How to calculate password complexity [closed] - algorithm

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
Some applications (or websites) compute a password's complexity as you type.
They typically display a red bar which turns orange, then green, then even greener as your password gets longer, and contains more classes of characters (e.g., lowercase, uppercase, punctuation, digits).
How can I reliably calculate the complexity of a password?
I've come up with the following algorithm, but I'm concerned by the fact that it rates Password1! as "very strong" and ]#feé:m as "weak" because it's only 7 characters long.
private int GetPasswordComplexity(string password)
{
if (password.Length <= 4)
return 1;
int complexity = 0;
int digit = 0;
int letter = 0;
int cap = 0;
int other = 0;
for (int i = 0; i < password.Length; i++)
{
if (char.IsDigit(password[i]) && i!=password.Length-1)
digit = 1;
else if (char.IsLower(password[i]))
letter = 1;
else if (char.IsUpper(password[i]) && i!=0)
cap = 1;
else
other = 1;
}
complexity = digit + letter + cap + other;
if (password.Length <= 7)
complexity = Math.Min(3, complexity);
return complexity;
}

Using something like cracklib is very good if you can afford the time of checking against all of the potential rules. If you just want something quick -- say for a javascript-based strength meter -- then consider estimating the number of potential guesses that would be required for a brute force attack. For every character type seen update a multiplier based on the number of potential characters of that type. So if you have only digits, then the multiplier would be 10. If you have only lowercase, then the multiplier is 26. If both, then the multiplier is 36 -- that is for each character in the password, a brute force attack would need to try up to 36 different characters. A password containing both upper and lowercase characters, digits, and punctuation, then would have a multiplier of 10 + 26 + 26 + 32 = 94 (more or less depending on the allowable punctuation).
To estimate the maximum number of permutations a brute force method would take, raise the multiplier to the power equal to the number of digits in the password. This gives you then maximum number of guesses it would take to break the password using a brute force attack. Assume that each guess takes one cpu cycle and given the fastest processor calculate how long it would take to break a password given a certain number of permutations. For example, if my multiplier was 10 and the password was 10 characters long, then I would have 10,000,000,000 potential combinations. On 3GHz processor, this ought to take 10/3 * k or 3k seconds (where k is the number of cycles per guess, typically small). Clearly, this is a weak password.
Now, establish some ranges that represent reasonable password strengths. For example, if you think that an 8 character password with upper and lowercase characters is minimally required for medium strength, then your cutoff would be 52^8 or approximately 1.5 years on a 3GHz processor (assuming k = 1). If you add in digits, then the cutoff becomes 62^8 or approximately 8 years on 3GHz processor.
To put it in use, then you only need keep track of which kinds of characters you see, construct the appropriate multiplier, calculate the expected permutations based on password length, and compare it against your predefined cutoffs to determine what strength the password has.

I'd recommend using cracklib for this.

I would not simply set a flag when you see a digit, capital etc. but give points for them. Something like a score system. A normal letter counts 1, a digit 2 and a special character 3.
Now your total number accounts for both the number of characters and how the password is made up. You only have to draw lines for what is weak and what is strong.

You should also check against a dictionary. I think apple does this in it's built-in password checker.

Related

Subtract a number's digits from the number until it reaches 0

Can anyone help me with some algorithm for this problem?
We have a big number (19 digits) and, in a loop, we subtract one of the digits of that number from the number itself.
We continue to do this until the number reaches zero. We want to calculate the minimum number of subtraction that makes a given number reach zero.
The algorithm must respond fast, for a 19 digits number (10^19), within two seconds. As an example, providing input of 36 will give 7:
1. 36 - 6 = 30
2. 30 - 3 = 27
3. 27 - 7 = 20
4. 20 - 2 = 18
5. 18 - 8 = 10
6. 10 - 1 = 9
7. 9 - 9 = 0
Thank you.
The minimum number of subtractions to reach zero makes this, I suspect, a very thorny problem, one that will require a great deal of backtracking potential solutions, making it possibly too expensive for your time limitations.
But the first thing you should do is a sanity check. Since the largest digit is a 9, a 19-digit number will require about 1018 subtractions to reach zero. Code up a simple program to continuously subtract 9 from 1019 until it becomes less than ten. If you can't do that within the two seconds, you're in trouble.
By way of example, the following program (a):
#include <stdio.h>
int main (int argc, char *argv[]) {
unsigned long long x = strtoull(argv[1], NULL, 10);
x /= 1000000000;
while (x > 9)
x -= 9;
return x;
}
when run with the argument 10000000000000000000 (1019), takes a second and a half clock time (and CPU time since it's all calculation) even at gcc insane optimisation level of -O3:
real 0m1.531s
user 0m1.528s
sys 0m0.000s
And that's with the one-billion divisor just before the while loop, meaning the full number of iterations would take about 48 years.
So a brute force method isn't going to help here, what you need is some serious mathematical analysis which probably means you should post a similar question over at https://math.stackexchange.com/ and let the math geniuses have a shot.
(a) If you're wondering why I'm getting the value from the user rather than using a constant of 10000000000000000000ULL, it's to prevent gcc from calculating it at compile time and turning it into something like:
mov $1, %eax
Ditto for the return x which will prevent it noticing I don't use the final value of x and hence optimise the loop out of existence altogether.
I don't have a solution that can solve 19 digit numbers in 2 seconds. Not even close. But I did implement a couple of algorithms (including a dynamic programming algorithm that solves for the optimum), and gained some insight that I believe is interesting.
Greedy Algorithm
As a baseline, I implemented a greedy algorithm that simply picks the largest digit in each step:
uint64_t countGreedy(uint64_t inputVal) {
uint64_t remVal = inputVal;
uint64_t nStep = 0;
while (remVal > 0) {
uint64_t digitVal = remVal;
uint_fast8_t maxDigit = 0;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > maxDigit) {
maxDigit = digit;
}
digitVal = nextDigitVal;
}
remVal -= maxDigit;
++nStep;
}
return nStep;
}
Dynamic Programming Algorithm
The idea for this is that we can calculate the optimum incrementally. For a given value, we pick a digit, which adds one step to the optimum number of steps for the value with the digit subtracted.
With the target function (optimum number of steps) for a given value named optSteps(val), and the digits of the value named d_i, the following relationship holds:
optSteps(val) = 1 + min(optSteps(val - d_i))
This can be implemented with a dynamic programming algorithm. Since d_i is at most 9, we only need the previous 9 values to build on. In my implementation, I keep a circular buffer of 10 values:
static uint64_t countDynamic(uint64_t inputVal) {
uint64_t minSteps[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
uint_fast8_t digit0 = 0;
for (uint64_t val = 10; val <= inputVal; ++val) {
digit0 = val % 10;
uint64_t digitVal = val;
uint64_t minPrevStep = 0;
bool prevStepSet = false;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > 0) {
uint64_t prevStep = 0;
if (digit > digit0) {
prevStep = minSteps[10 + digit0 - digit];
} else {
prevStep = minSteps[digit0 - digit];
}
if (!prevStepSet || prevStep < minPrevStep) {
minPrevStep = prevStep;
prevStepSet = true;
}
}
digitVal = nextDigitVal;
}
minSteps[digit0] = minPrevStep + 1;
}
return minSteps[digit0];
}
Comparison of Results
This may be considered a surprise: I ran both algorithms on all values up to 1,000,000. The results are absolutely identical. This suggests that the greedy algorithm actually calculates the optimum.
