I have a Win32 application that I'm making, and it sends a string from one process to another via a named pipe. However, the process that calls ReadFile on the pipe gets the string with some garbled data in it. It returns the number of bytes written correctly, but the last 8 characters or so of the string are garbled.
Here is the code for creating the pipe, and writing to it:
myPipe = CreateNamedPipe(L"\\\\.\\pipe\\testpipe", PIPE_ACCESS_OUTBOUND, PIPE_NOWAIT, 10, 512, 512, 10, NULL);
TCHAR title[128];
GetWindowText(foundHwnd, title, 128);
wstring windowTitle(title);
vector<wstring> splitVec;
boost::split(splitVec, windowTitle, boost::algorithm::is_any_of(wstring(L"|")));
WriteFile(myPipe, splitVec[0].c_str(), splitVec[0].size(), &wrote, NULL);
And here is the code that reads it:
if (WaitNamedPipe(L"\\\\.\\pipe\\testpipe", 5000) == 0) {
MessageBox(NULL, L"Unable to wait for pipe", L"Error", MB_OK);
return false;
}
myPipe = CreateFile(L"\\\\.\\pipe\\testpipe", GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (myPipe == INVALID_HANDLE_VALUE) {
MessageBox(NULL, L"Unable to open pipe", L"Error", MB_OK);
return false;
}
// Other code here...
TCHAR buf[512];
DWORD read;
success = ReadFile(myPipe, buf, 512, &read, NULL);
if (read > 0)
MessageBox(NULL, buf, L"Got Data", MB_OK);
When MessageBox is shown, the end of the string is garbled and I have no idea why. Any ideas?
Thanks!
I think the key here is to make sure that your strings are null terminated and that you send the termination character as well. You shouldn't have to send the entire buffer if the communications is synchronous or if you set it up in PIPE_READMODE_MESSAGE. ReadFile will return when either the specified number of bytes has been read or a write operation completes on the other end of the pipe. I believe that the "garbled" text is really garbage in the read buffer on the client side of the pipe and because you are not transmitting the string termination character, it is including this in the text sent to the message box. Either clear your read buffer before sending or send the string termination character with the message and I think it will work without the overhead of sending a full buffer.
Here is sample client from MSDN. Note how the client sends exactly the number of characters in the message + 1 (including the termination character) and receives into a fixed buffer of size 512. If you look at a server example, you'll see the same pattern.
Some observations on the code you posted:
You need to either 1) explicitly send the null terminated byte, or 2) append one to the data you read.
Since you are reading 512 bytes, you should also be sending exactly 512 bytes.
You can send variable length strings instead by first sending the size of the string, and then sending that many bytes. That way when you read the data you will know how many bytes to read for the actual string.
The problem with what you did will be seen as soon as you send 2 things over the pipe, and you read past what you really want in the first read.
If you are only sending 1 thing over the pipe, you can keep your code, but send size() + 1 when you write to the pipe.
ReadFile / WriteFile were meant to send binary data, not necessarily strings. So you can make a function called ReadString and WriteString that implements my suggestion about reading/writing first the size then the actual string.
Try something like this:
Here is the code for creating the pipe, and writing to it:
myPipe = CreateNamedPipe(L"\\\\.\\pipe\\testpipe", PIPE_ACCESS_OUTBOUND, PIPE_NOWAIT, 10, 512, 512, 10, NULL);
TCHAR title[128];
GetWindowText(foundHwnd, title, 128);
WriteFile(myPipe, title, 128*sizeof(TCHAR), &wrote, NULL);//<---In this case we are sending a null terminated string buffer.
And here is the code that reads it:
if (WaitNamedPipe(L"\\\\.\\pipe\\testpipe", 5000) == 0) {
MessageBox(NULL, L"Unable to wait for pipe", L"Error", MB_OK);
return false;
}
myPipe = CreateFile(L"\\\\.\\pipe\\testpipe", GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (myPipe == INVALID_HANDLE_VALUE) {
MessageBox(NULL, L"Unable to open pipe", L"Error", MB_OK);
return false;
}
// Other code here...
