I have a 2D image randomly and sparsely scattered with pixels.
given a point on the image, I need to find the distance to the closest pixel that is not in the background color (black).
What is the fastest way to do this?
The only method I could come up with is building a kd-tree for the pixels. but I would really want to avoid such expensive preprocessing. also, it seems that a kd-tree gives me more than I need. I only need the distance to something and I don't care about what this something is.
Personally, I'd ignore MusiGenesis' suggestion of a lookup table.
Calculating the distance between pixels is not expensive, particularly as for this initial test you don't need the actual distance so there's no need to take the square root. You can work with distance^2, i.e:
r^2 = dx^2 + dy^2
Also, if you're going outwards one pixel at a time remember that:
(n + 1)^2 = n^2 + 2n + 1
or if nx is the current value and ox is the previous value:
nx^2 = ox^2 + 2ox + 1
= ox^2 + 2(nx - 1) + 1
= ox^2 + 2nx - 1
=> nx^2 += 2nx - 1
It's easy to see how this works:
1^2 = 0 + 2*1 - 1 = 1
2^2 = 1 + 2*2 - 1 = 4
3^2 = 4 + 2*3 - 1 = 9
4^2 = 9 + 2*4 - 1 = 16
5^2 = 16 + 2*5 - 1 = 25
etc...
So, in each iteration you therefore need only retain some intermediate variables thus:
int dx2 = 0, dy2, r2;
for (dx = 1; dx < w; ++dx) { // ignoring bounds checks
dx2 += (dx << 1) - 1;
dy2 = 0;
for (dy = 1; dy < h; ++dy) {
dy2 += (dy << 1) - 1;
r2 = dx2 + dy2;
// do tests here
}
}
Tada! r^2 calculation with only bit shifts, adds and subtracts :)
Of course, on any decent modern CPU calculating r^2 = dx*dx + dy*dy might be just as fast as this...
As Pyro says, search the perimeter of a square that you keep moving out one pixel at a time from your original point (i.e. increasing the width and height by two pixels at a time). When you hit a non-black pixel, you calculate the distance (this is your first expensive calculation) and then continue searching outwards until the width of your box is twice the distance to the first found point (any points beyond this cannot possibly be closer than your original found pixel). Save any non-black points you find during this part, and then calculate each of their distances to see if any of them are closer than your original point.
In an ideal find, you only have to make one expensive distance calculation.
Update: Because you're calculating pixel-to-pixel distances here (instead of arbitrary precision floating point locations), you can speed up this algorithm substantially by using a pre-calculated lookup table (just a height-by-width array) to give you distance as a function of x and y. A 100x100 array costs you essentially 40K of memory and covers a 200x200 square around the original point, and spares you the cost of doing an expensive distance calculation (whether Pythagorean or matrix algebra) for every colored pixel you find. This array could even be pre-calculated and embedded in your app as a resource, to spare you the initial calculation time (this is probably serious overkill).
Update 2: Also, there are ways to optimize searching the square perimeter. Your search should start at the four points that intersect the axes and move one pixel at a time towards the corners (you have 8 moving search points, which could easily make this more trouble than it's worth, depending on your application's requirements). As soon as you locate a colored pixel, there is no need to continue towards the corners, as the remaining points are all further from the origin.
After the first found pixel, you can further restrict the additional search area required to the minimum by using the lookup table to ensure that each searched point is closer than the found point (again starting at the axes, and stopping when the distance limit is reached). This second optimization would probably be much too expensive to employ if you had to calculate each distance on the fly.
If the nearest pixel is within the 200x200 box (or whatever size works for your data), you will only search within a circle bounded by the pixel, doing only lookups and <>comparisons.
You didn't specify how you want to measure distance. I'll assume L1 (rectilinear) because it's easier; possibly these ideas could be modified for L2 (Euclidean).
If you're only doing this for relatively few pixels, then just search outward from the source pixel in a spiral until you hit a nonblack one.
If you're doing this for many/all of them, how about this: Build a 2-D array the size of the image, where each cell stores the distance to the nearest nonblack pixel (and if necessary, the coordinates of that pixel). Do four line sweeps: left to right, right to left, bottom to top, and top to bottom. Consider the left to right sweep; as you sweep, keep a 1-D column containing the last nonblack pixel seen in each row, and mark each cell in the 2-D array with the distance to and/or coordinates of that pixel. O(n^2).
Alternatively, a k-d tree is overkill; you could use a quadtree. Only a little more difficult to code than my line sweep, a little more memory (but less than twice as much), and possibly faster.
Search "Nearest neighbor search", first two links in Google should help you.
If you are only doing this for 1 pixel per image, I think your best bet is just a linear search, 1 pixel width box at time outwards. You can't take the first point you find, if your search box is square. You have to be careful
Yes, the Nearest neighbor search is good, but does not guarantee you'll find the 'nearest'. Moving one pixel out each time will produce a square search - the diagonals will be farther away than the horizontal / vertical. If this is important, you'll want to verify - continue expanding until the absolute horizontal has a distance greater than the 'found' pixel, and then calculate distances on all non-black pixels that were located.
Ok, this sounds interesting.
I made a c++ version of a soulution, I don't know if this helps you. I think it works fast enough as it's almost instant on a 800*600 matrix. If you have any questions just ask.
Sorry for any mistakes I've made, it's a 10min code...
This is a iterative version (I was planing on making a recursive one too, but I've changed my mind).
The algorithm could be improved by not adding any point to the points array that is to a larger distance from the starting point then the min_dist, but this involves calculating for each pixel (despite it's color) the distance from the starting point.