I don't have a formal proof that this is indeed true for all possible values. It intuitively kind of makes sense to me. If in any given step, you choose a smaller digit than the maximum, you compromise the immediate progress with the goal of getting into a more favorable situation that allows you to catch up and pass the greedy approach. But in all the scenarios I thought about, the situation after taking a sub-optimal step just does not get significantly more favorable. It might make the next step bigger, but that is at most enough to get even again.
Complexity
While both algorithms look linear in the size of the value, they also loop over all digits in the value. Since the number of digits corresponds to log(n), I believe the complexity is O(n * log(n)).
I think it's possible to make it linear by keeping counts of the frequency of each digit, and modifying them incrementally. But I doubt it would actually be faster. It requires more logic, and turns a loop over all digits in the value (which is in the range of 2-19 for the values we are looking at) into a fixed loop over 10 possible digits.
Runtimes
Not surprisingly, the greedy algorithm is faster to calculate a single value. For example, for value 1,000,000,000, the runtimes on my MacBook Pro are:
greedy: 3 seconds
dynamic: 36 seconds
On the other hand, the dynamic programming approach is obviously much faster at calculating all the values, since its incremental approach needs them as intermediate results anyway. For calculating all values from 10 to 1,000,000:
greedy: 19 minutes
dynamic: 0.03 seconds
As already shown in the runtimes above, the greedy algorithm gets about as high as 9 digit input values within the targeted runtime of 2 seconds. The implementations aren't really tuned, and it's certainly possible to squeeze out some more time, but it would be fractional improvements.
Ideas
As already explored in another answer, there's no chance of getting the result for 19 digit numbers in 2 seconds by subtracting digits one by one. Since we subtract at most 9 in each step, completing this for a value of 10^19 needs more than 10^18 steps. We mostly use computers that perform in the rough range of 10^9 operations/second, which suggests that it would take about 10^9 seconds.
Therefore, we need something that can take shortcuts. I can think of scenarios where that's possible, but haven't been able to generalize it to a full strategy so far.
For example, if your current value is 9999, you know that you can subtract 9 until you reach 9000. So you can calculate that you will make 112 steps ((9999 - 9000) / 9 + 1) where you subtract 9, which can be done in a few operations.
As said in comments already, and agreeing with #paxdiablo’s other answer, I’m not sure if there is an algorithm to find the ideal solution without some backtracking; and the size of the number and the time constraint might be tough as well.
A general consideration though: You might want to find a way to decide between always subtracting the highest digit (which will decrease your current number by the largest possible amount, obviously), and by looking at your current digits and subtracting which of those will give you the largest “new” digit.
Say, your current number only consists of digits between 0 and 5 – then you might be tempted to subtract the 5 to decrease your number by the highest possible value, and continue with the next step. If the last digit of your current number is 3 however, then you might want to subtract 4 instead – since that will give you 9 as new digit at the end of the number, instead of “only” 8 you would be getting if you subtracted 5.
Whereas if you have a 2 and two 9 in your digits already, and the last digit is a 1 – then you might want to subtract the 9 anyway, since you will be left with the second 9 in the result (at least in most cases; in some edge cases it might get obliterated from the result as well), so subtracting the 2 instead would not have the advantage of giving you a “high” 9 that you would otherwise not have in the next step, and would have the disadvantage of not lowering your number by as high an amount as subtracting the 9 would …
But every digit you subtract will not only affect the next step directly, but the following steps indirectly – so again, I doubt there is a way to always chose the ideal digit for the current step without any backtracking or similar measures.

Generate an integer that is not among four billion given ones

I have been given this interview question:
Given an input file with four billion integers, provide an algorithm to generate an integer which is not contained in the file. Assume you have 1 GB memory. Follow up with what you would do if you have only 10 MB of memory.
My analysis:
The size of the file is 4×109×4 bytes = 16 GB.
We can do external sorting, thus letting us know the range of the integers.
My question is what is the best way to detect the missing integer in the sorted big integer sets?
My understanding (after reading all the answers):
Assuming we are talking about 32-bit integers, there are 232 = 4*109 distinct integers.
Case 1: we have 1 GB = 1 * 109 * 8 bits = 8 billion bits memory.
Solution:
If we use one bit representing one distinct integer, it is enough. we don't need sort.
Implementation:
int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
Scanner in = new Scanner(new FileReader("a.txt"));
while(in.hasNextInt()){
int n = in.nextInt();
bitfield[n/radix] |= (1 << (n%radix));
}
for(int i = 0; i< bitfield.lenght; i++){
for(int j =0; j<radix; j++){
if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
}
}
}
Case 2: 10 MB memory = 10 * 106 * 8 bits = 80 million bits
Solution:
For all possible 16-bit prefixes, there are 216 number of
integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket.
Build the counter of each bucket through the first pass through the file.
Scan the buckets, find the first one who has less than 65536 hit.
Build new buckets whose high 16-bit prefixes are we found in step2
through second pass of the file
Scan the buckets built in step3, find the first bucket which doesnt
have a hit.
The code is very similar to above one.
Conclusion:
We decrease memory through increasing file pass.
A clarification for those arriving late: The question, as asked, does not say that there is exactly one integer that is not contained in the file—at least that's not how most people interpret it. Many comments in the comment thread are about that variation of the task, though. Unfortunately the comment that introduced it to the comment thread was later deleted by its author, so now it looks like the orphaned replies to it just misunderstood everything. It's very confusing, sorry.
Assuming that "integer" means 32 bits: 10 MB of space is more than enough for you to count how many numbers there are in the input file with any given 16-bit prefix, for all possible 16-bit prefixes in one pass through the input file. At least one of the buckets will have be hit less than 216 times. Do a second pass to find of which of the possible numbers in that bucket are used already.
If it means more than 32 bits, but still of bounded size: Do as above, ignoring all input numbers that happen to fall outside the (signed or unsigned; your choice) 32-bit range.
If "integer" means mathematical integer: Read through the input once and keep track of the largest number length of the longest number you've ever seen. When you're done, output the maximum plus one a random number that has one more digit. (One of the numbers in the file may be a bignum that takes more than 10 MB to represent exactly, but if the input is a file, then you can at least represent the length of anything that fits in it).
Statistically informed algorithms solve this problem using fewer passes than deterministic approaches.
If very large integers are allowed then one can generate a number that is likely to be unique in O(1) time. A pseudo-random 128-bit integer like a GUID will only collide with one of the existing four billion integers in the set in less than one out of every 64 billion billion billion cases.
If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.
A detailed discussion on this problem has been discussed in Jon Bentley "Column 1. Cracking the Oyster" Programming Pearls Addison-Wesley pp.3-10
Bentley discusses several approaches, including external sort, Merge Sort using several external files etc., But the best method Bentley suggests is a single pass algorithm using bit fields, which he humorously calls "Wonder Sort" :)
Coming to the problem, 4 billion numbers can be represented in :
4 billion bits = (4000000000 / 8) bytes = about 0.466 GB
The code to implement the bitset is simple: (taken from solutions page )
#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];
void set(int i) { a[i>>SHIFT] |= (1<<(i & MASK)); }
void clr(int i) { a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int test(int i){ return a[i>>SHIFT] & (1<<(i & MASK)); }
Bentley's algorithm makes a single pass over the file, setting the appropriate bit in the array and then examines this array using test macro above to find the missing number.
If the available memory is less than 0.466 GB, Bentley suggests a k-pass algorithm, which divides the input into ranges depending on available memory. To take a very simple example, if only 1 byte (i.e memory to handle 8 numbers ) was available and the range was from 0 to 31, we divide this into ranges of 0 to 7, 8-15, 16-22 and so on and handle this range in each of 32/8 = 4 passes.