TCHAR buf[128];
DWORD read;
success = ReadFile(myPipe, buf, 128*sizeof(TCHAR), &read, NULL);
if (read > 0)
MessageBox(NULL, buf, L"Got Data", MB_OK);
I ran into this problem with "garbage in the pipe" when writing a generic function to read stdout from any process executed at the command prompt. Therefore, I couldn't alter what was being written to the pipe (as is commonly suggested), I could only alter the read side. So, I "cheated".
If the pipe data didn't end in a null terminator, I replaced the last char with one! It seemed to work for me. I saw this work perfectly where there were nulls and where there were not at the end of my data chunks.
I worried that I might lose a critical last char (and it's possible that you might!), but for my immediate purposes, that didn't happen. You might consider adding a null rather than replacing the end under some circumstances...
Here's code snippit:
const unsigned int MAX_PIPE_PEEKS = 100;
DWORD bytesInPipe = 0;
unsigned int pipePeeks=0;
while( (bytesInPipe==0) && (pipePeeks < MAX_PIPE_PEEKS) )
{
bSuccess = PeekNamedPipe( g_hChildStd_OUT_Rd, NULL, 0, NULL,
&bytesInPipe, NULL );
if( !bSuccess ) return bSuccess; // Bail on critical failure
++pipePeeks;
}
if( bytesInPipe > 0 )
{
// Read the data written to the pipe (and implicitly clear it)
DWORD dwRead;
CHAR *pipeContents = new CHAR[ bytesInPipe ];
bSuccess = ReadFile( g_hChildStd_OUT_Rd, pipeContents,
bytesInPipe, &dwRead, NULL );
if( !bSuccess || dwRead == 0 ) return FALSE; // Bail on critical failure
// "Cheat" - eliminate garbage at the end of the pipe
if( pipeContents[ bytesInPipe ] != '\0' )
pipeContents[ bytesInPipe ] = '\0';
}
UPDATE:
After further testing, I found that this is not quite reliable (shocking, huh?). I think I'm on the right track though for a relatively simple solution. Any ideas for getting this quick patch to work?
Related
I am writing a WinDBG extension to debug a device driver, and need to call an external binary to debug the device's firmware. I would like to show the output of this binary in the WinDBG console.
My initial idea was to simply pipe the output of the binary to a buffer and print that buffer with ControlledOutput. However, I get a 'broken pipe' error when I try to read from the pipe in my extension.
Here is how I create the external process in my extension:
SECURITY_ATTRIBUTES sAttr;
HANDLE childOutRead = NULL;
HANDLE childOutWrite = NULL;
PROCESS_INFORMATION childProcInfo;
STARTUPINFO childStartInfo;
char buf[4096];
sAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
sAttr.bInheritHandle = TRUE;
sAttr.lpSecurityDescriptor = NULL;
CreatePipe(&childOutRead, &childOutWrite, &sAttr, 0);
// don't inherit read end
SetHandleInformation(childOutRead, HANDLE_FLAG_INHERIT, 0);
ZeroMemory(&childProcInfo, sizeof(PROCESS_INFORMATION));
ZeroMemory(&childStartInfo, sizeof(STARTUPINFO));
childStartInfo.cb = sizeof(STARTUPINFO);
childStartInfo.hStdError = childOutWrite;
childStartInfo.hStdOut = childOutWrite;
childStartInfo.hStdIn = GetStdHandle(STD_INPUT_HANDLE);
childStartInfo.dwFlags |= STARTF_USESTDHANDLES;
CreateProcessA(NULL, "myBinary.exe someArgs",
NULL, NULL, TRUE, 0, NULL, NULL,
&childStartInfo, &childProcInfo);
// close the handle not used in parent
CloseHandle(childOutWrite);
// read output
while (1) {
DWORD read;
BOOL r;
DWORD error;
r = ReadFile(childOutRead, buf, sizeof(buf), &read, NULL);
if (!r) {
error = GetLastError();
windbgPrintf("got error 0x%x\n", error);
break;
}
if (read == 0) break;
windbgPrint(buf, read);
}
ReadFile fails with error 0x6D, BROKEN_PIPE. This makes me suspect that the pipe is somehow not being inherited.
I have nearly identical code working in a test outside of WinDBG, so it must be doing something differently. How do I get pipes working in this way inside WinDBG?
