I need to find a faster way to number lines in a file in a specific way using tools like awk and sed. I need the first character on each line to be numbered in this fashion: 1,2,3,1,2,3,1,2,3 etc.
For example, if the input was this:
line 1
line 2
line 3
line 4
line 5
line 6
line 7
The output needs to look like this:
1line 1
2line 2
3line 3
1line 4
2line 5
3line 6
1line 7
Here is a chunk of what I have. $lines is the number of lines in the data file divided by 3. So for a file of 21000 lines I process this loop 7000 times.
export i=0
while [ $i -le $lines ]
do
export start=`expr $i \* 3 + 1`
export end=`expr $start + 2`
awk NR==$start,NR==$end $1 | awk '{printf("%d%s\n", NR,$0)}' >> data.out
export i=`expr $i + 1`
done
Basically this grabs 3 lines at a time, numbers them, and adds to an output file. It's slow...and then some! I don't know of another, faster, way to do this...any thoughts?
Try the nl command.
See https://linux.die.net/man/1/nl (or another link to the documentation that comes up when you Google for "man nl" or the text version that comes up when you run man nl at a shell prompt).
The nl utility reads lines from the
named file or the standard input if
the file argument is ommitted, applies
a configurable line numbering filter
operation and writes the result to the
standard output.
edit: No, that's wrong, my apologies. The nl command doesn't have an option for restarting the numbering every n lines, it only has an option for restarting the numbering after it finds a pattern. I'll make this answer a community wiki answer because it might help someone to know about nl.
It's slow because you are reading the same lines over and over. Also, you are starting up an awk process only to shut it down and start another one. Better to do the whole thing in one shot:
awk '{print ((NR-1)%3)+1 $0}' $1 > data.out
If you prefer to have a space after the number:
awk '{print ((NR-1)%3)+1, $0}' $1 > data.out
Perl comes to mind:
perl -pe '$_ = (($.-1)%3)+1 . $_'
should work. No doubt there is an awk equivalent. Basically, ((line# - 1) MOD 3) + 1.
This might work for you:
sed 's/^/1/;n;s/^/2/;n;s/^/3/' input
Another way is just to use grep and match everything. For example this will enumerate files:
grep -n '.*' <<< `ls -1`
Output will be:
1:file.a
2:file.b
3:file.c
awk '{printf "%d%s\n", ((NR-1) % 3) + 1, $0;}' "$#"
Python
import sys
for count, line in enumerate(sys.stdin):
stdout.write( "%d%s" % ( 1+(count % 3), line )
You don't need to leave bash for this:
i=0; while read; do echo "$((i++ % 3 + 1)) $REPLY"; done < input
This should solve the problem. $_ will print the whole line.
awk '{print ((NR-1)%3+1) $_}' < input
1line 1
2line 2
3line 3
1line 4
2line 5
3line 6
1line 7
# cat input
line 1
line 2
line 3
line 4
line 5
line 6
line 7
Related
EDITS: For reference, "stuff" is a general variable, as is "KEEP".
KEEP could be "Hi, my name is Dave" on line 2 and "I love pie" on line 7. The numbers I've put here are for illustration only and DO NOT show up in the data.
I had a file that needed to be parsed, keeping every 4th line, starting at the 3rd line. In other words, it looked like this:
1 stuff
2 stuff
3 KEEP
4
5 stuff
6 stuff
7 KEEP
8 stuff etc...
Great, sed solved that easily with:
sed -n -e 3~4p myfile
giving me
3 KEEP
7 KEEP
11 KEEP
Now I have a different file format and a different take on the pattern:
1 stuff
2 KEEP
3 KEEP
4
5 stuff
6 KEEP
7 KEEP etc...
and I still want the output of
2 KEEP
3 KEEP
6 KEEP
7 KEEP
10 KEEP
11 KEEP
Here's the problem - this is a multi-pattern "pattern" for sed. It's "every 4th line, spit out 2 lines, but start at line 2".
