions/141367/Dynamic-Columns-from-List-using-LINQ
First I created a string array of all properties:
//Creats a string of all properties as defined in the XML
//Columns order must be started at 0. No skips are allowed
StringBuilder fieldsSB = new StringBuilder();
for (int i = 0; i < numOfCols; i++)
{
string field = res.FieldSourceDic[i];
if (!string.IsNullOrEmpty(fieldsSB.ToString()))
{
fieldsSB.Append(",");
}
fieldsSB.Append(field);
}
var cols = fieldsSB.ToString().Split(',');
//Gets the data for each row dynamically
var docsRes = docs.Select(d => GetProps(d, cols));
than I created the GetProps function, which is using my own function as described in the question:
private static dynamic GetProps(object d, IEnumerable<string> props)
{
if (d == null)
{
return null;
}
DynamicGridGenerator gen = new DynamicGridGenerator();
List<string> res = new List<string>();
foreach (var p in props)
{
res.Add(gen.getFieldText(d, p));
}
return res;
}
I wrote a simple import/export application that transforms data from source->destination using EntityFramework and AutoMapper. It basically:
selects batchSize of records from the source table
'maps' data from source->destination entity
add new destination entities to destination table and saves context
I move around 500k records in under 5 minutes. After I refactored the code using generics the performance drops drastically to 250 records in 5 minutes.
Are my delegates that return DbSet<T> properties on the DbContext causing these problems? Or is something else going on?
Fast non-generic code:
public class Importer
{
public void ImportAddress()
{
const int batchSize = 50;
int done = 0;
var src = new SourceDbContext();
var count = src.Addresses.Count();
while (done < count)
{
using (var dest = new DestinationDbContext())
{
var list = src.Addresses.OrderBy(x => x.AddressId).Skip(done).Take(batchSize).ToList();
list.ForEach(x => dest.Address.Add(Mapper.Map<Addresses, Address>(x)));
done += batchSize;
dest.SaveChanges();
}
}
src.Dispose();
}
}
(Very) slow generic code:
public class Importer<TSourceContext, TDestinationContext>
where TSourceContext : DbContext
where TDestinationContext : DbContext
{
public void Import<TSourceEntity, TSourceOrder, TDestinationEntity>(Func<TSourceContext, DbSet<TSourceEntity>> getSourceSet, Func<TDestinationContext, DbSet<TDestinationEntity>> getDestinationSet, Func<TSourceEntity, TSourceOrder> getOrderBy)
where TSourceEntity : class
where TDestinationEntity : class
{
const int batchSize = 50;
int done = 0;
var ctx = Activator.CreateInstance<TSourceContext>();
//Does this getSourceSet delegate cause problems perhaps?
//Added this
var set = getSourceSet(ctx);
var count = set.Count();
while (done < count)
{
using (var dctx = Activator.CreateInstance<TDestinationContext>())
{
var list = set.OrderBy(getOrderBy).Skip(done).Take(batchSize).ToList();
//Or is the db-side paging mechanism broken by the getSourceSet delegate?
//Added this
var destSet = getDestinationSet(dctx);
list.ForEach(x => destSet.Add(Mapper.Map<TSourceEntity, TDestinationEntity>(x)));
done += batchSize;
dctx.SaveChanges();
}
}
ctx.Dispose();
}
}
Problem is invocation of the Func delegates you're doing a lot. Cache the resulting values in variables and it'll be fine.
While looking though some code of the project I'm working on, I've come across a pretty hefty method which does
the following:
public string DataField(int id, string fieldName)
{
var data = _dataRepository.Find(id);
if (data != null)
{
if (data.A == null)
{
data.A = fieldName;
_dataRepository.InsertOrUpdate(data);
return "A";
}
if (data.B == null)
{
data.B = fieldName;
_dataRepository.InsertOrUpdate(data);
return "B";
}
// keep going data.C through data.Z doing the exact same code
}
}
Obviously having 26 if statements just to determine if a property is null and then to update that property and do a database call is
probably very naive in implementation. What would be a better way of doing this unit of work?
Thankfully C# is able to inspect and assign class members dynamically, so one option would be to create a map list and iterate over that.
public string DataField(int id, string fieldName)
{
var data = _dataRepository.Find(id);
List<string> props = new List<string>();
props.Add("A");
props.Add("B");
props.Add("C");
if (data != null)
{
Type t = typeof(data).GetType();
foreach (String entry in props) {
PropertyInfo pi = t.GetProperty(entry);
if (pi.GetValue(data) == null) {
pi.SetValue(data, fieldName);
_dataRepository.InsertOrUpdate(data);
return entry;
}
}
}
}
You could just loop through all the character from 'A' to 'Z'. It gets difficult because you want to access an attribute of your 'data' object with the corresponding name, but that should (as far as I know) be possible through the C# reflection functionality.