I know lots of similar questions on this topic have been asked before but so far I have been unable to find a solution that actually works. I want to start a console program from my program and capture its output. My implementation should be in a way that is compatible with WaitForMultipleObjects(), i.e. I want to get notified whenever there is new data to read in the pipe.
My implementation is based on this example from MSDN. However, I had to modify it a little because I need overlapped I/O in order to be able to wait for ReadFile() to finish. So I'm using named pipes created using Dave Hart's MyCreatePipeEx() function from here.
This is my actual code. I have removed error checks for readability reasons.
HANDLE hReadEvent;
HANDLE hStdIn_Rd, hStdIn_Wr;
HANDLE hStdOut_Rd, hStdOut_Wr;
SECURITY_ATTRIBUTES saAttr;
PROCESS_INFORMATION piProcInfo;
STARTUPINFO siStartInfo;
OVERLAPPED ovl;
HANDLE hEvt[2];
DWORD mask, gotbytes;
BYTE buf[4097];
saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;
MyCreatePipeEx(&hStdOut_Rd, &hStdOut_Wr, &saAttr, 0, FILE_FLAG_OVERLAPPED, FILE_FLAG_OVERLAPPED);
MyCreatePipeEx(&hStdIn_Rd, &hStdIn_Wr, &saAttr, 0, FILE_FLAG_OVERLAPPED, FILE_FLAG_OVERLAPPED);
SetHandleInformation(hStdOut_Rd, HANDLE_FLAG_INHERIT, 0);
SetHandleInformation(hStdIn_Wr, HANDLE_FLAG_INHERIT, 0);
memset(&piProcInfo, 0, sizeof(PROCESS_INFORMATION));
memset(&siStartInfo, 0, sizeof(STARTUPINFO));
siStartInfo.cb = sizeof(STARTUPINFO);
siStartInfo.hStdError = hStdOut_Wr;
siStartInfo.hStdOutput = hStdOut_Wr;
siStartInfo.hStdInput = hStdIn_Rd;
siStartInfo.dwFlags |= STARTF_USESTDHANDLES;
CreateProcess(NULL, "test.exe", NULL, NULL, TRUE, 0, NULL, NULL, &siStartInfo, &piProcInfo);
hReadEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
for(;;) {
int i = 0;
hEvt[i++] = piProcInfo.hProcess;
memset(&ovl, 0, sizeof(OVERLAPPED));
ovl.hEvent = hReadEvent;
if(!ReadFile(hStdOut_Rd, buf, 4096, &gotbytes, &ovl)) {
if(GetLastError() == ERROR_IO_PENDING) hEvt[i++] = hReadEvent;
} else {
buf[gotbytes] = 0;
printf("%s", buf);
}
mask = WaitForMultipleObjects(i, hEvt, FALSE, INFINITE);
if(mask == WAIT_OBJECT_0 + 1) {
if(GetOverlappedResult(hStdOut_Rd, &ovl, &gotbytes, FALSE)) {
buf[gotbytes] = 0;
printf("%s", buf);
}
} else if(mask == WAIT_OBJECT_0) {
break;
}
}
The problem with this code is the following: As you can see, I'm reading in chunks of 4kb using ReadFile() because I obviously don't know how much data the external program test.exe will output. Doing it this way was suggested here:
To read a variable amount of data from the client process just issue
read requests of whatever size you find convenient and be prepared to
handle read events that are shorter than you requested. Don't
interpret a short but non-zero length as EOF. Keep issuing read
requests until you get a zero length read or an error.
However, this doesn't work. The event object passed to ReadFile() as part of the OVERLAPPED structure will only trigger once there are 4kb in the buffer. If the external program just prints "Hello", the event won't trigger at all. There need to be 4kb in the buffer for hReadEvent to actually trigger.
So I thought I should read byte by byte instead and modified my program to use ReadFile() like this:
if(!ReadFile(hStdOut_Rd, buf, 1, &gotbytes, &ovl)) {
However, this doesn't work either. If I do it like this, the read event is not triggered at all which is really confusing me. When using 4096 bytes, the event does indeed trigger as soon as there are 4096 bytes in the pipe, but when using 1 byte it doesn't work at all.
So how am I supposed to solve this? I'm pretty much out of ideas here. Is there no way to have the ReadFile() event trigger whenever there is some new data in the pipe? Can't be that difficult, can it?