Do I need to have some sort of DO/FOR loop in my sed, or do I need a different command like awk or grep? Thus far, I have tried formats like:
sed -n -e '3~4p;4~4p' myfile
and
awk 'NR % 3 == 0 || NR % 4 ==0' myfile
and
sed -n -e '3~1p;4~4p' myfile
and
awk 'NR % 1 == 0 || NR % 4 ==0' myfile
source: https://superuser.com/questions/396536/how-to-keep-only-every-nth-line-of-a-file
If your intent is to print lines 2,3 then every fourth line after those two, you can do:
$ seq 20 | awk 'BEGIN{e[2];e[3]} (NR%4) in e'
2
3
6
7
10
11
14
15
18
19
You were pretty close with your sed:
$ printf '%s\n' {1..12} | sed -n '2~4p;3~4p'
2
3
6
7
10
11
this is the idiomatic way to write in awk
$ awk 'NR%4==2 || NR%4==3' file
however, this special case can be shortened to
$ awk 'NR%4>1' file
This might work for you (GNU sed):
sed '2~4,+1p;d' file
Use a range, the first parameter is the starting line and modulus (in this case from line 2 modulus 4). The second parameter is how man lines following the start of the range (in this case plus one). Print these lines and delete all others.
In the generic case, you want to keep lines p to p+q and p+n to p+q+n and p+2n to p+q+2n ... So you can write:
awk '(NR - p) % n <= q'
I am stuck on that. So I have this while-read loop within my code that is taking so long and I would like to run it in many processors. But, I'd like to split the input file and run 14 loops (because I have 14 threads), one for each splited file, in parallel. Thing is that I don't know how to tell the while loop which file to get and work with.
For example, in a regular while-read loop I would code:
while read line
do
<some code>
done < input file or variable...
But in this case I would like to split the above input file in 14 files and run 14 while loops in parallel, one for each splited file.
I tried :
split -n 14 input_file
find . -name "xa*" | \
parallel -j 14 | \
while read line
do
<lot of stuff>
done
also tried
split -n 14 input_file
function loop {
while read line
do
<lot of stuff>
done
}
export -f loop
parallel -j 14 ::: loop
But neither I was able to tell which file would be the input to the loop so parallel would understand "take each of those xa* files and place into individual loops in parallel"
An example of the input file (a list of strings)
AEYS01000010.10484.12283
CVJT01000011.50.2173
KF625180.1.1799
KT949922.1.1791
LOBZ01000025.54942.57580
EDIT
This is the code.
The output is a table (741100 lines) with some statistics regarding DNA sequences alignments already made.
The loop takes an input_file (no broken lines, varies from 500 to ~45000 lines, 800Kb) with DNA sequence acessions, reads it line-by-line and look for each correspondent full taxonomy for those acessions in a databank (~45000 lines). Then, it does a few sums/divisions. Output is a .tsv and looks like this (an example for sequence "KF625180.1.1799"):
Rate of taxonomies for this sequence in %: KF625180.1.1799 D_6__Bacillus_atrophaeus
Taxonomy %aligned number_ocurrences_in_the_alignment num_ocurrences_in_databank %alingment/databank
D_6__Bacillus_atrophaeus 50% 1 20 5%
D_6__Bacillus_amyloliquefaciens 50% 1 154 0.649351%
$ head input file
AEYS01000010.10484.12283
CVJT01000011.50.217
KF625180.1.1799
KT949922.1.1791
LOBZ01000025.54942.57580
Two additional files are also used inside the loop. They are not the loop input.