HTH.
Since the problem does not specify that we have to find the smallest possible number that is not in the file we could just generate a number that is longer than the input file itself. :)
For the 1 GB RAM variant you can use a bit vector. You need to allocate 4 billion bits == 500 MB byte array. For each number you read from the input, set the corresponding bit to '1'. Once you done, iterate over the bits, find the first one that is still '0'. Its index is the answer.
If they are 32-bit integers (likely from the choice of ~4 billion numbers close to 232), your list of 4 billion numbers will take up at most 93% of the possible integers (4 * 109 / (232) ). So if you create a bit-array of 232 bits with each bit initialized to zero (which will take up 229 bytes ~ 500 MB of RAM; remember a byte = 23 bits = 8 bits), read through your integer list and for each int set the corresponding bit-array element from 0 to 1; and then read through your bit-array and return the first bit that's still 0.
In the case where you have less RAM (~10 MB), this solution needs to be slightly modified. 10 MB ~ 83886080 bits is still enough to do a bit-array for all numbers between 0 and 83886079. So you could read through your list of ints; and only record #s that are between 0 and 83886079 in your bit array. If the numbers are randomly distributed; with overwhelming probability (it differs by 100% by about 10-2592069) you will find a missing int). In fact, if you only choose numbers 1 to 2048 (with only 256 bytes of RAM) you'd still find a missing number an overwhelming percentage (99.99999999999999999999999999999999999999999999999999999999999995%) of the time.
But let's say instead of having about 4 billion numbers; you had something like 232 - 1 numbers and less than 10 MB of RAM; so any small range of ints only has a small possibility of not containing the number.
If you were guaranteed that each int in the list was unique, you could sum the numbers and subtract the sum with one # missing to the full sum (½)(232)(232 - 1) = 9223372034707292160 to find the missing int. However, if an int occurred twice this method will fail.
However, you can always divide and conquer. A naive method, would be to read through the array and count the number of numbers that are in the first half (0 to 231-1) and second half (231, 232). Then pick the range with fewer numbers and repeat dividing that range in half. (Say if there were two less number in (231, 232) then your next search would count the numbers in the range (231, 3*230-1), (3*230, 232). Keep repeating until you find a range with zero numbers and you have your answer. Should take O(lg N) ~ 32 reads through the array.
That method was inefficient. We are only using two integers in each step (or about 8 bytes of RAM with a 4 byte (32-bit) integer). A better method would be to divide into sqrt(232) = 216 = 65536 bins, each with 65536 numbers in a bin. Each bin requires 4 bytes to store its count, so you need 218 bytes = 256 kB. So bin 0 is (0 to 65535=216-1), bin 1 is (216=65536 to 2*216-1=131071), bin 2 is (2*216=131072 to 3*216-1=196607). In python you'd have something like:
import numpy as np
nums_in_bin = np.zeros(65536, dtype=np.uint32)
for N in four_billion_int_array:
nums_in_bin[N // 65536] += 1
for bin_num, bin_count in enumerate(nums_in_bin):
if bin_count < 65536:
break # we have found an incomplete bin with missing ints (bin_num)
Read through the ~4 billion integer list; and count how many ints fall in each of the 216 bins and find an incomplete_bin that doesn't have all 65536 numbers. Then you read through the 4 billion integer list again; but this time only notice when integers are in that range; flipping a bit when you find them.
del nums_in_bin # allow gc to free old 256kB array
from bitarray import bitarray
my_bit_array = bitarray(65536) # 32 kB
my_bit_array.setall(0)
for N in four_billion_int_array:
if N // 65536 == bin_num:
my_bit_array[N % 65536] = 1
for i, bit in enumerate(my_bit_array):
if not bit:
print bin_num*65536 + i
break
Why make it so complicated? You ask for an integer not present in the file?
According to the rules specified, the only thing you need to store is the largest integer that you encountered so far in the file. Once the entire file has been read, return a number 1 greater than that.
There is no risk of hitting maxint or anything, because according to the rules, there is no restriction to the size of the integer or the number returned by the algorithm.
This can be solved in very little space using a variant of binary search.
Start off with the allowed range of numbers, 0 to 4294967295.
Calculate the midpoint.
Loop through the file, counting how many numbers were equal, less than or higher than the midpoint value.
If no numbers were equal, you're done. The midpoint number is the answer.
Otherwise, choose the range that had the fewest numbers and repeat from step 2 with this new range.
This will require up to 32 linear scans through the file, but it will only use a few bytes of memory for storing the range and the counts.
This is essentially the same as Henning's solution, except it uses two bins instead of 16k.
EDIT Ok, this wasn't quite thought through as it assumes the integers in the file follow some static distribution. Apparently they don't need to, but even then one should try this:
There are ≈4.3 billion 32-bit integers. We don't know how they are distributed in the file, but the worst case is the one with the highest Shannon entropy: an equal distribution. In this case, the probablity for any one integer to not occur in the file is
( (2³²-1)/2³² )⁴ ⁰⁰⁰ ⁰⁰⁰ ⁰⁰⁰ ≈ .4
The lower the Shannon entropy, the higher this probability gets on the average, but even for this worst case we have a chance of 90% to find a nonoccurring number after 5 guesses with random integers. Just create such numbers with a pseudorandom generator, store them in a list. Then read int after int and compare it to all of your guesses. When there's a match, remove this list entry. After having been through all of the file, chances are you will have more than one guess left. Use any of them. In the rare (10% even at worst case) event of no guess remaining, get a new set of random integers, perhaps more this time (10->99%).
Memory consumption: a few dozen bytes, complexity: O(n), overhead: neclectable as most of the time will be spent in the unavoidable hard disk accesses rather than comparing ints anyway.
The actual worst case, when we do not assume a static distribution, is that every integer occurs max. once, because then only
1 - 4000000000/2³² ≈ 6%
of all integers don't occur in the file. So you'll need some more guesses, but that still won't cost hurtful amounts of memory.
If you have one integer missing from the range [0, 2^x - 1] then just xor them all together. For example:
>>> 0 ^ 1 ^ 3
2
>>> 0 ^ 1 ^ 2 ^ 3 ^ 4 ^ 6 ^ 7
5
(I know this doesn't answer the question exactly, but it's a good answer to a very similar question.)
They may be looking to see if you have heard of a probabilistic Bloom Filter which can very efficiently determine absolutely if a value is not part of a large set, (but can only determine with high probability it is a member of the set.)
Based on the current wording in the original question, the simplest solution is:
Find the maximum value in the file, then add 1 to it.
Use a BitSet. 4 billion integers (assuming up to 2^32 integers) packed into a BitSet at 8 per byte is 2^32 / 2^3 = 2^29 = approx 0.5 Gb.
To add a bit more detail - every time you read a number, set the corresponding bit in the BitSet. Then, do a pass over the BitSet to find the first number that's not present. In fact, you could do this just as effectively by repeatedly picking a random number and testing if it's present.
Actually BitSet.nextClearBit(0) will tell you the first non-set bit.
Looking at the BitSet API, it appears to only support 0..MAX_INT, so you may need 2 BitSets - one for +'ve numbers and one for -'ve numbers - but the memory requirements don't change.
If there is no size limit, the quickest way is to take the length of the file, and generate the length of the file+1 number of random digits (or just "11111..." s). Advantage: you don't even need to read the file, and you can minimize memory use nearly to zero. Disadvantage: You will print billions of digits.