Just for the record, while there are some problems with my code (see discussion in comments below the OP), the general problem is that it's not really possible to capture the output of arbitrary external programs because they will typically use block buffering when their output is redirected to a pipe, which means that output will only arrive at the capturing program once that buffer is flushed so real time capturing is not really possible.
Some workarounds have been suggested though:
1) (Windows) Here is a workaround that uses GetConsoleScreenBuffer() to capture the output from arbitrary console programs but it currently only supports one console page of output.
2) (Linux) On Linux, it's apparently possible to use pseudo-terminals to force the external program to use unbuffered output. Here is an example.
I am working on my library which needs to capture and process the standard output (and err) of a child process as it runs. The problem arises when ReadFile is used to read the output, it does not return once the process ends (gets killed or exits).
It looks like ReadFile is not able to detect that the other end of the pipe (the write handle) is closed. According to the documentation it should return FALSE and set the last error to ERROR_BROKEN_PIPE:
If an anonymous pipe is being used and the write handle has been closed, when ReadFile attempts to read using the pipe's corresponding read handle, the function returns FALSE and GetLastError returns ERROR_BROKEN_PIPE.
Here is my code, I have stripped out the irrelevant bits: (NOTE: I have updated the allium_start to follow the suggested changes, I am keeping the original for reference, please use the newer function code to find flaws)
bool allium_start(struct TorInstance *instance, char *config, allium_pipe *output_pipes) {
// Prepare startup info with appropriate information
SecureZeroMemory(&instance->startup_info, sizeof instance->startup_info);
instance->startup_info.dwFlags = STARTF_USESTDHANDLES;
SECURITY_ATTRIBUTES pipe_secu_attribs = {sizeof(SECURITY_ATTRIBUTES), NULL, true};
HANDLE pipes[2];
if (output_pipes == NULL) {
CreatePipe(&pipes[0], &pipes[1], &pipe_secu_attribs, 0);
output_pipes = pipes;
}
instance->startup_info.hStdOutput = output_pipes[1];
instance->startup_info.hStdError = output_pipes[1];
instance->stdout_pipe = output_pipes[0]; // Stored for internal reference
// Create the process
bool success = CreateProcessA(
NULL,
cmd,
NULL,
NULL,
config ? true : false,
0,
NULL,
NULL,
&instance->startup_info,
SecureZeroMemory(&instance->process, sizeof instance->process)
);
// Return on failure
if (!success) return false;
}
char *allium_read_stdout_line(struct TorInstance *instance) {
char *buffer = instance->buffer.data;
// Process the input
unsigned int read_len = 0;
while (true) {
// Read data
unsigned long bytes_read;
if (ReadFile(instance->stdout_pipe, buffer, 1, &bytes_read, NULL) == false || bytes_read == 0) return NULL;
// Check if we have reached end of line
if (buffer[0] == '\n') break;
// Proceed to the next character
++buffer; ++read_len;
}
// Terminate the new line with null character and return
// Special handling for Windows, terminate at CR if present
buffer[read_len >= 2 && buffer[-1] == '\r' ? -1 : 0] = '\0';
return instance->buffer.data;
}
The allium_start creates the pipe for output redirection (it uses the same pipe for both stdout and stderr to get merged streams) and then creates the child process. The other allium_read_stdout_line function is responsible for reading the output from the pipe and returning it when it encounters a new line.
The issue occurs at the ReadFile function call, it never returns if there is nothing to read after the process exits, from my understanding all the handles of a process are closed by Windows when it ends, so it looks like ReadFile is not able to detect the fact that the pipe (write handle) at the other end has been closed.
How do I fix this? I have been searching for a solution but I have found none so far, one potential option is to use multi-threading and put ReadFile in a separate thread so that it doesn't block the whole program, by using that method I can check if the process still exists periodically while I wait for the reading to finish... or kill/stop the thread if the process is gone.
I do prefer fixing the issue instead of opting for a workaround, but I am open to any other solutions to make it work. Thanks in advance!