1) a file called alnout_file that only serves for finding how many hits (or alignments) a given sequence had against the databank. It was also previously made outside this loop. It can vary in the number of lines from hundreads to thousands. Only columns 1 and 2 matters here. Column1 is the name of the sequence and col2 is the name of all sequences it matched in the databnk. It looks like that:
$ head alnout_file
KF625180.1.1799 KF625180.1.1799 100.0 431 0 0 1 431 1 431 -1 0
KF625180.1.1799 KP143082.1.1457 99.3 431 1 2 1 431 1 429 -1 0
KP143082.1.1457 KF625180.1.1799 99.3 431 1 2 1 429 1 431 -1 0
2) a databank .tsv file containing ~45000 taxonomies correspondent to the DNA sequences. Each taxonomy is in one line:
$ head taxonomy.file.tsv
KP143082.1.1457 D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Bacillales;D_4__Bacillaceae;D_5__Bacillus;D_6__Bacillus_amyloliquefaciens
KF625180.1.1799 D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Bacillales;D_4__Bacillaceae;D_5__Bacillus;D_6__Bacillus_atrophaeus
So, given sequence KF625180.1.1799. I previously aligned it against a databank containing ~45000 other DNA sequences and got an output whis has all the accessions to sequences that it matched. What the loop does is that it finds the taxonomies for all those sequences and calculates the "statistics" I mentionded previously. Code does it for all the DNA-sequences-accesions I have.
TAXONOMY=path/taxonomy.file.tsv
while read line
do
#find hits
hits=$(grep $line alnout_file | cut -f 2)
completename=$(grep $line $TAXONOMY | sed 's/D_0.*D_4/D_4/g')
printf "\nRate of taxonomies for this sequence in %%:\t$completename\n"
printf "Taxonomy\t%aligned\tnumber_ocurrences_in_the_alignment\tnum_ocurrences_in_databank\t%alingment/databank\n"
#find hits and calculate the frequence (%) of the taxonomy in the alignment output
# ex.: Bacillus_subtilis 33
freqHits=$(grep "${hits[#]}" $TAXONOMY | \
cut -f 2 | \
awk '{a[$0]++} END {for (i in a) {print i, "\t", a[i]/NR*100, "\t", a[i]}}' | \
sed -e 's/D_0.*D_5/D_5/g' -e 's#\s\t\s#\t#g' | \
sort -k2 -hr)
# print frequence of each taxonomy in the databank
freqBank=$(while read line; do grep -c "$line" $TAXONOMY; done < <(echo "$freqHits" | cut -f 1))
#print cols with taxonomy and calculations
paste <(printf %s "$freqHits") <(printf %s "$freqBank") | awk '{print $1,"\t",$2"%","\t",$3,"\t",$4,"\t",$3/$4*100"%"}'
done < input_file
It is a lot of greps and parsing so it takes about ~12h running in one processor for doing it to all the 45000 DNA sequence accessions. The, I would like to split input_file and do it in all the processors I have (14) because it would the time spend in that.
Thank you all for being so patient with me =)
You are looking for --pipe. In this case you can even use the optimized --pipepart (version >20160621):
export TAXONOMY=path/taxonomy.file.tsv
doit() {
while read line
do
#find hits
hits=$(grep $line alnout_file | cut -f 2)
completename=$(grep $line $TAXONOMY | sed 's/D_0.*D_4/D_4/g')
printf "\nRate of taxonomies for this sequence in %%:\t$completename\n"
printf "Taxonomy\t%aligned\tnumber_ocurrences_in_the_alignment\tnum_ocurrences_in_databank\t%alingment/databank\n"
#find hits and calculate the frequence (%) of the taxonomy in the alignment output
# ex.: Bacillus_subtilis 33
freqHits=$(grep "${hits[#]}" $TAXONOMY | \
cut -f 2 | \
awk '{a[$0]++} END {for (i in a) {print i, "\t", a[i]/NR*100, "\t", a[i]}}' | \
sed -e 's/D_0.*D_5/D_5/g' -e 's#\s\t\s#\t#g' | \
sort -k2 -hr)
# print frequence of each taxonomy in the databank
freqBank=$(while read line; do grep -c "$line" $TAXONOMY; done < <(echo "$freqHits" | cut -f 1))
#print cols with taxonomy and calculations
paste <(printf %s "$freqHits") <(printf %s "$freqBank") | awk '{print $1,"\t",$2"%","\t",$3,"\t",$4,"\t",$3/$4*100"%"}'
done
}
export -f doit
parallel -a input_file --pipepart doit
This will chop input_file into 10*ncpu blocks (where ncpu is the number of CPU threads), pass each block to doit, run ncpu jobs in parallel.