However, if the only factor was minimizing memory usage, and nothing else is important, this would be the optimal solution. It might even get you a "worst abuse of the rules" award.
If we assume that the range of numbers will always be 2^n (an even power of 2), then exclusive-or will work (as shown by another poster). As far as why, let's prove it:
The Theory
Given any 0 based range of integers that has 2^n elements with one element missing, you can find that missing element by simply xor-ing the known values together to yield the missing number.
The Proof
Let's look at n = 2. For n=2, we can represent 4 unique integers: 0, 1, 2, 3. They have a bit pattern of:
0 - 00
1 - 01
2 - 10
3 - 11
Now, if we look, each and every bit is set exactly twice. Therefore, since it is set an even number of times, and exclusive-or of the numbers will yield 0. If a single number is missing, the exclusive-or will yield a number that when exclusive-ored with the missing number will result in 0. Therefore, the missing number, and the resulting exclusive-ored number are exactly the same. If we remove 2, the resulting xor will be 10 (or 2).
Now, let's look at n+1. Let's call the number of times each bit is set in n, x and the number of times each bit is set in n+1 y. The value of y will be equal to y = x * 2 because there are x elements with the n+1 bit set to 0, and x elements with the n+1 bit set to 1. And since 2x will always be even, n+1 will always have each bit set an even number of times.
Therefore, since n=2 works, and n+1 works, the xor method will work for all values of n>=2.
The Algorithm For 0 Based Ranges
This is quite simple. It uses 2*n bits of memory, so for any range <= 32, 2 32 bit integers will work (ignoring any memory consumed by the file descriptor). And it makes a single pass of the file.
long supplied = 0;
long result = 0;
while (supplied = read_int_from_file()) {
result = result ^ supplied;
}
return result;
The Algorithm For Arbitrary Based Ranges
This algorithm will work for ranges of any starting number to any ending number, as long as the total range is equal to 2^n... This basically re-bases the range to have the minimum at 0. But it does require 2 passes through the file (the first to grab the minimum, the second to compute the missing int).
long supplied = 0;
long result = 0;
long offset = INT_MAX;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
result = result ^ (supplied - offset);
}
return result + offset;
Arbitrary Ranges
We can apply this modified method to a set of arbitrary ranges, since all ranges will cross a power of 2^n at least once. This works only if there is a single missing bit. It takes 2 passes of an unsorted file, but it will find the single missing number every time:
long supplied = 0;
long result = 0;
long offset = INT_MAX;
long n = 0;
double temp;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
n++;
result = result ^ (supplied - offset);
}
// We need to increment n one value so that we take care of the missing
// int value
n++
while (n == 1 || 0 != (n & (n - 1))) {
result = result ^ (n++);
}
return result + offset;
Basically, re-bases the range around 0. Then, it counts the number of unsorted values to append as it computes the exclusive-or. Then, it adds 1 to the count of unsorted values to take care of the missing value (count the missing one). Then, keep xoring the n value, incremented by 1 each time until n is a power of 2. The result is then re-based back to the original base. Done.
Here's the algorithm I tested in PHP (using an array instead of a file, but same concept):
function find($array) {
$offset = min($array);
$n = 0;
$result = 0;
foreach ($array as $value) {
$result = $result ^ ($value - $offset);
$n++;
}
$n++; // This takes care of the missing value
while ($n == 1 || 0 != ($n & ($n - 1))) {
$result = $result ^ ($n++);
}
return $result + $offset;
}
Fed in an array with any range of values (I tested including negatives) with one inside that range which is missing, it found the correct value each time.
Another Approach
Since we can use external sorting, why not just check for a gap? If we assume the file is sorted prior to the running of this algorithm:
long supplied = 0;
long last = read_int_from_file();
while (supplied = read_int_from_file()) {
if (supplied != last + 1) {
return last + 1;
}
last = supplied;
}
// The range is contiguous, so what do we do here? Let's return last + 1:
return last + 1;
Trick question, unless it's been quoted improperly. Just read through the file once to get the maximum integer n, and return n+1.
Of course you'd need a backup plan in case n+1 causes an integer overflow.
Check the size of the input file, then output any number which is too large to be represented by a file that size. This may seem like a cheap trick, but it's a creative solution to an interview problem, it neatly sidesteps the memory issue, and it's technically O(n).
void maxNum(ulong filesize)
{
ulong bitcount = filesize * 8; //number of bits in file
for (ulong i = 0; i < bitcount; i++)
{
Console.Write(9);
}
}
Should print 10 bitcount - 1, which will always be greater than 2 bitcount. Technically, the number you have to beat is 2 bitcount - (4 * 109 - 1), since you know there are (4 billion - 1) other integers in the file, and even with perfect compression they'll take up at least one bit each.
The simplest approach is to find the minimum number in the file, and return 1 less than that. This uses O(1) storage, and O(n) time for a file of n numbers. However, it will fail if number range is limited, which could make min-1 not-a-number.
The simple and straightforward method of using a bitmap has already been mentioned. That method uses O(n) time and storage.
A 2-pass method with 2^16 counting-buckets has also been mentioned. It reads 2*n integers, so uses O(n) time and O(1) storage, but it cannot handle datasets with more than 2^16 numbers. However, it's easily extended to (eg) 2^60 64-bit integers by running 4 passes instead of 2, and easily adapted to using tiny memory by using only as many bins as fit in memory and increasing the number of passes correspondingly, in which case run time is no longer O(n) but instead is O(n*log n).
The method of XOR'ing all the numbers together, mentioned so far by rfrankel and at length by ircmaxell answers the question asked in stackoverflow#35185, as ltn100 pointed out. It uses O(1) storage and O(n) run time. If for the moment we assume 32-bit integers, XOR has a 7% probability of producing a distinct number. Rationale: given ~ 4G distinct numbers XOR'd together, and ca. 300M not in file, the number of set bits in each bit position has equal chance of being odd or even. Thus, 2^32 numbers have equal likelihood of arising as the XOR result, of which 93% are already in file. Note that if the numbers in file aren't all distinct, the XOR method's probability of success rises.
Strip the white space and non numeric characters from the file and append 1. Your file now contains a single number not listed in the original file.
From Reddit by Carbonetc.
For some reason, as soon as I read this problem I thought of diagonalization. I'm assuming arbitrarily large integers.
Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.
You can use bit flags to mark whether an integer is present or not.
After traversing the entire file, scan each bit to determine if the number exists or not.
Assuming each integer is 32 bit, they will conveniently fit in 1 GB of RAM if bit flagging is done.
Just for the sake of completeness, here is another very simple solution, which will most likely take a very long time to run, but uses very little memory.
Let all possible integers be the range from int_min to int_max, and
bool isNotInFile(integer) a function which returns true if the file does not contain a certain integer and false else (by comparing that certain integer with each integer in the file)
for (integer i = int_min; i <= int_max; ++i)
{
if (isNotInFile(i)) {
return i;
}
}
For the 10 MB memory constraint:
Convert the number to its binary representation.
Create a binary tree where left = 0 and right = 1.
Insert each number in the tree using its binary representation.
If a number has already been inserted, the leafs will already have been created.
When finished, just take a path that has not been created before to create the requested number.
4 billion number = 2^32, meaning 10 MB might not be sufficient.
EDIT
An optimization is possible, if two ends leafs have been created and have a common parent, then they can be removed and the parent flagged as not a solution. This cuts branches and reduces the need for memory.
EDIT II
There is no need to build the tree completely too. You only need to build deep branches if numbers are similar. If we cut branches too, then this solution might work in fact.