Edit: After reading #RemyLebeau's answer and #RbMm's comments in that answer, it is pretty clear that my understand of how handle inheritance works is fundamentally flawed. So I incorporated their suggestions (SetHandleInformation to disable inheritance of read handle and closing it after creating the child process) into my allium_start function:
bool allium_start(struct TorInstance *instance, char *config, allium_pipe *output_pipes) {
// Prepare startup info with appropriate information
SecureZeroMemory(&instance->startup_info, sizeof instance->startup_info);
instance->startup_info.dwFlags = STARTF_USESTDHANDLES;
SECURITY_ATTRIBUTES pipe_secu_attribs = {sizeof(SECURITY_ATTRIBUTES), NULL, true};
HANDLE pipes[2];
if (output_pipes == NULL) {
CreatePipe(&pipes[0], &pipes[1], &pipe_secu_attribs, 0);
output_pipes = pipes;
}
SetHandleInformation(output_pipes[0], HANDLE_FLAG_INHERIT, 0);
instance->startup_info.hStdOutput = output_pipes[1];
instance->startup_info.hStdError = output_pipes[1];
instance->stdout_pipe = output_pipes[0]; // Stored for internal reference
// Create the process
bool success = CreateProcessA(
NULL,
cmd,
NULL,
NULL,
config ? true : false,
0,
NULL,
NULL,
&instance->startup_info,
SecureZeroMemory(&instance->process, sizeof instance->process)
);
// Close the write end of our stdout handle
CloseHandle(output_pipes[1]);
// Return on failure
if (!success) return false;
}
(The below text was originally here before edit 2)
But sadly it still doesn't work :(
Edit 2 (after accepting answer): It does work! See my last comment on the accepted answer.
You are not managing your pipes correctly, or more specifically, you are not controlling the inheritance of your pipe handles. DO NOT let the child process inherit the reading handle of your pipe (output_pipes[0]), otherwise the pipe will not break correctly when the child process ends.
Read MSDN for more details:
Creating a Child Process with Redirected Input and Output
The case of the redirected standard handles that won’t close even though the child process has exited
Use SetHandleInformation() or PROC_THREAD_ATTRIBUTE_LIST to prevent CreateProcess() from passing output_pipes[0] to the child process as an inheritable handle. The child process does not need access to that handle, so there is no need to pass it over the process boundary anyway. It only needs access to the writing handle of your pipe (output_pipes[1]).
For anonymous pipelines, the read process and the write process will have the handler of hRead and hWrite, each of process has its own handler(copy after inheritance). So after your child process exit and close the handler in it, anther hWrite still in parent process. We must pay attention to close hRead in the write process, close hWrite in the read process.
I can reproduce this ReadFile issue, and if closing write handler after setting child's hStdOutput and hStdError, the ReadFile will return 0 after the child process exit.
Here is my code sample,
Parent.cpp:
#include <windows.h>
#include <iostream>
#include <stdio.h>
HANDLE childInRead = NULL;
HANDLE W1 = NULL;
HANDLE W2 = NULL;
HANDLE R2 = NULL;
HANDLE R1 = NULL;
#define BUFSIZE 4096
void CreateChildProcess() {
TCHAR applicationName[] = TEXT("kids.exe");
PROCESS_INFORMATION pi;
STARTUPINFO si;
BOOL success = FALSE;
ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));
ZeroMemory(&si, sizeof(STARTUPINFO));
si.cb = sizeof(STARTUPINFO);
si.hStdError = W1;
si.hStdOutput = W1;
si.hStdInput = R2;
si.dwFlags |= STARTF_USESTDHANDLES;
success = CreateProcess(NULL, applicationName, NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);
if (!success) {
printf("Error creating child process \n");
}
else {
printf("Child process successfuly created \n");
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
}
}
int main()
{
printf("Parent process running.... \n");
DWORD dRead, dWritten;