Hope that helps
//(c++ version)
#include<iostream>
#include<cmath>
#include<ctime>
using namespace std;
//ITERATIVE VERSION
//picture witdh&height
#define width 800
#define height 600
//indexex
int i,j;
//initial point coordinates
int x,y;
//variables to work with the array
int p,u;
//minimum dist
double min_dist=2000000000;
//array for memorising the points added
struct point{
int x;
int y;
} points[width*height];
double dist;
bool viz[width][height];
// direction vectors, used for adding adjacent points in the "points" array.
int dx[8]={1,1,0,-1,-1,-1,0,1};
int dy[8]={0,1,1,1,0,-1,-1,-1};
int k,nX,nY;
//we will generate an image with white&black pixels (0&1)
bool image[width-1][height-1];
int main(){
srand(time(0));
//generate the random pic
for(i=1;i<=width-1;i++)
for(j=1;j<=height-1;j++)
if(rand()%10001<=9999) //9999/10000 chances of generating a black pixel
image[i][j]=0;
else image[i][j]=1;
//random coordinates for starting x&y
x=rand()%width;
y=rand()%height;
p=1;u=1;
points[1].x=x;
points[1].y=y;
while(p<=u){
for(k=0;k<=7;k++){
nX=points[p].x+dx[k];
nY=points[p].y+dy[k];
//nX&nY are the coordinates for the next point
//if we haven't added the point yet
//also check if the point is valid
if(nX>0&&nY>0&&nX<width&&nY<height)
if(viz[nX][nY] == 0 ){
//mark it as added
viz[nX][nY]=1;
//add it in the array
u++;
points[u].x=nX;
points[u].y=nY;
//if it's not black
if(image[nX][nY]!=0){
//calculate the distance
dist=(x-nX)*(x-nX) + (y-nY)*(y-nY);
dist=sqrt(dist);
//if the dist is shorter than the minimum, we save it
if(dist<min_dist)
min_dist=dist;
//you could save the coordinates of the point that has
//the minimum distance too, like sX=nX;, sY=nY;
}
}
}
p++;
}
cout<<"Minimum dist:"<<min_dist<<"\n";
return 0;
}
I'm sure this could be done better but here's some code that searches the perimeter of a square around the centre pixel, examining the centre first and moving toward the corners. If a pixel isn't found the perimeter (radius) is expanded until either the radius limit is reached or a pixel is found. The first implementation was a loop doing a simple spiral around the centre point but as noted that doesn't find the absolute closest pixel. SomeBigObjCStruct's creation inside the loop was very slow - removing it from the loop made it good enough and the spiral approach is what got used. But here's this implementation anyway - beware, little to no testing done.
It is all done with integer addition and subtraction.
- (SomeBigObjCStruct *)nearestWalkablePoint:(SomeBigObjCStruct)point {
typedef struct _testPoint { // using the IYMapPoint object here is very slow
int x;
int y;
} testPoint;
// see if the point supplied is walkable
testPoint centre;
centre.x = point.x;
centre.y = point.y;
NSMutableData *map = [self getWalkingMapDataForLevelId:point.levelId];
// check point for walkable (case radius = 0)
if(testThePoint(centre.x, centre.y, map) != 0) // bullseye
return point;
// radius is the distance from the location of point. A square is checked on each iteration, radius units from point.
// The point with y=0 or x=0 distance is checked first, i.e. the centre of the side of the square. A cursor variable
// is used to move along the side of the square looking for a walkable point. This proceeds until a walkable point
// is found or the side is exhausted. Sides are checked until radius is exhausted at which point the search fails.
int radius = 1;
BOOL leftWithinMap = YES, rightWithinMap = YES, upWithinMap = YES, downWithinMap = YES;
testPoint leftCentre, upCentre, rightCentre, downCentre;
testPoint leftUp, leftDown, rightUp, rightDown;
testPoint upLeft, upRight, downLeft, downRight;
leftCentre = rightCentre = upCentre = downCentre = centre;
int foundX = -1;
int foundY = -1;
while(radius < 1000) {
// radius increases. move centres outward
if(leftWithinMap == YES) {
leftCentre.x -= 1; // move left
if(leftCentre.x < 0) {
leftWithinMap = NO;
}
}
if(rightWithinMap == YES) {
rightCentre.x += 1; // move right
if(!(rightCentre.x < kIYMapWidth)) {
rightWithinMap = NO;
}
}
if(upWithinMap == YES) {
upCentre.y -= 1; // move up
if(upCentre.y < 0) {
upWithinMap = NO;
}
}
if(downWithinMap == YES) {
downCentre.y += 1; // move down
if(!(downCentre.y < kIYMapHeight)) {
downWithinMap = NO;
}
}
// set up cursor values for checking along the sides of the square
leftUp = leftDown = leftCentre;
leftUp.y -= 1;
leftDown.y += 1;
rightUp = rightDown = rightCentre;
rightUp.y -= 1;
rightDown.y += 1;
upRight = upLeft = upCentre;
upRight.x += 1;
upLeft.x -= 1;
downRight = downLeft = downCentre;
downRight.x += 1;
downLeft.x -= 1;
// check centres
if(testThePoint(leftCentre.x, leftCentre.y, map) != 0) {
foundX = leftCentre.x;
foundY = leftCentre.y;
break;
}
if(testThePoint(rightCentre.x, rightCentre.y, map) != 0) {
foundX = rightCentre.x;
foundY = rightCentre.y;
break;
}
if(testThePoint(upCentre.x, upCentre.y, map) != 0) {
foundX = upCentre.x;
foundY = upCentre.y;
break;
}
if(testThePoint(downCentre.x, downCentre.y, map) != 0) {
foundX = downCentre.x;
foundY = downCentre.y;
break;
}
int i;
for(i = 0; i < radius; i++) {
if(leftWithinMap == YES) {
// LEFT Side - stop short of top/bottom rows because up/down horizontal cursors check that line
// if cursor position is within map
if(i < radius - 1) {
if(leftUp.y > 0) {
// check it
if(testThePoint(leftUp.x, leftUp.y, map) != 0) {
foundX = leftUp.x;
foundY = leftUp.y;
break;
}
leftUp.y -= 1; // moving up
}
if(leftDown.y < kIYMapHeight) {
// check it
if(testThePoint(leftDown.x, leftDown.y, map) != 0) {
foundX = leftDown.x;
foundY = leftDown.y;
break;
}
leftDown.y += 1; // moving down
}
}
}
if(rightWithinMap == YES) {
// RIGHT Side
if(i < radius - 1) {
if(rightUp.y > 0) {
if(testThePoint(rightUp.x, rightUp.y, map) != 0) {
foundX = rightUp.x;
foundY = rightUp.y;
break;
}
rightUp.y -= 1; // moving up
}
if(rightDown.y < kIYMapHeight) {
if(testThePoint(rightDown.x, rightDown.y, map) != 0) {
foundX = rightDown.x;
foundY = rightDown.y;
break;
}
rightDown.y += 1; // moving down
}
}
}
if(upWithinMap == YES) {
// UP Side
if(upRight.x < kIYMapWidth) {
if(testThePoint(upRight.x, upRight.y, map) != 0) {
foundX = upRight.x;
foundY = upRight.y;
break;
}
upRight.x += 1; // moving right
}
if(upLeft.x > 0) {
if(testThePoint(upLeft.x, upLeft.y, map) != 0) {
foundX = upLeft.x;
foundY = upLeft.y;
break;
}
upLeft.y -= 1; // moving left
}
}
if(downWithinMap == YES) {
// DOWN Side
if(downRight.x < kIYMapWidth) {
if(testThePoint(downRight.x, downRight.y, map) != 0) {
foundX = downRight.x;
foundY = downRight.y;
break;
}
downRight.x += 1; // moving right
}
if(downLeft.x > 0) {
if(testThePoint(upLeft.x, upLeft.y, map) != 0) {
foundX = downLeft.x;
foundY = downLeft.y;
break;
}
downLeft.y -= 1; // moving left
}
}
}
if(foundX != -1 && foundY != -1) {
break;
}
radius++;
}
// build the return object
if(foundX != -1 && foundY != -1) {
SomeBigObjCStruct *foundPoint = [SomeBigObjCStruct mapPointWithX:foundX Y:foundY levelId:point.levelId];
foundPoint.z = [self zWithLevelId:point.levelId];
return foundPoint;
}
return nil;
}
You can combine many ways to speed it up.