While you get rid of the consecutive if-statements this still won't make your code nice :P
there is a fancy linq solution for your problem using reflection:
but as it was said before: your datastructure is not very well thought through
public String DataField(int id, string fieldName)
{
var data = new { Z = "test", B="asd"};
Type p = data.GetType();
var value = (from System.Reflection.PropertyInfo fi
in p.GetProperties().OrderBy((fi) => fi.Name)
where fi.Name.Length == 1 && fi.GetValue(data, null) != null
select fi.Name).FirstOrDefault();
return value;
}
ta taaaaaaaaa
like that you get the property but the update is not yet done.
var data = _dataRepository.Find(id);
If possible, you should use another DataType without those 26 properties. That new DataType should have 1 property and the Find method should return an instance of that new DataType; then, you could get rid of the 26 if in a more natural way.
To return "A", "B" ... "Z", you could use this:
return (char)65; //In this example this si an "A"
And work with some transformation from data.Value to a number between 65 and 90 (A to Z).
Since you always set the lowest alphabet field first and return, you can use an additional field in your class that tracks the first available field. For example, this can be an integer lowest_alphabet_unset and you'd update it whenever you set data.{X}:
Init:
lowest_alphabet_unset = 0;
In DataField:
lowest_alphabet_unset ++;
switch (lowest_alphabet_unset) {
case 1:
/* A is free */
/* do something */
return 'A';
[...]
case 7:
/* A through F taken */
data.G = fieldName;
_dataRepository.InsertOrUpdate(data);
return 'G';
[...]
}
N.B. -- do not use, if data is object rather that structure.
what comes to my mind is that, if A-Z are all same type, then you could theoretically access memory directly to check for non null values.
start = &data;
for (i = 0; i < 26; i++){
if ((typeof_elem) *(start + sizeof(elem)*i) != null){
*(start + sizeof(elem)*i) = fieldName;
return (char) (65 + i);
}
}
not tested but to give an idea ;)
I have a collection of CLR objects. The class definition for the object has three properties: FirstName, LastName, BirthDate.
I have a string that reflects the name of the property the collection should be sorted by. In addition, I have a sorting direction. How do I dynamically apply this sorting information to my collection? Please note that sorting could be multi-layer, so for instance I could sort by LastName, and then by FirstName.
Currently, I'm trying the following without any luck:
var results = myCollection.OrderBy(sortProperty);
However, I'm getting a message that says:
... does not contain a defintion for 'OrderBy' and the best extension method overload ... has some invalid arguments.
Okay, my argument with SLaks in his comments has compelled me to come up with an answer :)
I'm assuming that you only need to support LINQ to Objects. Here's some code which needs significant amounts of validation adding, but does work:
// We want the overload which doesn't take an EqualityComparer.
private static MethodInfo OrderByMethod = typeof(Enumerable)
.GetMethods(BindingFlags.Public | BindingFlags.Static)
.Where(method => method.Name == "OrderBy"
&& method.GetParameters().Length == 2)
.Single();
public static IOrderedEnumerable<TSource> OrderByProperty<TSource>(
this IEnumerable<TSource> source,
string propertyName)
{
// TODO: Lots of validation :)
PropertyInfo property = typeof(TSource).GetProperty(propertyName);
MethodInfo getter = property.GetGetMethod();
Type propType = property.PropertyType;
Type funcType = typeof(Func<,>).MakeGenericType(typeof(TSource), propType);
Delegate func = Delegate.CreateDelegate(funcType, getter);
MethodInfo constructedMethod = OrderByMethod.MakeGenericMethod(
typeof(TSource), propType);
return (IOrderedEnumerable<TSource>) constructedMethod.Invoke(null,
new object[] { source, func });
}
Test code:
string[] foo = new string[] { "Jon", "Holly", "Tom", "William", "Robin" };
foreach (string x in foo.OrderByProperty("Length"))
{
Console.WriteLine(x);
}
Output:
Jon
Tom
Holly
Robin
William
It even returns an IOrderedEnumerable<TSource> so you can chain ThenBy clauses on as normal :)
You need to build an Expression Tree and pass it to OrderBy.