CHAR chBuf[BUFSIZE] = { 0 };
BOOL bSuccess = FALSE;
SECURITY_ATTRIBUTES secAttr;
secAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
secAttr.bInheritHandle = TRUE;
secAttr.lpSecurityDescriptor = NULL;
printf("Creating first pipe \n");
if (!CreatePipe(&R1, &W1, &secAttr, 0)) {
printf("\n error creating first pipe \n");
}
printf("Creating second pipe \n");
if (!CreatePipe(&R2, &W2, &secAttr, 0)) {
printf("\n error creating second pipe \n");
}
if (!SetHandleInformation(R1, HANDLE_FLAG_INHERIT, 0)) {
printf("\n R1 SetHandleInformation \n");
}
if (!SetHandleInformation(W2, HANDLE_FLAG_INHERIT, 0)) {
printf("\n W1 SetHandleInformation \n");
}
printf("\n Creating child process..... \n");
HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
HANDLE hStdIn = GetStdHandle(STD_INPUT_HANDLE);
CreateChildProcess();
CloseHandle(W1);
CloseHandle(R2);
for (;;) {
printf("Inside for loop \n");
//1. read from stdin
printf("read from stdin:\n");
bSuccess = ReadFile(hStdIn, chBuf, BUFSIZE, &dRead, NULL);
if (!bSuccess) {
printf("error reading \n");
break;
}
//2. write to Pipe2
printf("write to Pipe2...\n");
bSuccess = WriteFile(W2, chBuf, 100, &dWritten, NULL);
if (!bSuccess) {
printf("error reading \n");
break;
}
//3. read from Pipe1
printf("read from Pipe1...\n");
bSuccess = ReadFile(R1, chBuf, BUFSIZE, &dRead, NULL);
if (!bSuccess)
{
printf("error reading :%d \n", GetLastError());
break;
}
//4. write to stdout
printf("write to stdout:\n");
bSuccess = WriteFile(hStdOut, chBuf, 100, &dWritten, NULL);
if (!bSuccess) {
printf("error reading \n");
break;
}
}
getchar();
return 0;
}
Kids.cpp:
#include <windows.h>
#include <stdio.h>
#define BUFSIZE 4096
int main()
{
DWORD dRead, dWritten;
CHAR chBuf[BUFSIZE];
BOOL success = FALSE;
HANDLE stdIn = GetStdHandle(STD_INPUT_HANDLE);
HANDLE stdOut = GetStdHandle(STD_OUTPUT_HANDLE);
printf("Child process running....");
if (stdIn == INVALID_HANDLE_VALUE || stdOut == INVALID_HANDLE_VALUE) {
ExitProcess(1);
}
//for (;;) {
success = ReadFile(stdIn, chBuf, BUFSIZE, &dRead, NULL);
//if (!success || dRead == 0) break;
success = WriteFile(stdOut, chBuf, dRead, &dWritten, NULL);
//if (!success) break;
//}
return 0;
}
I'm learning how to use in Winapi
And I'm trying to read a file from My Computer
But for some reason it doesn't work ...
HANDLE hFile;
//PVOID First_Bytes[2048];
char First_Bytes[2048];
DWORD dbr = 0;
hFile = CreateFile(L"d:\\My-File",GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL , NULL);
if (hFile == INVALID_HANDLE_VALUE) {
printf("Error %x", GetLastError());
return 1;
}
if (ReadFile(hFile, &First_Bytes, 512, &dbr, NULL) == 0) {
printf("ReadFile error: %x", GetLastError());
return 1;
}
printf("%s", First_Bytes);
CloseHandle(hFile);
The console doesn't print anything.
What am I doing wrong?
I edited the code and add that errors checks.
But still consul does not print anything
The logical conclusion is that the first byte in your file is a zero. You treat the buffer as a null-terminated string, and so nothing is printed.
Do note that there is no guarantee that your buffer is null terminated so you potentially have undefined behaviour.
Is it possible to use overlapped I/O with an anonymous pipe? CreatePipe() does not have any way of specifying FILE_FLAG_OVERLAPPED, so I assume ReadFile() will block, even if I supply an OVERLAPPED-structure.
Here is an implementation for an anonymous pipe function with the possibility to specify FILE_FLAG_OVERLAPPED:
/******************************************************************************\
* This is a part of the Microsoft Source Code Samples.
* Copyright 1995 - 1997 Microsoft Corporation.
* All rights reserved.
* This source code is only intended as a supplement to
* Microsoft Development Tools and/or WinHelp documentation.
* See these sources for detailed information regarding the
* Microsoft samples programs.