A way to accelerate the pixel lookup is to use what I call a spatial lookup map. It is basically a downsampled map (say of 8x8 pixels, but its a tradeoff) of the pixels in that block. Values can be "no pixels set" "partial pixels set" "all pixels set". This way one read can tell if a block/cell is either full, partially full or empty.
scanning a box/rectangle around the center may not be ideal because there are many pixels/cells which are far far away. I use a circle drawing algorithm (Bresenham) to reduce the overhead.
reading the raw pixel values can happen in horizontal batches, for example a byte (for a cell size of 8x8 or multiples of it), dword or long. This should give you a serious speedup again.
you can also use multiple levels of "spatial lookup maps", its again a tradeoff.
For the distance calculatation the mentioned lookup table can be used, but its a (cache)bandwidth vs calculation speed tradeoff (I dunno how it performs on a GPU for example).
Another approach I have investigated and likely will stick to: Utilizing the Bresenham circle algorithm.
It is surprisingly fast as it saves you any sort of distance comparisons!
You effectively just draw bigger and bigger circles around your target point so that when the first time you encounter a non-black pixel you automatically know it is the closest, saving any further checks.
What I have not verified yet is whether the bresenham circle will catch every single pixel but that wasn't a concern for my case as my pixels will occur in blobs of some sort.
I would do a simple lookup table - for every pixel, precalculate distance to the closest non-black pixel and store the value in the same offset as the corresponding pixel. Of course, this way you will need more memory.
Related
I am looking for an algorithm which produces a point placement result similar to blue noise.
However, it needs to work for an infinite plane. Where a bounding box is given, and it returns the locations of all points which fall inside. Any help would be appreciated. I've done a lot of research, and found nothing that suits my needs.
Finally I've managed to get results.
One way of generating point distributions with blue noise properties
is by means of a Poisson-Disk Distribution
Following the algorithm from the paper Fast Poisson disk sampling in
arbitrary dimensions, Robert Bridson I've got:
The steps mentioned in the paper are:
Step 0. Initialize an n-dimensional background grid for storing
samples and accelerating spatial searches. We pick the cell size to be
bounded by r/sqrt(n), so that each grid cell will contain at most one
sample, and thus the grid can be implemented as a simple n-dimensional
array of integers: the default −1 indicates no sample, a non-negative
integer gives the index of the sample located in a cell
Step 1. Select the initial sample, x0, randomly chosen uniformly from
the domain. Insert it into the background grid, and initialize the
“active list” (an array of sample indices) with this index (zero).
Step 2. While the active list is not empty, choose a random index from
it (say i). Generate up to k points chosen uniformly from the
spherical annulus between radius r and 2r around xi. For each point in
turn, check if it is within distance r of existing samples (using the
background grid to only test nearby samples). If a point is adequately
far from existing samples, emit it as the next sample and add it to
the active list. If after k attempts no such point is found, instead
remove i from the active list.
Note that for simplicity I've skipped step 0. Despite that the run-time is still reasonable. It's < .5s. Implementing this step would most definitely increase the performance.
Here's a sample code in Processing. It's a language built on top of Java so the syntax is very similar. Translating it for your purposes shouldn't be hard.
import java.util.List;
import java.util.Collections;
List<PVector> poisson_disk_sampling(int k, int r, int size)
{
List<PVector> samples = new ArrayList<PVector>();
List<PVector> active_list = new ArrayList<PVector>();
active_list.add(new PVector(random(size), random(size)));
int len;
while ((len = active_list.size()) > 0) {
// picks random index uniformly at random from the active list
int index = int(random(len));
Collections.swap(active_list, len-1, index);
PVector sample = active_list.get(len-1);
boolean found = false;
for (int i = 0; i < k; ++i) {
// generates a point uniformly at random in the sample's
// disk situated at a distance from r to 2*r
float angle = 2*PI*random(1);
float radius = random(r) + r;
PVector dv = new PVector(radius*cos(angle), radius*sin(angle));
PVector new_sample = dv.add(sample);
boolean ok = true;
for (int j = 0; j < samples.size(); ++j) {
if (dist(new_sample.x, new_sample.y,
samples.get(j).x, samples.get(j).y) <= r)
{
ok = false;
break;
}
}
if (ok) {
if (0 <= new_sample.x && new_sample.x < size &&
0 <= new_sample.y && new_sample.y < size)
{
samples.add(new_sample);
active_list.add(new_sample);
len++;
found = true;
}
}
}
if (!found)
active_list.remove(active_list.size()-1);
}
return samples;
}
List<PVector> samples;
void setup() {
int SIZE = 500;
size(500, 500);
background(255);
strokeWeight(4);
noLoop();
samples = poisson_disk_sampling(30, 10, SIZE);
}
void draw() {
for (PVector sample : samples)
point(sample.x, sample.y);
}
However, it needs to work for an infinite plane.