I will answer the 1 GB version:
There is not enough information in the question, so I will state some assumptions first:
The integer is 32 bits with range -2,147,483,648 to 2,147,483,647.
Pseudo-code:
var bitArray = new bit[4294967296]; // 0.5 GB, initialized to all 0s.
foreach (var number in file) {
bitArray[number + 2147483648] = 1; // Shift all numbers so they start at 0.
}
for (var i = 0; i < 4294967296; i++) {
if (bitArray[i] == 0) {
return i - 2147483648;
}
}
As long as we're doing creative answers, here is another one.
Use the external sort program to sort the input file numerically. This will work for any amount of memory you may have (it will use file storage if needed).
Read through the sorted file and output the first number that is missing.
Bit Elimination
One way is to eliminate bits, however this might not actually yield a result (chances are it won't). Psuedocode:
long val = 0xFFFFFFFFFFFFFFFF; // (all bits set)
foreach long fileVal in file
{
val = val & ~fileVal;
if (val == 0) error;
}
Bit Counts
Keep track of the bit counts; and use the bits with the least amounts to generate a value. Again this has no guarantee of generating a correct value.
Range Logic
Keep track of a list ordered ranges (ordered by start). A range is defined by the structure:
struct Range
{
long Start, End; // Inclusive.
}
Range startRange = new Range { Start = 0x0, End = 0xFFFFFFFFFFFFFFFF };
Go through each value in the file and try and remove it from the current range. This method has no memory guarantees, but it should do pretty well.
2128*1018 + 1 ( which is (28)16*1018 + 1 ) - cannot it be a universal answer for today? This represents a number that cannot be held in 16 EB file, which is the maximum file size in any current file system.
I think this is a solved problem (see above), but there's an interesting side case to keep in mind because it might get asked:
If there are exactly 4,294,967,295 (2^32 - 1) 32-bit integers with no repeats, and therefore only one is missing, there is a simple solution.
Start a running total at zero, and for each integer in the file, add that integer with 32-bit overflow (effectively, runningTotal = (runningTotal + nextInteger) % 4294967296). Once complete, add 4294967296/2 to the running total, again with 32-bit overflow. Subtract this from 4294967296, and the result is the missing integer.
The "only one missing integer" problem is solvable with only one run, and only 64 bits of RAM dedicated to the data (32 for the running total, 32 to read in the next integer).
Corollary: The more general specification is extremely simple to match if we aren't concerned with how many bits the integer result must have. We just generate a big enough integer that it cannot be contained in the file we're given. Again, this takes up absolutely minimal RAM. See the pseudocode.
# Grab the file size
fseek(fp, 0L, SEEK_END);
sz = ftell(fp);
# Print a '2' for every bit of the file.
for (c=0; c<sz; c++) {
for (b=0; b<4; b++) {
print "2";
}
}
As Ryan said it basically, sort the file and then go over the integers and when a value is skipped there you have it :)
EDIT at downvoters: the OP mentioned that the file could be sorted so this is a valid method.
If you don't assume the 32-bit constraint, just return a randomly generated 64-bit number (or 128-bit if you're a pessimist). The chance of collision is 1 in 2^64/(4*10^9) = 4611686018.4 (roughly 1 in 4 billion). You'd be right most of the time!
(Joking... kind of.)

How many digits will be after converting from one numeral system to another

The main question: How many digits?
Let me explain. I have a number in binary system: 11000000 and in decimal is 192.
After converting to decimal, how many digits it will have (in dicimal)? In my example, it's 3 digits. But, it isn't a problem. I've searched over internet and found one algorithm for integral part and one for fractional part. I'm not quite understand them, but (I think) they works.
When converting from binary to octal, it's more easy: each 3 bits give you 1 digit in octal. Same for hex: each 4 bits = 1 hex digit.
But, I'm very curious, what to do, if I have a number in P numeral system and want to convert it to the Q numeral system? I know how to do it (I think, I know :)), but, 1st of all, I want to know how many digits in Q system it will take (u no, I must preallocate space).
Writing n in base b takes ceiling(log base b (n)) digits.
The ratio you noticed (octal/binary) is log base 8 (n) / log base 2 (n) = 3.
(From memory, will it stick?)
There was an error in my previous answer: look at the comment by Ben Schwehn.
Sorry for the confusion, I found and explain the error I made in my previous answer below.
Please use the answer provided by Paul Tomblin. (rewritten to use P, Q and n)
Y = ln(P^n) / ln(Q)
Y = n * ln(P) / ln(Q)
So Y (rounded up) is the number of characters you need in system Q to express the highest number you can encode in n characters in system P.
I have no answer (that wouldn't convert the number already and take up that many space in a temporary variable) to get the bare minimum for a given number 1000(bin) = 8(dec) while you would reserve 2 decimal positions using this formula.
If a temporary memory usage isn't a problem, you might cheat and use (Python):
len(str(int(otherBaseStr,P)))
This will give you the number of decimals needed to convert a number in base P, cast as a string (otherBaseStr), into decimals.
Old WRONG answer:
If you have a number in P numeral system of length n
Then you can calculate the highest number that is possible in n characters:
P^(n-1)
To express this highest number in number system Q you need to use logarithms (because they are the inverse to exponentiation):
log((P^(n-1))/log(Q)
(n-1)*log(P) / log(Q)
For example
11000000 in binary is 8 characters.
To get it in Decimal you would need:
(8-1)*log(2) / log(10) = 2.1 digits (round up to 3)
Reason it was wrong:
The highest number that is possible in n characters is
(P^n) - 1
not
P^(n-1)
If you have a number that's X digits long in base B, then the maximum value that can be represented is B^X - 1. So if you want to know how many digits it might take in base C, then you have to find the number Y that C^Y - 1 is at least as big as B^X - 1. The way to do that is to take the logarithm in base C of B^X-1. And since the logarithm (log) of a number in base C is the same as the natural log (ln) of that number divided by the natural log of C, that becomes:
Y = ln((B^X)-1) / ln(C) + 1
and since ln(B^X) is X * ln(B), and that's probably faster to calculate than ln(B^X-1) and close enough to the right answer, rewrite that as
Y = X * ln(B) / ln(C) + 1
Covert that to your favourite language. Because we dropped the "-1", we might end up with one digit more than you need in some cases. But even better, you can pre-calculate ln(B)/ln(C) and just multiply it by new "X"s and the length of the number you are trying to convert changes.
Calculating the number of digit can be done using the formulas given by the other answers, however, it might actually be faster to allocate a buffer of maximum size first and then return the relevant part of that buffer instead of calculating a logarithm.
Note that the worst case for the buffer size happens when you convert to binary, which gives you a buffer size of 32 characters for 32-bit integers.
Converting a number to an arbitrary base could be done using the C# function below (The code would look very similar in other languages like C or Java):
public static string IntToString(int value, char[] baseChars)
{
// 32 is the worst cast buffer size for base 2 and int.MaxValue
int i = 32;
char[] buffer = new char[i];
int targetBase= baseChars.Length;
do
{
buffer[--i] = baseChars[value % targetBase];
value = value / targetBase;
}
while (value > 0);
char[] result = new char[32 - i];
Array.Copy(buffer, i, result, 0, 32 - i);
return new string(result);
}
The keyword here is "logarithm", here are some suggestive links:
http://www.adug.org.au/MathsCorner/MathsCornerLogs2.htm
http://staff.spd.dcu.ie/johnbcos/download/Fermat%20material/Fermat_Record_Number/HOW_MANY.html
look at the logarithms base P and base Q. Round down to nearest integer.