It would look something like this:
var param = Expression.Parameter(typeof(MyClass));
var expression = Expression.Lambda<Func<MyClass, PropertyType>>(
Expression.Property(param, sortProperty),
param
);
Alternatively, you can use Dynamic LINQ, which will allow your code to work as-is.
protected void sort_grd(object sender, GridViewSortEventArgs e)
{
if (Convert.ToBoolean(ViewState["order"]) == true)
{
ViewState["order"] = false;
}
else
{
ViewState["order"] = true;
}
ViewState["SortExp"] = e.SortExpression;
dataBind(Convert.ToBoolean(ViewState["order"]), e.SortExpression);
}
public void dataBind(bool ord, string SortExp)
{
var db = new DataClasses1DataContext(); //linq to sql class
var Name = from Ban in db.tbl_Names.AsEnumerable()
select new
{
First_Name = Ban.Banner_Name,
Last_Name = Ban.Banner_Project
};
if (ord)
{
Name = BannerName.OrderBy(q => q.GetType().GetProperty(SortExp).GetValue(q, null));
}
else
{
Name = BannerName.OrderByDescending(q => q.GetType().GetProperty(SortExp).GetValue(q, null));
}
grdSelectColumn.DataSource = Name ;
grdSelectColumn.DataBind();
}
you can do this with Linq
var results = from c in myCollection
orderby c.SortProperty
select c;
For dynamic sorting you could evaluate the string i.e. something like
List<MyObject> foo = new List<MyObject>();
string sortProperty = "LastName";
var result = foo.OrderBy(x =>
{
if (sortProperty == "LastName")
return x.LastName;
else
return x.FirstName;
});
For a more generic solution see this SO thread: Strongly typed dynamic Linq sorting
For this sort of dynamic work I've been using the Dynamic LINQ library which makes this sort of thing easy:
http://weblogs.asp.net/scottgu/archive/2008/01/07/dynamic-linq-part-1-using-the-linq-dynamic-query-library.aspx
http://msdn2.microsoft.com/en-us/vcsharp/bb894665.aspx
You can copy paste the method I post in that answer, and change the signature/method names:
How to make the position of a LINQ Query SELECT variable
You can actually use your original line of code
var results = myCollection.OrderBy(sortProperty);
simply by using the System.Linq.Dynamic library.
If you get a compiler error (something like cannot convert from or does not contain a definition...) you may have to do it like this:
var results = myCollection.AsQueryable().OrderBy(sortProperty);
No need for any expression trees or data binding.
You will need to use reflection to get the PropertyInfo, and then use that to build an expression tree. Something like this:
var entityType = typeof(TEntity);
var prop = entityType.GetProperty(sortProperty);
var param = Expression.Parameter(entityType, "x");
var access = Expression.Lambda(Expression.MakeMemberAccess(param, prop), param);
var ordered = (IOrderedQueryable<TEntity>) Queryable.OrderBy(
myCollection,
(dynamic) access);
Before someone shouts out the answer, please read the question through.
What is the purpose of the method in .NET 4.0's ExpressionVisitor:
public static ReadOnlyCollection<T> Visit<T>(ReadOnlyCollection<T> nodes, Func<T, T> elementVisitor)
My first guess as to the purpose of this method was that it would visit each node in each tree specified by the nodes parameter and rewrite the tree using the result of the elementVisitor function.
This does not appear to be the case. Actually this method appears to do a little more than nothing, unless I'm missing something here, which I strongly suspect I am...
I tried to use this method in my code and when things didn't work out as expected, I reflectored the method and found:
public static ReadOnlyCollection<T> Visit<T>(ReadOnlyCollection<T> nodes, Func<T, T> elementVisitor)
{
T[] list = null;
int index = 0;
int count = nodes.Count;
while (index < count)
{
T objA = elementVisitor(nodes[index]);
if (list != null)
{
list[index] = objA;
}
else if (!object.ReferenceEquals(objA, nodes[index]))
{
list = new T[count];
for (int i = 0; i < index; i++)
{
list[i] = nodes[i];
}
list[index] = objA;
}
index++;
}
if (list == null)
{
return nodes;
}
return new TrueReadOnlyCollection<T>(list);
}
So where would someone actually go about using this method? What am I missing here?
Thanks.
It looks to me like a convenience method to apply an aribitrary transform function to an expression tree, and return the resulting transformed tree, or the original tree if there is no change.
I can't see how this is any different of a pattern that a standard expression visitor, other than except for using a visitor type, it uses a function.
As for usage:
Expression<Func<int, int, int>> addLambdaExpression= (a, b) => a + b;
// Change add to subtract
Func<Expression, Expression> changeToSubtract = e =>
{
if (e is BinaryExpression)
{
return Expression.Subtract((e as BinaryExpression).Left,
(e as BinaryExpression).Right);
}
else
{
return e;
}
};
var nodes = new Expression[] { addLambdaExpression.Body }.ToList().AsReadOnly();
var subtractExpression = ExpressionVisitor.Visit(nodes, changeToSubtract);
You don't explain how you expected it to behave and why therefore you think it does little more than nothing.