You control the size of the box with the parameter size. r controls the relative distance between the points. k controls how many new sample should you try before rejecting the current. The paper suggests k=30.
In my (Minecraft-like) 3D voxel world, I want to smooth the shapes for more natural visuals. Let's look at this example in 2D first.
Left is how the world looks without any smoothing. The terrain data is binary and each voxel is rendered as a unit size cube.
In the center you can see a naive circular smoothing. It only takes the four directly adjacent blocks into account. It is still not very natural looking. Moreover, I'd like to have flat 45-degree slopes emerge.
On the right you can see a smoothing algorithm I came up with. It takes the eight direct and diagonal neighbors into account in order to come up with the shape of a block. I have the C++ code online. Here is the code that comes up with the control points that the bezier curve is drawn along.
#include <iostream>
using namespace std;
using namespace glm;
list<list<dvec2>> Points::find(ivec2 block)
{
// Control points
list<list<ivec2>> lines;
list<ivec2> *line = nullptr;
// Fetch blocks, neighbours start top left and count
// around the center block clock wise
int center = m_blocks->get(block);
int neighs[8];
for (int i = 0; i < 8; i++) {
auto coord = blockFromIndex(i);
neighs[i] = m_blocks->get(block + coord);
}
// Iterate over neighbour blocks
for (int i = 0; i < 8; i++) {
int current = neighs[i];
int next = neighs[(i + 1) % 8];
bool is_side = (((i + 1) % 2) == 0);
bool is_corner = (((i + 1) % 2) == 1);
if (line) {
// Border between air and ground needs a line
if (current != center) {
// Sides are cool, but corners get skipped when they don't
// stop a line
if (is_side || next == center)
line->push_back(blockFromIndex(i));
} else if (center || is_side || next == center) {
// Stop line since we found an end of the border. Always
// stop for ground blocks here, since they connect over
// corners so there must be open docking sites
line = nullptr;
}
} else {
// Start a new line for the border between air and ground that
// just appeared. However, corners get skipped if they don't
// end a line.
if (current != center) {
lines.emplace_back();
line = &lines.back();
line->push_back(blockFromIndex(i));
}
}
}
// Merge last line with first if touching. Only close around a differing corner for air
// blocks.
if (neighs[7] != center && (neighs[0] != center || (!center && neighs[1] != center))) {
// Skip first corner if enclosed
if (neighs[0] != center && neighs[1] != center)
lines.front().pop_front();
if (lines.size() == 1) {
// Close circle
auto first_point = lines.front().front();
lines.front().push_back(first_point);
} else {
// Insert last line into first one
lines.front().insert(lines.front().begin(), line->begin(), line->end());
lines.pop_back();
}
}
// Discard lines with too few points
auto i = lines.begin();
while (i != lines.end()) {
if (i->size() < 2)
lines.erase(i++);
else
++i;
}
// Convert to concrete points for output
list<list<dvec2>> points;
for (auto &line : lines) {
points.emplace_back();
for (auto &neighbour : line)
points.back().push_back(pointTowards(neighbour));
}
return points;
}
glm::ivec2 Points::blockFromIndex(int i)
{
// Returns first positive representant, we need this so that the
// conditions below "wrap around"
auto modulo = [](int i, int n) { return (i % n + n) % n; };
ivec2 block(0, 0);
// For two indices, zero is right so skip
if (modulo(i - 1, 4))
// The others are either 1 or -1
block.x = modulo(i - 1, 8) / 4 ? -1 : 1;
// Other axis is same sequence but shifted
if (modulo(i - 3, 4))
block.y = modulo(i - 3, 8) / 4 ? -1 : 1;
return block;
}
dvec2 Points::pointTowards(ivec2 neighbour)
{
dvec2 point;
point.x = static_cast<double>(neighbour.x);
point.y = static_cast<double>(neighbour.y);
// Convert from neighbour space into
// drawing space of the block
point *= 0.5;
point += dvec2(.5);
return point;
}
However, this is still in 2D. How to translate this algorithm into three dimensions?
You should probably have a look at the marching cubes algorithm and work from there. You can easily control the smoothness of the resulting blob:
Imagine that each voxel defines a field, with a high density at it's center, slowly fading to nothing as you move away from the center. For example, you could use a function that is 1 inside a voxel and goes to 0 two voxels away. No matter what exact function you choose, make sure that it's only non-zero inside a limited (preferrably small) area.
For each point, sum the densities of all fields.
Use the marching cubes algorithm on the sum of those fields
Use a high resolution mesh for the algorithm
In order to change the look/smoothness you change the density function and the threshold of the marching cubes algorithm. A possible extension to marching cubes to create smoother meshes is the following idea: Imagine that you encounter two points on an edge of a cube, where one point lies inside your volume (above a threshold) and the other outside (under the threshold). In this case many marching cubes algorithms place the boundary exactly at the middle of the edge. One can calculate the exact boundary point - this gets rid of aliasing.
Also I would recommend that you run a mesh simplification algorithm after that. Using marching cubes results in meshes with many unnecessary triangles.
As an alternative to my answer above: You could also use NURBS or any algorithm for subdivision surfaces. Especially the subdivision surfaces algorithms are spezialized to smooth meshes. Depending on the algorithm and it's configuration you will get smoother versions of your original mesh with
the same volume
the same surface
the same silhouette
and so on.
Use 3D implementations for Biezer curves known as Biezer surfaces or use the B-Spline Surface algorithms explained:
here
or
here
I have a set of circles with given locations and radii on a two dimensional plane. I want to determine for every circle if it is intersecting with any other circle and the distance that is needed to separate the two. Under my current implementation, I just go through all the possible combinations of circles and then do the calculations. Unfortunately, this algorithm is O(n^2), which is slow.