\******************************************************************************/
/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
pipeex.c
Abstract:
CreatePipe-like function that lets one or both handles be overlapped
Author:
Dave Hart Summer 1997
Revision History:
--*/
#include <windows.h>
#include <stdio.h>
static volatile long PipeSerialNumber;
BOOL
APIENTRY
MyCreatePipeEx(
OUT LPHANDLE lpReadPipe,
OUT LPHANDLE lpWritePipe,
IN LPSECURITY_ATTRIBUTES lpPipeAttributes,
IN DWORD nSize,
DWORD dwReadMode,
DWORD dwWriteMode
)
/*++
Routine Description:
The CreatePipeEx API is used to create an anonymous pipe I/O device.
Unlike CreatePipe FILE_FLAG_OVERLAPPED may be specified for one or
both handles.
Two handles to the device are created. One handle is opened for
reading and the other is opened for writing. These handles may be
used in subsequent calls to ReadFile and WriteFile to transmit data
through the pipe.
Arguments:
lpReadPipe - Returns a handle to the read side of the pipe. Data
may be read from the pipe by specifying this handle value in a
subsequent call to ReadFile.
lpWritePipe - Returns a handle to the write side of the pipe. Data
may be written to the pipe by specifying this handle value in a
subsequent call to WriteFile.
lpPipeAttributes - An optional parameter that may be used to specify
the attributes of the new pipe. If the parameter is not
specified, then the pipe is created without a security
descriptor, and the resulting handles are not inherited on
process creation. Otherwise, the optional security attributes
are used on the pipe, and the inherit handles flag effects both
pipe handles.
nSize - Supplies the requested buffer size for the pipe. This is
only a suggestion and is used by the operating system to
calculate an appropriate buffering mechanism. A value of zero
indicates that the system is to choose the default buffering
scheme.
Return Value:
TRUE - The operation was successful.
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
HANDLE ReadPipeHandle, WritePipeHandle;
DWORD dwError;
UCHAR PipeNameBuffer[ MAX_PATH ];
//
// Only one valid OpenMode flag - FILE_FLAG_OVERLAPPED
//
if ((dwReadMode | dwWriteMode) & (~FILE_FLAG_OVERLAPPED)) {
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
//
// Set the default timeout to 120 seconds
//
if (nSize == 0) {
nSize = 4096;
}
sprintf( PipeNameBuffer,
"\\\\.\\Pipe\\RemoteExeAnon.%08x.%08x",
GetCurrentProcessId(),
InterlockedIncrement(&PipeSerialNumber)
);
ReadPipeHandle = CreateNamedPipeA(
PipeNameBuffer,
PIPE_ACCESS_INBOUND | dwReadMode,
PIPE_TYPE_BYTE | PIPE_WAIT,
1, // Number of pipes
nSize, // Out buffer size
nSize, // In buffer size
120 * 1000, // Timeout in ms
lpPipeAttributes
);
if (! ReadPipeHandle) {
return FALSE;
}
WritePipeHandle = CreateFileA(
PipeNameBuffer,
GENERIC_WRITE,
0, // No sharing
lpPipeAttributes,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | dwWriteMode,
NULL // Template file
);
if (INVALID_HANDLE_VALUE == WritePipeHandle) {
dwError = GetLastError();
CloseHandle( ReadPipeHandle );
SetLastError(dwError);
return FALSE;
}
*lpReadPipe = ReadPipeHandle;
*lpWritePipe = WritePipeHandle;
return( TRUE );
}
No. As explained here, anonymous pipes do not support asynchronous I/O. You need to use a named pipe. There's example code to do this on MSDN here and here.
first of all need understand - what is Anonymous Pipes and what, are exist difference between anonymous and Named Pipes at all.
really exist only single pipe type (implemented by npfs.sys). no any difference, except name, between named and anonymous pipes at all. both is only pipes.
so called anonymous pipes - this is special/random named pipes before win7 and true unnamed pipes begin from win7.
when msdn write that "anonymous pipe is one-way pipe" - this is lie. as any pipe it can be one-way or duplex. when msdn write that "Asynchronous (overlapped) read and write operations are not supported by anonymous pipes." - this is lie. of course pipes support asynchronous io. the name of pipe not affect this.
before win7 really unnamed pipes even not exist at all. CreatePipe function use Win32Pipes.%08x.%08x format for create name of "Anonymous Pipe".