That said I think your real problem is spawning too many programs: If you rewrite doit in Perl or Python I will expect you will see a major speedup.
As an alternative I threw together a quick test.
#! /bin/env bash
mkfifo PIPELINE # create a single queue
cat "$1" > PIPELINE & # supply it with records
{ declare -i cnt=0 max=14
while (( ++cnt <= max )) # spawn loop creates worker jobs
do printf -v fn "%02d" $cnt
while read -r line # each work loop reads common stdin...
do echo "$fn:[$line]"
sleep 1
done >$fn.log 2>&1 & # these run in background in parallel
done # this one exits
} < PIPELINE # *all* read from the same queue
wait
cat [0-9][0-9].log
Doesn't need split, but does need a mkfifo.
Obviously, change the code inside the internal loop.
This answers what you asked, namely how to process in parallel the 14 files you get from running split. However, I don't think it is the best way of doing whatever it is that you are trying to do - but we would need some answers from you for that.
So, let's make a million line file and split it into 14 parts:
seq 1000000 > 1M
split -n 14 1M part-
That gives me 14 files called part-aa through part-an. Now your question is how to process those 14 parts in parallel - (read the last line first):
#!/bin/bash
# This function will be called for each of the 14 files
DoOne(){
# Pick up parameters
job=$1
file=$2
# Count lines in specified file
lines=$(wc -l < "$file")
echo "Job No: $job, file: $file, lines: $lines"
}
# Make the function above known to processes spawned by GNU Parallel
export -f DoOne
# Run 14 parallel instances of "DoOne" passing job number and filename to each
parallel -k -j 14 DoOne {#} {} ::: part-??
Sample Output
Job No: 1, file: part-aa, lines: 83861
Job No: 2, file: part-ab, lines: 72600
Job No: 3, file: part-ac, lines: 70295
Job No: 4, file: part-ad, lines: 70295
Job No: 5, file: part-ae, lines: 70294
Job No: 6, file: part-af, lines: 70295
Job No: 7, file: part-ag, lines: 70295
Job No: 8, file: part-ah, lines: 70294
Job No: 9, file: part-ai, lines: 70295
Job No: 10, file: part-aj, lines: 70295
Job No: 11, file: part-ak, lines: 70295
Job No: 12, file: part-al, lines: 70294
Job No: 13, file: part-am, lines: 70295
Job No: 14, file: part-an, lines: 70297
You would omit the -k argument to GNU Parallel normally - I only added it so the output comes in order.
I think that using a bunch of grep and awk commands is the wrong approach here - you would be miles better off using Perl, or awk. As you have not provided any sample files I generated some using this code:
#!/bin/bash
for a in {A..Z} {0..9} ; do
for b in {A..Z} {0..9} ; do
for c in {A..Z} {0..9} ; do
echo "${a}${b}${c}"
done
done
done > a
# Now make file "b" which has the same stuff but shuffled into a different order
gshuf < a > b
Note that there are 26 letters in the alphabet, so if I add the digits 0..9 to the letters of the alphabet, I get 36 alphanumeric digits and if I nest 3 loops of that I get 36^3 or 46,656 lines which matches your file sizes roughly. File a now looks like this:
AAA
AAB
AAC
AAD
AAE
AAF
File b looks like this:
UKM
L50
AOC
79U
K6S
6PO
12I
XEV
WJN
Now I want to loop through a finding the corresponding line in b. First, I use your approach:
time while read thing ; do grep $thing b > /dev/null ; done < a
That takes 9 mins 35 seconds.