The circles will generally be clustered in groups, and they will have similar (but different) radii. The approximate maximum for the number of circles is around 200. The algorithm does not have to be exact, but it should be close.
Here is a (slow) implementation I currently have in JavaScript:
// Makes a new circle
var circle = function(x,y,radius) {
return {
x:x,
y:y,
radius:radius
};
};
// These points are not representative of the true data set. I just made them up.
var points = [
circle(3,3,2),
circle(7,5,4),
circle(16,6,4),
circle(17,12,3),
circle(26,20,1)
];
var k = 0,
len = points.length;
for (var i = 0; i < len; i++) {
for (var j = k; j < len; j++) {
if (i !== j) {
var c1 = points[i],
c2 = points[j],
radiiSum = c1.radius+c2.radius,
deltaX = Math.abs(c1.x-c2.x);
if (deltaX < radiiSum) {
var deltaY = Math.abs(c1.y-c2.y);
if (deltaY < radiiSum) {
var distance = Math.sqrt(deltaX*deltaX+deltaY*deltaY);
if (distance < radiiSum) {
var separation = radiiSum - distance;
console.log(c1,c2,separation);
}
}
}
}
}
k++;
}
Also, I would appreciate it if you explained a good algorithm (KD Tree?) in plain English :-/
For starters, your algorithm above will be greatly sped-up if you just skipped the SQRT call. That's the most well known simple optimization for comparing distances. You can also precompute the "squared radius" distance so you don't redundantly recompute it.
Also, there looks to be lots of other little bugs in some of your algorithms. Here's my take on how to fix it below.
Also, if you want to get rid of the O(N-Squared) algorithm, you can look at using a kd-tree. There's an upfront cost of building the KD-Tree but with the benefit of searching for nearest neighbors as much faster.
function Distance_Squared(c1, c2) {
var deltaX = (c1.x - c2.x);
var deltaY = (c1.y - c2.y);
return (deltaX * deltaX + deltaY * deltaY);
}
// returns false if it's possible that the circles intersect. Returns true if the bounding box test proves there is no chance for intersection
function TrivialRejectIntersection(c1, c2) {
return ((c1.left >= c2.right) || (c2.right <= c1.left) || (c1.top >= c2.bottom) || (c2.bottom <= c1.top));
}
var circle = function(x,y,radius) {
return {
x:x,
y:y,
radius:radius,
// some helper properties
radius_squared : (radius*radius), // precompute the "squared distance"
left : (x-radius),
right: (x+radius),
top : (y - radius),
bottom : (y+radius)
};
};
// These points are not representative of the true data set. I just made them up.
var points = [
circle(3,3,2),
circle(7,5,4),
circle(16,6,4),
circle(17,12,3),
circle(26,20,1)
];
var k = 0;
var len = points.length;
var c1, c2;
var distance_squared;
var deltaX, deltaY;
var min_distance;
var seperation;
for (var i = 0; i < len; i++) {
for (var j = (i+1); j < len; j++) {
c1 = points[i];
c2 = points[j];
// try for trivial rejections first. Jury is still out if this will help
if (TrivialRejectIntesection(c1, c2)) {
continue;
}
//distance_squared is the actual distance between c1 and c2 'squared'
distance_squared = Distance_Squared(c1, c2);
// min_distance_squared is how much "squared distance" is required for these two circles to not intersect
min_distance_squared = (c1.radius_squared + c2.radius_squared + (c1.radius*c2.radius*2)); // D**2 == deltaX*deltaX + deltaY*deltaY + 2*deltaX*deltaY
// and so it follows
if (distance_squared < min_distance_squared) {
// intersection detected
// now subtract actual distance from "min distance"
seperation = c1.radius + c2.radius - Math.sqrt(distance_squared);
Console.log(c1, c2, seperation);
}
}
}
This article has been dormant for a long time, but I've run into and solved this problem reasonably well, so will post so that others don't have to do the same head scratching.
You can treat the nearest circle neighbor problem as a 3d point nearest neighbor search in a kd-tree or octree. Define the distance between two circles A and B as
D(A,B) = sqrt( (xA - xB)^2 + (yA - yB)^2 ) - rA - rB
This is a negative quantity iff the circles overlap. For this discussion I'll assume an octree, but a kd-tree with k=3 is similar.
Store a triple (x,y,r) in the octree for each circle.
To find the nearest neighbor to a target circle T, use the standard algorithm:
def search(node, T, nst)
if node is a leaf
update nst with node's (x,y,r) nearest to T
else
for each cuboid C subdividing node (there are 8 of them)
if C contains any point nearer to T than nst
search(C, T, nst)
end
end
Here nst is a reference to the nearest circle to T found so far. Initially it's null.
The slightly tricky part is determining if C contains any point nearer to T than nst. For this it is sufficent to consider the unique point (x,y,r) within C that is Euclidean nearest to T in x and y and has the maximum value of the r range contained in the cuboid. In other words, the cuboid represents a set of circles with centers ranging over a rectangular area in x and y and with a range of radii. The point you want to check is the one representing the circle with center closest to T and with largest radius.
Note the radius of T plays no part in the algorithm at all. You're only concered with how far inside any other circle the center of T lies. (I wish this had been as obvious at the start as it seems now...)
I'm making a game and in it is a computer controlled gun turret.
The gun turret can rotate 360 degrees.
It uses trig to find out the angle it needs to aim the gun (objdeg) and the current angle of the gun is stored in (gundeg)
the following code rotates the gun at a set speed
if (objdeg > gundeg)
{
gundeg++;
}
if (objdeg < gundeg)
{
gundeg--;
}
The problem is that if there is an object at 10 degrees, the gun rotates, shoots and destroys it, if another target appears at 320 degrees, the gun will rotate 310 degrees anticlockwise instead of just rotating 60 degrees clockwise to hit it.
How can I fix my code so it won't act stupidly?
You can avoid division (and mod) entirely if you represent your angles in something referred to as 'BAMS', which stands for Binary Angle Measurement System. The idea is that if you store your angles in an N bit integer, you use the entire range of that integer to represent the angle. That way, there's no need to worry about overflow past 360, because the natural modulo-2^N properties of your representation take care of it for you.