The logarithm base P can be computed using your favorite base (10 or e): log_P(x) = log_10(x)/log_10(P)
You need to compute the length of the fractional part separately.
For binary to decimal, there are as many decimal digits as there are bits. For example, binary 0.11001101001001 is decimal 0.80133056640625, both 14 digits after the radix point.
For decimal to binary, there are two cases. If the decimal fraction is dyadic, then there are as many bits as decimal digits (same as for binary to decimal above). If the fraction is not dyadic, then the number of bits is infinite.
(You can use my decimal/binary converter to experiment with this.)

Expressing an integer as a series of multipliers

Scroll down to see latest edit, I left all this text here just so that I don't invalidate the replies this question has received so far!
I have the following brain teaser I'd like to get a solution for, I have tried to solve this but since I'm not mathematically that much above average (that is, I think I'm very close to average) I can't seem wrap my head around this.
The problem: Given number x should be split to a serie of multipliers, where each multiplier <= y, y being a constant like 10 or 16 or whatever. In the serie (technically an array of integers) the last number should be added instead of multiplied to be able to convert the multipliers back to original number.
As an example, lets assume x=29 and y=10. In this case the expected array would be {10,2,9} meaning 10*2+9. However if y=5, it'd be {5,5,4} meaning 5*5+4 or if y=3, it'd be {3,3,3,2} which would then be 3*3*3+2.
I tried to solve this by doing something like this:
while x >= y, store y to multipliers, then x = x - y
when x < y, store x to multipliers
Obviously this didn't work, I also tried to store the "leftover" part separately and add that after everything else but that didn't work either. I believe my main problem is that I try to think this in a way too complex manner while the solution is blatantly obvious and simple.
To reiterate, these are the limits this algorithm should have:
has to work with 64bit longs
has to return an array of 32bit integers (...well, shorts are OK too)
while support for signed numbers (both + and -) would be nice, if it helps the task only unsigned numbers is a must
And while I'm doing this using Java, I'd rather take any possible code examples as pseudocode, I specifically do NOT want readily made answers, I just need a nudge (well, more of a strong kick) so that I can solve this at least partly myself. Thanks in advance.
Edit: Further clarification
To avoid some confusion, I think I should reword this a bit:
Every integer in the result array should be less or equal to y, including the last number.
Yes, the last number is just a magic number.
No, this is isn't modulus since then the second number would be larger than y in most cases.
Yes, there is multiple answers to most of the numbers available, however I'm looking for the one with least amount of math ops. As far as my logic goes, that means finding the maximum amount of as big multipliers as possible, for example x=1 000 000,y=100 is 100*100*100 even though 10*10*10*10*10*10 is equally correct answer math-wise.
I need to go through the given answers so far with some thought but if you have anything to add, please do! I do appreciate the interest you've already shown on this, thank you all for that.
Edit 2: More explanations + bounty
Okay, seems like what I was aiming for in here just can't be done the way I thought it could be. I was too ambiguous with my goal and after giving it a bit of a thought I decided to just tell you in its entirety what I'd want to do and see what you can come up with.
My goal originally was to come up with a specific method to pack 1..n large integers (aka longs) together so that their String representation is notably shorter than writing the actual number. Think multiples of ten, 10^6 and 1 000 000 are the same, however the representation's length in characters isn't.
For this I wanted to somehow combine the numbers since it is expected that the numbers are somewhat close to each other. I firsth thought that representing 100, 121, 282 as 100+21+161 could be the way to go but the saving in string length is neglible at best and really doesn't work that well if the numbers aren't very close to each other. Basically I wanted more than ~10%.
So I came up with the idea that what if I'd group the numbers by common property such as a multiplier and divide the rest of the number to individual components which I can then represent as a string. This is where this problem steps in, I thought that for example 1 000 000 and 100 000 can be expressed as 10^(5|6) but due to the context of my aimed usage this was a bit too flaky:
The context is Web. RESTful URL:s to be specific. That's why I mentioned of thinking of using 64 characters (web-safe alphanumberic non-reserved characters and then some) since then I could create seemingly random URLs which could be unpacked to a list of integers expressing a set of id numbers. At this point I thought of creating a base 64-like number system for expressing base 10/2 numbers but since I'm not a math genius I have no idea beyond this point how to do it.
The bounty
Now that I have written the whole story (sorry that it's a long one), I'm opening a bounty to this question. Everything regarding requirements for the preferred algorithm specified earlier is still valid. I also want to say that I'm already grateful for all the answers I've received so far, I enjoy being proven wrong if it's done in such a manner as you people have done.
The conclusion
Well, bounty is now given. I spread a few comments to responses mostly for future reference and myself, you can also check out my SO Uservoice suggestion about spreading bounty which is related to this question if you think we should be able to spread it among multiple answers.
Thank you all for taking time and answering!
Update
I couldn't resist trying to come up with my own solution for the first question even though it doesn't do compression. Here is a Python solution using a third party factorization algorithm called pyecm.
This solution is probably several magnitudes more efficient than Yevgeny's one. Computations take seconds instead of hours or maybe even weeks/years for reasonable values of y. For x = 2^32-1 and y = 256, it took 1.68 seconds on my core duo 1.2 ghz.
>>> import time
>>> def test():
... before = time.time()
... print factor(2**32-1, 256)
... print time.time()-before
...
>>> test()
[254, 232, 215, 113, 3, 15]
1.68499994278
>>> 254*232*215*113*3+15
4294967295L
And here is the code:
def factor(x, y):
# y should be smaller than x. If x=y then {y, 1, 0} is the best solution
assert(x > y)
best_output = []
# try all possible remainders from 0 to y
for remainder in xrange(y+1):
output = []
composite = x - remainder
factors = getFactors(composite)
# check if any factor is larger than y
bad_remainder = False
for n in factors.iterkeys():
if n > y:
bad_remainder = True
break
if bad_remainder: continue
# make the best factors
while True:
results = largestFactors(factors, y)
if results == None: break
output += [results[0]]
factors = results[1]
# store the best output
output = output + [remainder]
if len(best_output) == 0 or len(output) < len(best_output):
best_output = output
return best_output
# Heuristic
# The bigger the number the better. 8 is more compact than 2,2,2 etc...
# Find the most factors you can have below or equal to y
# output the number and unused factors that can be reinserted in this function
def largestFactors(factors, y):
assert(y > 1)
# iterate from y to 2 and see if the factors are present.
for i in xrange(y, 1, -1):
try_another_number = False
factors_below_y = getFactors(i)
for number, copies in factors_below_y.iteritems():
if number in factors:
if factors[number] < copies:
try_another_number = True
continue # not enough factors
else:
try_another_number = True
continue # a factor is not present
# Do we want to try another number, or was a solution found?
if try_another_number == True:
continue
else:
output = 1
for number, copies in factors_below_y.items():
remaining = factors[number] - copies
if remaining > 0:
factors[number] = remaining
else:
del factors[number]
output *= number ** copies
return (output, factors)
return None # failed
# Find prime factors. You can use any formula you want for this.
# I am using elliptic curve factorization from http://sourceforge.net/projects/pyecm
import pyecm, collections, copy
getFactors_cache = {}
def getFactors(n):
assert(n != 0)
# attempt to retrieve from cache. Returns a copy
try:
return copy.copy(getFactors_cache[n])
except KeyError:
pass
output = collections.defaultdict(int)
for factor in pyecm.factors(n, False, True, 10, 1):
output[factor] += 1
# cache result
getFactors_cache[n] = output
return copy.copy(output)
Answer to first question
You say you want compression of numbers, but from your examples, those sequences are longer than the undecomposed numbers. It is not possible to compress these numbers without more details to the system you left out (probability of sequences/is there a programmable client?). Could you elaborate more?