static LONG PipeSerialNumber;
WCHAR name[64];
swprintf(name, L"\\Device\\NamedPipe\\Win32Pipes.%08x.%08x",
GetCurrentProcessId(), InterlockedIncrement(&PipeSerialNumber));
begin from win7 CreatePipe use another technique (relative file open) for create pipe pair - now it really anonymous.
for example code witch create pipe pair where one pipe is asynchronous and not inheritable. and another pipe is synchronous and inheritable. both pipes is duplex (support both read and write)
ULONG CreatePipeAnonymousPair7(PHANDLE phServerPipe, PHANDLE phClientPipe)
{
HANDLE hNamedPipe;
IO_STATUS_BLOCK iosb;
static UNICODE_STRING NamedPipe = RTL_CONSTANT_STRING(L"\\Device\\NamedPipe\\");
OBJECT_ATTRIBUTES oa = { sizeof(oa), 0, const_cast<PUNICODE_STRING>(&NamedPipe), OBJ_CASE_INSENSITIVE };
NTSTATUS status;
if (0 <= (status = NtOpenFile(&hNamedPipe, SYNCHRONIZE, &oa, &iosb, FILE_SHARE_VALID_FLAGS, 0)))
{
oa.RootDirectory = hNamedPipe;
static LARGE_INTEGER timeout = { 0, MINLONG };
static UNICODE_STRING empty = {};
oa.ObjectName = ∅
if (0 <= (status = ZwCreateNamedPipeFile(phServerPipe,
FILE_READ_ATTRIBUTES|FILE_READ_DATA|
FILE_WRITE_ATTRIBUTES|FILE_WRITE_DATA|
FILE_CREATE_PIPE_INSTANCE,
&oa, &iosb, FILE_SHARE_READ|FILE_SHARE_WRITE,
FILE_CREATE, 0, FILE_PIPE_BYTE_STREAM_TYPE, FILE_PIPE_BYTE_STREAM_MODE,
FILE_PIPE_QUEUE_OPERATION, 1, 0, 0, &timeout)))
{
oa.RootDirectory = *phServerPipe;
oa.Attributes = OBJ_CASE_INSENSITIVE|OBJ_INHERIT;
if (0 > (status = NtOpenFile(phClientPipe, SYNCHRONIZE|FILE_READ_ATTRIBUTES|FILE_READ_DATA|
FILE_WRITE_ATTRIBUTES|FILE_WRITE_DATA, &oa, &iosb,
FILE_SHARE_VALID_FLAGS, FILE_SYNCHRONOUS_IO_NONALERT)))
{
NtClose(oa.RootDirectory);
}
}
NtClose(hNamedPipe);
}
return RtlNtStatusToDosError(status);
}
ULONG CreatePipeAnonymousPair(PHANDLE phServerPipe, PHANDLE phClientPipe)
{
static char flag_supported = -1;
if (flag_supported < 0)
{
ULONG dwMajorVersion, dwMinorVersion;
RtlGetNtVersionNumbers(&dwMajorVersion, &dwMinorVersion, 0);
flag_supported = _WIN32_WINNT_WIN7 <= ((dwMajorVersion << 8)| dwMinorVersion);
}
if (flag_supported)
{
return CreatePipeAnonymousPair7(phServerPipe, phClientPipe);
}
static LONG PipeSerialNumber;
WCHAR name[64];
swprintf(name, L"\\\\?\\pipe\\Win32Pipes.%08x.%08x", GetCurrentProcessId(), InterlockedIncrement(&PipeSerialNumber));
HANDLE hClient, hServer = CreateNamedPipeW(name,
PIPE_ACCESS_DUPLEX|FILE_READ_DATA|FILE_WRITE_DATA|FILE_FLAG_OVERLAPPED,
PIPE_TYPE_BYTE|PIPE_READMODE_BYTE, 1, 0, 0, 0, 0);
if (hServer != INVALID_HANDLE_VALUE)
{
static SECURITY_ATTRIBUTES sa = { sizeof(sa), 0, TRUE };
hClient = CreateFileW(name, FILE_GENERIC_READ|FILE_GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, &sa, OPEN_EXISTING, 0, 0);
if (hClient != INVALID_HANDLE_VALUE)
{
*phServerPipe = hServer, *phClientPipe = hClient;
return NOERROR;
}
CloseHandle(hServer);
}
return GetLastError();
}