For example, lets say you use 8 bits. This cuts your circle into 256 possible orientations. (You may choose more bits, but 8 is convenient for the example's sake). Let 0x00 stand for 0 degrees, 0x40 means 90 degrees, 0x80 is 180 degrees, and 0xC0 is 270 degrees. Don't worry about the 'sign' bit, again, BAMS is a natural for angles. If you interpret 0xC0 as 'unsigned' and scaled to 360/256 degrees per count, your angle is (+192)(360/256) = +270; but if you interpret 0xC0 as 'signed', your angle is (-64)(360/256)= -90. Notice that -90 and +270 mean the same thing in angular terms.
If you want to apply trig functions to your BAMS angles, you can pre-compute tables. There are tricks to smallen the tables but you can see that the tables aren't all that large. To store an entire sine and cosine table of double precision values for 8-bit BAMS doesn't take more than 4K of memory, chicken feed in today's environment.
Since you mention using this in a game, you probably could get away with 8-bit or 10-bit representations. Any time you add or subtract angles, you can force the result into N bits using a logical AND operation, e.g., angle &= 0x00FF for 8 bits.
FORGOT THE BEST PART (edit)
The turn-right vs turn-left problem is easily solved in a BAMS system. Just take the difference, and make sure to only keep the N meaningful bits. Interpreting the MSB as a sign bit indicates which way you should turn. If the difference is negative, turn the opposite way by the abs() of the difference.
This ugly little C program demonstrates. Try giving it input like 20 10 and 20 30 at first. Then try to fool it by wrapping around the zero point. Give it 20 -10, it will turn left. Give it 20 350, it still turns left. Note that since it's done in 8 bits, that 181 is indistinguishable from 180, so don't be surprised if you feed it 20 201 and it turns right instead of left - in the resolution afforded by eight bits, turning left and turning right in this case are the same. Put in 20 205 and it will go the shorter way.
#include <stdio.h>
#include <math.h>
#define TOBAMS(x) (((x)/360.0) * 256)
#define TODEGS(b) (((b)/256.0) * 360)
int main(void)
{
double a1, a2; // "real" angles
int b1, b2, b3; // BAMS angles
// get some input
printf("Start Angle ? ");
scanf("%lf", &a1);
printf("Goal Angle ? ");
scanf("%lf", &a2);
b1 = TOBAMS(a1);
b2 = TOBAMS(a2);
// difference increases with increasing goal angle
// difference decreases with increasing start angle
b3 = b2 - b1;
b3 &= 0xff;
printf("Start at %7.2lf deg and go to %7.2lf deg\n", a1, a2);
printf("BAMS are 0x%02X and 0x%02X\n", b1, b2);
printf("BAMS diff is 0x%02X\n", b3);
// check what would be the 'sign bit' of the difference
// negative (msb set) means turn one way, positive the other
if( b3 & 0x80 )
{
// difference is negative; negate to recover the
// DISTANCE to move, since the negative-ness just
// indicates direction.
// cheap 2's complement on an N-bit value:
// invert, increment, trim
b3 ^= -1; // XOR -1 inverts all the bits
b3 += 1; // "add 1 to x" :P
b3 &= 0xFF; // retain only N bits
// difference is already positive, can just use it
printf("Turn left %lf degrees\n", TODEGS(b3));
printf("Turn left %d counts\n", b3);
}
else
{
printf("Turn right %lf degrees\n", TODEGS(b3));
printf("Turn right %d counts\n", b3);
}
return 0;
}
If you need to rotate more than 180 degrees in one direction to aim the turret, then it would be quicker to rotate the other direction.
I would just check for this and then rotate in the appropriate direction
if (objdeg != gundeg)
{
if ((gundeg - objdeg) > 180)
gundeg++;
else
gundeg--;
}
EDIT: New Solution
I have refined my solution based on the feedback in the comments. This determines whether the target is to the 'left or right' of the turret and decides which way to turn. It then inverts this direction if the target is more than 180 degrees away.
if (objdeg != gundeg)
{
int change = 0;
int diff = (gundeg - objdeg)%360;
if (diff < 0)
change = 1;
else
change = -1;
if (Math.Abs(diff) > 180)
change = 0 - change;
gundeg += change;
}
To Normalised to [0,360):
(I.e. a half open range)
Use the modulus operator to perform "get division remainder":
361 % 360
will be 1.
In C/C++/... style languages this would be
gundeg %= 360
Note (thanks to a comment): if gundeg is a floating point type you will need to either use a library function, in C/C++: fmod, or do it yourself (.NET):
double FMod(double a, double b) {
return a - Math.floor(a / b) * b;
}
Which Way To Turn?
Which ever way is shorter (and if turn is 180°, then the answer is arbitrary), in C#, and assuming direction is measured anti-clockwise
TurnDirection WhichWayToTurn(double currentDirection, double targetDirection) {
Debug.Assert(currentDirection >= 0.0 && currentDirection < 360.0
&& targetDirection >= 0.0 && targetDirection < 360.0);
var diff = targetDirection - currentDirection ;
if (Math.Abs(diff) <= FloatEpsilon) {
return TurnDirection.None;
} else if (diff > 0.0) {
return TurnDirection.AntiClockwise;
} else {
return TurnDirection.Clockwise;
}
}
NB. This requires testing.
Note use of assert to confirm pre-condition of normalised angles, and I use an assert because this is an internal function that should not be receiving unverified data. If this were a generally reusable function the argument check should throw an exception or return an error (depending on language).
Also note. to work out things like this there is nothing better than a pencil and paper (my initial version was wrong because I was mixing up using (-180,180] and [0,360).
I tend to favor a solution that
does not have lots of nested if statements
does not assume that either of the two angles are in a particular range, e.g. [0, 360] or [-180, 180]
has a constant execution time
The cross product solution proposed by Krypes meets this criteria, however it is necessary to generate the vectors from the angles first. I believe that JustJeff's BAMS technique also satisfies this criteria. I'll offer another ...