Here is a mathematical explanation as to why current answers to the first part of your problem will never solve your second problem. It has nothing to do with the knapsack problem.
This is Shannon's entropy algorithm. It tells you the theoretical minimum amount of bits you need to represent a sequence {X0, X1, X2, ..., Xn-1, Xn} where p(Xi) is the probability of seeing token Xi.
Let's say that X0 to Xn is the span of 0 to 4294967295 (the range of an integer). From what you have described, each number is as likely as another to appear. Therefore the probability of each element is 1/4294967296.
When we plug it into Shannon's algorithm, it will tell us what the minimum number of bits are required to represent the stream.
import math
def entropy():
num = 2**32
probability = 1./num
return -(num) * probability * math.log(probability, 2)
# the (num) * probability cancels out
The entropy unsurprisingly is 32. We require 32 bits to represent an integer where each number is equally likely. The only way to reduce this number, is to increase the probability of some numbers, and decrease the probability of others. You should explain the stream in more detail.
Answer to second question
The right way to do this is to use base64, when communicating with HTTP. Apparently Java does not have this in the standard library, but I found a link to a free implementation:
http://iharder.sourceforge.net/current/java/base64/
Here is the "pseudo-code" which works perfectly in Python and should not be difficult to convert to Java (my Java is rusty):
def longTo64(num):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
output = ""
# special case for 0
if num == 0:
return mapping[0]
while num != 0:
output = mapping[num % 64] + output
num /= 64
return output
If you have control over your web server and web client, and can parse the entire HTTP requests without problem, you can upgrade to base85. According to wikipedia, url encoding allows for up to 85 characters. Otherwise, you may need to remove a few characters from the mapping.
Here is another code example in Python
def longTo85(num):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.~!*'();:#&=+$,/?%#[]"
output = ""
base = len(mapping)
# special case for 0
if num == 0:
return mapping[0]
while num != 0:
output = mapping[num % base] + output
num /= base
return output
And here is the inverse operation:
def stringToLong(string):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.~!*'();:#&=+$,/?%#[]"
output = 0
base = len(mapping)
place = 0
# check each digit from the lowest place
for digit in reversed(string):
# find the number the mapping of symbol to number, then multiply by base^place
output += mapping.find(digit) * (base ** place)
place += 1
return output
Here is a graph of Shannon's algorithm in different bases.
As you can see, the higher the radix, the less symbols are needed to represent a number. At base64, ~11 symbols are required to represent a long. At base85, it becomes ~10 symbols.
Edit after final explanation:
I would think base64 is the best solution, since there are standard functions that deal with it, and variants of this idea don't give much improvement. This was answered with much more detail by others here.
Regarding the original question, although the code works, it is not guaranteed to run in any reasonable time, as was answered as well as commented on this question by LFSR Consulting.
Original Answer:
You mean something like this?
Edit - corrected after a comment.
shortest_output = {}
foreach (int R = 0; R <= X; R++) {
// iteration over possible remainders
// check if the rest of X can be decomposed into multipliers
newX = X - R;
output = {};
while (newX > Y) {
int i;
for (i = Y; i > 1; i--) {
if ( newX % i == 0) { // found a divider
output.append(i);
newX = newX /i;
break;
}
}
if (i == 1) { // no dividers <= Y
break;
}
}
if (newX != 1) {
// couldn't find dividers with no remainder
output.clear();
}
else {
output.append(R);
if (output.length() < shortest_output.length()) {
shortest_output = output;
}
}
}
It sounds as though you want to compress random data -- this is impossible for information theoretic reasons. (See http://www.faqs.org/faqs/compression-faq/part1/preamble.html question 9.) Use Base64 on the concatenated binary representations of your numbers and be done with it.
The problem you're attempting to solve (you're dealing with a subset of the problem, given you're restriction of y) is called Integer Factorization and it cannot be done efficiently given any known algorithm:
In number theory, integer factorization is the breaking down of a composite number into smaller non-trivial divisors, which when multiplied together equal the original integer.
This problem is what makes a number of cryptographic functions possible (namely RSA which uses 128 bit keys - long is half of that.) The wiki page contains some good resources that should move you in the right direction with your problem.
So, your brain teaser is indeed a brain teaser... and if you solve it efficiently we can elevate your math skills to above average!
Updated after the full story
Base64 is most likely your best option. If you want a custom solution you can try implementing a Base 65+ system. Just remember that just because 10000 can be written as "10^4" doesn't mean that everything can be written as 10^n where n is an integer. Different base systems are the simplest way to write numbers and the higher the base the less digits the number requires. Plus most framework libraries contain algorithms for Base64 encoding. (What language you are using?).
One way to further pack the urls is the one you mentioned but in Base64.
int[] IDs;
IDs.sort() // So IDs[i] is always smaller or equal to IDs[i-1].
string url = Base64Encode(IDs[0]);
for (int i = 1; i < IDs.length; i++) {
url += "," + Base64Encode(IDs[i-1] - IDs[i]);
}
Note that you require some separator as the initial ID can be arbitrarily large and the difference between two IDs CAN be more than 63 in which case one Base64 digit is not enough.
Updated
Just restating that the problem is unsolvable. For Y = 64 you can't write 87681 in multipliers + remainder where each of these is below 64. In other words, you cannot write any of the numbers 87617..87681 with multipliers that are below 64. Each of these numbers has an elementary term over 64. 87616 can be written in elementary terms below 64 but then you'd need those + 65 and so the remainder will be over 64.
So if this was just a brainteaser, it's unsolvable. Was there some practical purpose for this which could be achieved in some way other than using multiplication and a remainder?
And yes, this really should be a comment but I lost my ability to comment at some point. :p
I believe the solution which comes closest is Yevgeny's. It is also easy to extend Yevgeny's solution to remove the limit for the remainder in which case it would be able to find solution where multipliers are smaller than Y and remainder as small as possible, even if greater than Y.
Old answer:
If you limit that every number in the array must be below the y then there is no solution for this. Given large enough x and small enough y, you'll end up in an impossible situation. As an example with y of 2, x of 12 you'll get 2 * 2 * 2 + 4 as 2 * 2 * 2 * 2 would be 16. Even if you allow negative numbers with abs(n) below y that wouldn't work as you'd need 2 * 2 * 2 * 2 - 4 in the above example.
And I think the problem is NP-Complete even if you limit the problem to inputs which are known to have an answer where the last term is less than y. It sounds quite much like the [Knapsack problem][1]. Of course I could be wrong there.
Edit:
Without more accurate problem description it is hard to solve the problem, but one variant could work in the following way:
set current = x
Break current to its terms
If one of the terms is greater than y the current number cannot be described in terms greater than y. Reduce one from current and repeat from 2.
Current number can be expressed in terms less than y.
Calculate remainder
Combine as many of the terms as possible.
(Yevgeny Doctor has more conscise (and working) implementation of this so to prevent confusion I've skipped the implementation.)
OP Wrote:
My goal originally was to come up with
a specific method to pack 1..n large
integers (aka longs) together so that
their String representation is notably
shorter than writing the actual
number. Think multiples of ten, 10^6
and 1 000 000 are the same, however
the representation's length in
characters isn't.
I have been down that path before, and as fun as it was to learn all the math, to save you time I will just point you to: http://en.wikipedia.org/wiki/Kolmogorov_complexity
In a nutshell some strings can be easily compressed by changing your notation:
10^9 (4 characters) = 1000000000 (10 characters)
Others cannot:
7829203478 = some random number...