If I now exit grep on the first match, on average I will find it in the middle, which means the time will be halved since I won't continue to needlessly read b after I find what I want.
time while read thing ; do grep -m1 $thing b > /dev/null ; done < a
That improves the time down to 4 mins 30 seconds.
If I now use awk to read the contents of b into an associative array (a.k.a. hash) and then read the elements of a and find them in b like this:
time awk 'FNR==NR{a[$1]=$1; next} {print a[$1]}' b a > /dev/null
That now runs in 0.07 seconds. Hopefully you get the idea of what I am driving at. I expect Perl would do this in the same time and also provide more expressive facilities for the maths in the middle of your loop too.
I hope this small script helps you out:
function process {
while read line; do
echo "$line"
done < $1
}
function loop {
file=$1
chunks=$2
dir=`mktemp -d`
cd $dir
split -n l/$chunks $file
for i in *; do
process "$i" &
done
rm -rf $dir
}
loop /tmp/foo 14
It runs the process loop on the specified file with the specified number of chunks (without splitting lines) in parallel (using & to put each invocation in the background). I hope it gets you started.
This can do the job for You, I am not familiar with parallel instead using native bash spawning processes &:
function loop () {
while IFS= read -r -d $'\n'
do
# YOUR BIG STUFF
done < "${1}"
}
arr_files=(./xa*)
for i in "${arr_files[#]}"
do loop "${i}" &
done
wait
I have a log file with a plenty of collected logs, I already made a grep command with a regex that outputs the number of lines that matches it.
This is the grep command I'm using to output the matched lines:
grep -n -E 'START_REGEX|END_REGEX' Example.log | cut -d ':' -f 1 > ranges.txt
The regex is conditional it can match the begin of a specific log or its end, thus the output is something like:
12
45
128
136
...
The idea is to use this as a source of ranges to make specific cut on the log file from first number to the second and save them on another file.
The ranges are made by couples of the output, according to the example the first range is 12,45 and the second 128,136.
I expect to see in the final file all the text from line 12 to 45 and then from 128 to 136.
The problem I'm facing is that the sed command seems to work with only one range at time.
sed -E -iTMP "$START_RANGE,$END_RANGE! d;$END_RANGEq" $FILE_NAME
Is there any way (maybe with awk) to do that just in one "cycle"?
Constraints: I can only use supported bash command.
You can use an awk statement, too
awk '(NR>=12 && NR<=45) || (NR>=128 && NR<=136)' file
where, NR is a special variable in Awk which keep tracks of the line number as it processes the file.
An example,
seq 1 10 > file
cat file
1
2
3
4
5
6
7
8
9
10
awk '(NR>=1 && NR<=3) || (NR>=8 && NR<=10)' file
1
2
3
8
9
10
You can also avoid, hard-coding the line numbers by using the -v variable option,
awk -v start1=1 -v end1=3 -v start2=8 -v end2=10 '(NR>=start1 && NR<=end1) || (NR>=start2 && NR<=end2)' file
1
2
3
8
9
10
With sed you can do multiple ranges of lines like so:
sed -n '12,45p;128,136p'
This would output lines 12-45, then 128-136.
I'm uncertain as to how I can use the until loop inside a while loop.
I have an input file of 500,000 lines that look like this:
9 1 1 0.6132E+02
9 2 1 0.6314E+02
10 3 1 0.5874E+02
10 4 1 0.5266E+02
10 5 1 0.5571E+02
1 6 1 0.5004E+02
1 7 1 0.5450E+02
2 8 1 0.5696E+02
11 9 1 0.6369E+02
.....