As discussed on Why is modulus different in different programming languages? which refers to the excellent Wikipedia Article, there are many ways to perform the modulo operation. Common implementations round the quotient towards zero or negative infinity.
If however, you round to the nearest integer:
double ModNearestInt(double a, double b) {
return a - b * round(a / b);
}
The has the nice property that the remainder returned is
always in the interval [-b/2, +b/2]
always the shortest distance to zero
So,
double angleToTarget = ModNearestInt(objdeg - gundeg, 360.0);
will be the smallest angle between objdeg and gundeg and the sign will indicate the direction.
Note that (C#) Math.IEEERemainder(objdeg - gundeg, 360.0) or (C++) fmod(objdeg - gundeg, 360.0) does that for you already, i.e. ModNearestInt already exists in the associated math libraries.
Just compare the following:
gundeg - objdeg
objdeg - gundeg
gundeg - objdeg + 360
objdeg - gundeg + 360
and choose the one with minimum absolute value.
Here's a workign C# sample, this will turn the right way. :
public class Rotater
{
int _position;
public Rotater()
{
}
public int Position
{
get
{
return _position;
}
set
{
if (value < 0)
{
_position = 360 + value;
}
else
{
_position = value;
}
_position %= 360;
}
}
public bool RotateTowardsEx(int item)
{
if (item > Position)
{
if (item - Position < 180)
{
Position++;
}
else
{
Position--;
}
return false;
}
else if (Position > item)
{
if (Position - item < 180)
{
Position--;
}
else
{
Position++;
}
return false;
}
else
{
return true;
}
}
}
static void Main(string[] args)
{
do
{
Rotater rot = new Rotater();
Console.Write("Enter Starting Point: ");
var startingPoint = int.Parse(Console.ReadLine());
rot.Position = startingPoint;
int turns = 0;
Console.Write("Enter Item Point: ");
var item = int.Parse(Console.ReadLine());
while (!rot.RotateTowardsEx(item))
{
turns++;
}
Console.WriteLine(string.Format("{0} turns to go from {1} to {2}", turns, startingPoint, item));
} while (Console.ReadLine() != "q");
}
Credit to John Pirie for inspiration
Edit: I wasn't happy with my Position setter, so I cleaned it up
You need to decide whether to rotate left or right, based on which is the shorter distance. Then you'll need to take modulus:
if (objdeg > gundeg)
{
if (objdeg - gundeg < 180)
{
gundeg++;
}
else
{
gundeg--;
}
}
if (objdeg < gundeg)
{
if (gundeg - objdeg < 180)
{
gundeg--;
}
else
{
gundeg++;
}
}
if (gundeg < 0)
{
gundeg += 360;
}
gundeg = gundeg % 360;
Actually, theres an easier way to approach this problem. Cross product of two vectors gives you a vector representing the normal (eg. perpendicular). As an artifact of this, given two vectors a, b, which lie on the xy-plane, a x b = c implies c = (0,0, +-1).
Sign of the z component of c (eg. whether it comes out of, or goes into the xy- plane) depends on whether its a left or right turn around z axis for a to be equal to b.
Vector3d turret
Vector3d enemy
if turret.equals(enemy) return;
Vector3d normal = turret.Cross(enemy);
gundeg += normal.z > 0 ? 1 : -1; // counter clockwise = +ve
Try dividing by 180 using integer division and turning based on even/odd outcome?
749/180 = 4 So you turn clockwise by 29 degrees (749%180)
719/180 = 3 So you turn counterclockwise by 1 degree (180 - 719%180)
The problem is about finding the direction that will give the shortest distance.
However, subtraction can result in negative numbers and that needs to be accounted for.
If you are moving the gun one step at each check, I don't know when you will do the modulus.
And, if you want to move the gun in one step, you would just add/subtract the delta correctly.
To this end Kirschstein seems to be thinking nearest to me.
I am working with an integer in this simple psudo-code.
if (objdeg != gundeg)
{
// we still need to move the gun
delta = gundeg - objdeg
if (delta > 0)
if (unsigned(delta) > 180)
gundeg++;
else
gundeg--;
else // delta < 0
if (unsigned(delta) > 180)
gundeg--;
else
gundeg++;
if (gundeg == 360)
gundeg = 0;
else if (gundeg == -1)
gundeg = 359;
}
Try to work this incrementally with gundeg=10 and objdeg=350 to see how the gundeg will be moved from 10 down to 0 and then 359 down to 350.
Here's how I implemented something similar in a game recently:
double gundeg;
// ...
double normalizeAngle(double angle)
{
while (angle >= 180.0)
{
angle -= 360.0;
}
while (angle < -180.0)
{
angle += 360.0;
}
return angle;
}
double aimAt(double objAngle)
{
double difference = normalizeAngle(objdeg - gundeg);
gundeg = normalizeAngle(gundeg + signum(difference));
}
All angle variables are restricted to -180..+180, which makes this kind of calculation easier.
At the risk of bikeshedding, storing degrees as an integer rather than as its own class might be a case of "primitive obsession". If I recall correctly, the book "The pragmatic programmer" suggested creating a class for storing degrees and doing operations on them.
Here's the short-test pseudo code sample I can think of that answers the problem. It works in your domain of positive angles 0..359 and it handles the edge conditions first prior to handling the 'normal' ones.
if (objdeg >= 180 and gundeg < 180)
gundeg = (gundeg + 359) % 360;
else if (objdeg < 180 and gundeg >= 180)
gundeg = (gundeg + 1) % 360;
else if (objdeg > gundeg)
gundeg = (gundeg + 1) % 360;
else if (objdeg < gundeg)
gundeg = (gundeg + 359) % 360;
else
shootitnow();
This might be a bit late... Probably very late... But I recently had a similar issue and found that this worked just fine in GML.
var diff = angle_difference(gundeg, objdeg)
if (sign(diff)>0){
gundeg --;
}else{
gundeg ++;
}
I had a similar problem in python.
I have a current rotation in degrees and a target rotation in degrees.
The two rotations could be arbitrarily big so I had three goals with my function:
Keep both angles small
Keep the difference between the angles <= 180°
The returned angles must be equivalent to the input angles
I came up with the following:
def rotation_improver(c,t):
"""
c is current rotation, t is target rotation. \n
returns two values that are equivalent to c and t but have values between -360 and 360
"""
ci = c%360
if ci > 180:
ci -= 360
ti = t%360
if not abs(ci-ti) <= 180:
ti -= 360
return ci,ti
It should run flawlessly in c++ with a few syntax changes.
The return values of this general solution can then easily be used to solve any specific problem like using subtraction to get the relative rotation.
I know that this question is very old and has sufficient specific answers but I hope that someone with a similar problem stumbling through the internet can draw inspiration from from my general solution.
I have a simple sketch (in Processing), basically a bunch of dots wander around, if they come into contact with each other they fight (each has a strength value, increased each time they win, if it's equal the winner is randomly chosen)
It works well with about 5000 12-pixel "zombies" (there's a slight slowdown for a half a second, while the zombies initially collide with each other), the problem is when the zombies are made smaller, they don't collide with each other as quick, and the slowdown can last much longer..
The code is really simple - basically each zombie is a class, which has an X/Y coordinate. Each frame all the zombies are nudged one pixel, randomly turning lurching degrees (or not). I think the biggest cause of slowness is the collision detection - each zombie checks every other one (so zombie 1 checks 2-5000, zombie 2 checks 1,3-5000 etc..)
I'd like to keep everything simple, and "plain Processing" (not using external libraries, which might be more efficient and easy, but I don't find it very useful for learning)
int numZombies = 5000;
Zombie[] zombies = new Zombie[numZombies];
void setup(){
size(512, 512);
noStroke();
for(int i = 0; i < numZombies; i++){
zombies[i] = new Zombie(i, random(width), random(height), random(360), zombies);
}
}
void draw(){
background(0);
for(int i = 0; i < numZombies; i++){
zombies[i].move();
zombies[i].display();
}
}
class Zombie{
int id; // the index of this zombie
float x, y; // current location
float angle; // angle of zombies movement
float lurching = 10; // Amount angle can change
float strength = 2;
boolean dead = false; // true means zombie is dead
float diameter = 12; // How big the zombie is
float velocity = 1.0; // How fast zombie moves
Zombie[] others; // Stores the other zombies
Zombie(int inid, float xin, float yin, float inangle, Zombie[] oin){
id = inid;
x = xin;
y = yin;
angle = inangle;
others = oin;
}
void move(){
if(dead) return;
float vx = velocity * sin(radians(180-angle));
float vy = velocity * cos(radians(180-angle));
x = x + vx;
y = y + vy;
if(x + vx < 0 || x + vx > width || y + vy < 0 || y + vy > height){
// Collided with wall
angle = angle + 180;
}
float adecide = random(3);
if(adecide < 1){
// Move left
angle=angle - lurching;
}
else if(adecide > 1 && adecide < 2){
// Don't move x
}
else if(adecide > 2){
// Move right
angle = angle + lurching;
}
checkFights();
}
void checkFights(){
for (int i=0; i < numZombies; i++) {
if (i == id || dead || others[i].dead){
continue;
}
float dx = others[i].x - x;
float dy = others[i].y - y;
float distance = sqrt(dx*dx + dy*dy);
if (distance < diameter){
fight(i);
}
}
}
void fight(int oid){
Zombie o = others[oid];
//println("Zombie " + id + "(s: "+ strength +") fighting " + oid + "(s: "+ o.strength +")");
if(strength < o.strength){
kill();
o.strength++;
}
else if (strength == o.strength){
if(random(1) > 0.5){
kill();
o.strength++;
}
else{
o.kill();
strength++;
}
}
}
void kill(){
dead = true;
}
void display(){
if(dead) return;
ellipse(x, y, diameter, diameter);
}
}
You got yourself O(n^2) complexity, and that's killing your algorithm. It's correct that each zombie that moves has to check with all the others if they collided which brings you to quadratic complexity.
One direction might be to create a matrix representing your screen, and instead of iterating over all the other zombies, simply update the current zombie's location on the matrix, and check there if another zombie is already occupying that same cell.
Like 1800 INFORMATION says, somehow you need to reduce the number of comparisons.
Splitting the playing area into zones is a good idea. I would imagine the time it takes to compare current location against zone boundaries and add/remove zombies from the appropriate collections is worth it. Assuming they generally will go in straight lines, they shouldn't be changing zones too frequently.
We have the problem though of possible collisions between zones. To piggyback on the idea, you could divide the screen into 4 zones then 9 zones again. Think a tic-tac-toe board overlaid on a cross. This is a bad drawing, but:
| ! |
| ! |
----+--!-+----
| ! |
====|==x=|====
----+--!-+----
| ! |
| ! |
This way each zombie is in two zones at once and every border in one scheme is covered by another zone. You wouldn't even have to check all the same zombies again because either we'd be dead or they would. So the only double-processing is a single others[i].dead check.
Another thing I can see quickly is you still loop through the rest of the elements even though you're dead:
if (i == id || dead || others[i].dead){
continue;
}
It might not save a lot of processing, but it can certainly cut some instructions if you:
if (dead) return;
instead.
Also as a side note, do you want to be checking the diameter or the radius against the distance?
Your basic collision detection algorithm has O(n^2) complexity.
You need some approach which will reduce the number of comparisons.
One approach already mentioned, is to divide the playing field into zones/regions, and
only check for collision when a zombie is in the same zone/region. This is an attempt
to sort the entities topologically (by distance). What you want is to separate these
zombies not simply by geography, but to sort them so that they are only compared when
they are 'close' to one another. And you want to ignore empty regions.
Consider a tree structure to your regions. When a region has more than some number N of zombies, you could split the region smaller, until the region radius approaches your collision distance. Use a map to lookup region, and check all zombies in a given region (and any 'close enough' region).
You probably want N to be <= log(n)...
Maybe you should split the playing field up into zones and only check for collisions between zombies that are in the same zone. You need to reduce the number of comparisons.
It reminds me of this thread: No idea what could be the problem!!. And collision detection help where I point to Wikipedia's Collision detection article.
Quadtrees seem to be often used for 2D partitioning.