And what I'm hoping to achieve is to sort the numbers in the first column in numerical order such that I can pull all the similar lines (eg. lines that start with the same number) into new text files "cluster${i}.txt". From there I want to sort the fourth column of ("cluster${i}.txt") files in numerical order. After sorting I would like to write the first row of each sorted "cluster${i}.txt" file into a single output file. A sample output of "cluster1.txt" would like this:
1 6 1 0.5004E+02
1 7 1 0.5450E+02
1 11 1 0.6777E+02
....
as well as an output.txt file that would look like this:
1 6 1 0.5004E+02
2 487 1 0.3495E+02
3 34 1 0.0344E+02
....
Here is what I've written:
#!/bin/bash
input='input.txt'
i=1
sort -nk 1 $input > 'temp.txt'
while read line; do
awk -v var="$i" '$1 == var' temp.txt > "cluster${i}.txt"
until [[$i -lt 20]]; do
i=$((i+1))
done
done
for f in *.txt; do
sort -nk 4 > temp2.txt
head -1 temp2.txt
rm temp2.txt
done > output.txt
This only takes one line, if your sort -n knows how to handle exponential notation:
sort -nk 1,4 <in.txt | awk '{ of="cluster" $1 ".txt"; print $0 >>of }'
...or, to also write the first line for each index to output.txt:
sort -nk 1,4 <in.txt | awk '
{
if($1 != last) {
print $0 >"output.txt"
last=$1
}
of="cluster" $1 ".txt";
print $0 >of
}'
Consider using an awk implementation -- such as GNU awk -- which will cache file descriptors, rather than reopening each output file for every append; this will greatly improve performance.
By the way, let's look at what was wrong with the original script:
It was slow. Really, really slow.
Starting a new instance of awk 20 times for every line of input (because the whole point of while read is to iterate over individual lines, so putting an awk inside a while read is going to run awk at least once per line) is going to have a very appreciable impact on performance. Not that it was actually doing this, because...
The while read line outer loop was reading from stdin, not temp.txt or input.txt.
Thus, the script was hanging if stdin didn't have anything written on it, or wasn't executing the contents of the loop at all if stdin pointed to a source with no content like /dev/null.
The inner loop wasn't actually processing the line read by the outer loop. line was being read, but all of temp.txt was being operated on.
The awk wasn't actually inside the inner loop, but rather was inside the outer loop, just before the inner loop. Consequently, it wasn't being run 20 times with different values for i, but run only once per line read, with whichever value for i was left over from previously executed code.
Whitespace is important to how commands are parsed. [[foo]] is wrong; it needs to be [[ foo ]].
To "fix" the inner loop, to do what I imagine you meant to write, might look like this:
# this is slow and awful, but at least it'll work.
while IFS= read -r line; do
i=0
until [[ $i -ge 20 ]]; do
awk -v var="$i" '$1 == var' <<<"$line" >>"cluster${i}.txt"
i=$((i+1))
done
done <temp.txt
...or, somewhat better (but still not as good as the solution suggested at the top):
# this is a somewhat less awful.
for (( i=0; i<=20; i++ )); do
awk -v var="$i" '$1 == var' <temp.txt >"cluster${i}.txt"
head -n 1 "cluster${i}.txt"
done >output.txt
Note how the redirection to output.txt is done just once, for the whole loop -- this means we're only opening the file once.
What's an easy way to read random line from a file in a shell script?
You can use shuf:
shuf -n 1 $FILE
There is also a utility called rl. In Debian it's in the randomize-lines package that does exactly what you want, though not available in all distros. On its home page it actually recommends the use of shuf instead (which didn't exist when it was created, I believe). shuf is part of the GNU coreutils, rl is not.
rl -c 1 $FILE
Another alternative:
head -$((${RANDOM} % `wc -l < file` + 1)) file | tail -1
sort --random-sort $FILE | head -n 1
(I like the shuf approach above even better though - I didn't even know that existed and I would have never found that tool on my own)
This is simple.
cat file.txt | shuf -n 1
Granted this is just a tad slower than the "shuf -n 1 file.txt" on its own.
perlfaq5: How do I select a random line from a file? Here's a reservoir-sampling algorithm from the Camel Book:
perl -e 'srand; rand($.) < 1 && ($line = $_) while <>; print $line;' file
This has a significant advantage in space over reading the whole file in. You can find a proof of this method in The Art of Computer Programming, Volume 2, Section 3.4.2, by Donald E. Knuth.
using a bash script:
#!/bin/bash
# replace with file to read
FILE=tmp.txt
# count number of lines
NUM=$(wc - l < ${FILE})
# generate random number in range 0-NUM
let X=${RANDOM} % ${NUM} + 1
# extract X-th line
sed -n ${X}p ${FILE}
Single bash line:
sed -n $((1+$RANDOM%`wc -l test.txt | cut -f 1 -d ' '`))p test.txt
Slight problem: duplicate filename.
Here's a simple Python script that will do the job:
import random, sys
lines = open(sys.argv[1]).readlines()
print(lines[random.randrange(len(lines))])
Usage:
python randline.py file_to_get_random_line_from
Another way using 'awk'
awk NR==$((${RANDOM} % `wc -l < file.name` + 1)) file.name
A solution that also works on MacOSX, and should also works on Linux(?):
N=5
awk 'NR==FNR {lineN[$1]; next}(FNR in lineN)' <(jot -r $N 1 $(wc -l < $file)) $file
Where:
N is the number of random lines you want
NR==FNR {lineN[$1]; next}(FNR in lineN) file1 file2
--> save line numbers written in file1 and then print corresponding line in file2
jot -r $N 1 $(wc -l < $file) --> draw N numbers randomly (-r) in range (1, number_of_line_in_file) with jot. The process substitution <() will make it look like a file for the interpreter, so file1 in previous example.
#!/bin/bash
IFS=$'\n' wordsArray=($(<$1))
numWords=${#wordsArray[#]}
sizeOfNumWords=${#numWords}
while [ True ]
do
for ((i=0; i<$sizeOfNumWords; i++))
do
let ranNumArray[$i]=$(( ( $RANDOM % 10 ) + 1 ))-1
ranNumStr="$ranNumStr${ranNumArray[$i]}"
done
if [ $ranNumStr -le $numWords ]
then
break
fi
ranNumStr=""
done
noLeadZeroStr=$((10#$ranNumStr))
echo ${wordsArray[$noLeadZeroStr]}
Here is what I discovery since my Mac OS doesn't use all the easy answers. I used the jot command to generate a number since the $RANDOM variable solutions seems not to be very random in my test. When testing my solution I had a wide variance in the solutions provided in the output.
RANDOM1=`jot -r 1 1 235886`
#range of jot ( 1 235886 ) found from earlier wc -w /usr/share/dict/web2
echo $RANDOM1
head -n $RANDOM1 /usr/share/dict/web2 | tail -n 1
The echo of the variable is to get a visual of the generated random number.
Using only vanilla sed and awk, and without using $RANDOM, a simple, space-efficient and reasonably fast "one-liner" for selecting a single line pseudo-randomly from a file named FILENAME is as follows:
sed -n $(awk 'END {srand(); r=rand()*NR; if (r<NR) {sub(/\..*/,"",r); r++;}; print r}' FILENAME)p FILENAME
(This works even if FILENAME is empty, in which case no line is emitted.)
One possible advantage of this approach is that it only calls rand() once.
As pointed out by #AdamKatz in the comments, another possibility would be to call rand() for each line:
awk 'rand() * NR < 1 { line = $0 } END { print line }' FILENAME
(A simple proof of correctness can be given based on induction.)
Caveat about rand()
"In most awk implementations, including gawk, rand() starts generating numbers from the same starting number, or seed, each time you run awk."
-- https://www.gnu.org/software/gawk/manual/html_node/Numeric-Functions.html