This is a great great simplification of the article I linked to above, so I recommend that you read it instead of taking my explanation at face value.
Edit:
If you are trying to make RESTful urls for some set of unique data, why wouldn't you use a hash, such as MD5? Then include the hash as part of the URL, then look up the data based on the hash. Or am I missing something obvious?
The original method you chose (a * b + c * d + e) would be very difficult to find optimal solutions for simply due to the large search space of possibilities. You could factorize the number but it's that "+ e" that complicates things since you need to factorize not just that number but quite a few immediately below it.
Two methods for compression spring immediately to mind, both of which give you a much-better-than-10% saving on space from the numeric representation.
A 64-bit number ranges from (unsigned):
0 to
18,446,744,073,709,551,616
or (signed):
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
In both cases, you need to reduce the 20-characters taken (without commas) to something a little smaller.
The first is to simply BCD-ify the number the base64 encode it (actually a slightly modified base64 since "/" would not be kosher in a URL - you should use one of the acceptable characters such as "_").
Converting it to BCD will store two digits (or a sign and a digit) into one byte, giving you an immediate 50% reduction in space (10 bytes). Encoding it base 64 (which turns every 3 bytes into 4 base64 characters) will turn the first 9 bytes into 12 characters and that tenth byte into 2 characters, for a total of 14 characters - that's a 30% saving.
The only better method is to just base64 encode the binary representation. This is better because BCD has a small amount of wastage (each digit only needs about 3.32 bits to store [log210], but BCD uses 4).
Working on the binary representation, we only need to base64 encode the 64-bit number (8 bytes). That needs 8 characters for the first 6 bytes and 3 characters for the final 2 bytes. That's 11 characters of base64 for a saving of 45%.
If you wanted maximum compression, there are 73 characters available for URL encoding:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789$-_.+!*'(),
so technically you could probably encode base-73 which, from rough calculations, would still take up 11 characters, but with more complex code which isn't worth it in my opinion.
Of course, that's the maximum compression due to the maximum values. At the other end of the scale (1-digit) this encoding actually results in more data (expansion rather than compression). You can see the improvements only start for numbers over 999, where 4 digits can be turned into 3 base64 characters:
Range (bytes) Chars Base64 chars Compression ratio
------------- ----- ------------ -----------------
< 10 (1) 1 2 -100%
< 100 (1) 2 2 0%
< 1000 (2) 3 3 0%
< 10^4 (2) 4 3 25%
< 10^5 (3) 5 4 20%
< 10^6 (3) 6 4 33%
< 10^7 (3) 7 4 42%
< 10^8 (4) 8 6 25%
< 10^9 (4) 9 6 33%
< 10^10 (5) 10 7 30%
< 10^11 (5) 11 7 36%
< 10^12 (5) 12 7 41%
< 10^13 (6) 13 8 38%
< 10^14 (6) 14 8 42%
< 10^15 (7) 15 10 33%
< 10^16 (7) 16 10 37%
< 10^17 (8) 17 11 35%
< 10^18 (8) 18 11 38%
< 10^19 (8) 19 11 42%
< 2^64 (8) 20 11 45%
Update: I didn't get everything, thus I rewrote the whole thing in a more Java-Style fashion. I didn't think of the prime number case that is bigger than the divisor. This is fixed now. I leave the original code in order to get the idea.
Update 2: I now handle the case of the big prime number in another fashion . This way a result is obtained either way.
public final class PrimeNumberException extends Exception {
private final long primeNumber;
public PrimeNumberException(long x) {
primeNumber = x;
}
public long getPrimeNumber() {
return primeNumber;
}
}
public static Long[] decompose(long x, long y) {
try {
final ArrayList<Long> operands = new ArrayList<Long>(1000);
final long rest = x % y;
// Extract the rest so the reminder is divisible by y
final long newX = x - rest;
// Go into recursion, actually it's a tail recursion
recDivide(newX, y, operands);
} catch (PrimeNumberException e) {
// return new Long[0];
// or do whatever you like, for example
operands.add(e.getPrimeNumber());
} finally {
// Add the reminder to the array
operands.add(rest);
return operands.toArray(new Long[operands.size()]);
}
}
// The recursive method
private static void recDivide(long x, long y, ArrayList<Long> operands)
throws PrimeNumberException {
while ((x > y) && (y != 1)) {
if (x % y == 0) {
final long rest = x / y;
// Since y is a divisor add it to the list of operands
operands.add(y);
if (rest <= y) {
// the rest is smaller than y, we're finished
operands.add(rest);
}
// go in recursion
x = rest;
} else {
// if the value x isn't divisible by y decrement y so you'll find a
// divisor eventually
if (--y == 1) {
throw new PrimeNumberException(x);
}
}
}
}
Original: Here some recursive code I came up with. I would have preferred to code it in some functional language but it was required in Java. I didn't bother converting the numbers to integer but that shouldn't be that hard (yes, I'm lazy ;)
public static Long[] decompose(long x, long y) {
final ArrayList<Long> operands = new ArrayList<Long>();
final long rest = x % y;
// Extract the rest so the reminder is divisible by y
final long newX = x - rest;
// Go into recursion, actually it's a tail recursion
recDivide(newX, y, operands);
// Add the reminder to the array
operands.add(rest);
return operands.toArray(new Long[operands.size()]);
}
// The recursive method
private static void recDivide(long newX, long y, ArrayList<Long> operands) {
long x = newX;
if (x % y == 0) {
final long rest = x / y;
// Since y is a divisor add it to the list of operands
operands.add(y);
if (rest <= y) {
// the rest is smaller than y, we're finished
operands.add(rest);
} else {
// the rest can still be divided, go one level deeper in recursion
recDivide(rest, y, operands);
}
} else {
// if the value x isn't divisible by y decrement y so you'll find a divisor
// eventually
recDivide(x, y-1, operands);
}
}
Are you married to using Java? Python has an entire package dedicated just for this exact purpose. It'll even sanitize the encoding for you to be URL-safe.
Native Python solution
The standard module I'm recommending is base64, which converts arbitrary stings of chars into sanitized base64 format. You can use it in conjunction with the pickle module, which handles conversion from lists of longs (actually arbitrary size) to a compressed string representation.
The following code should work on any vanilla installation of Python:
import base64
import pickle
# get some long list of numbers
a = (854183415,1270335149,228790978,1610119503,1785730631,2084495271,
1180819741,1200564070,1594464081,1312769708,491733762,243961400,
655643948,1950847733,492757139,1373886707,336679529,591953597,
2007045617,1653638786)
# this gets you the url-safe string
str64 = base64.urlsafe_b64encode(pickle.dumps(a,-1))
print str64
>>> gAIoSvfN6TJKrca3S0rCEqMNSk95-F9KRxZwakqn3z58Sh3hYUZKZiePR0pRlwlfSqxGP05KAkNPHUo4jooOSixVFCdK9ZJHdEqT4F4dSvPY41FKaVIRFEq9fkgjSvEVoXdKgoaQYnRxAC4=
# this unwinds it
a64 = pickle.loads(base64.urlsafe_b64decode(str64))
print a64
>>> (854183415, 1270335149, 228790978, 1610119503, 1785730631, 2084495271, 1180819741, 1200564070, 1594464081, 1312769708, 491733762, 243961400, 655643948, 1950847733, 492757139, 1373886707, 336679529, 591953597, 2007045617, 1653638786)
Hope that helps. Using Python is probably the closest you'll get from a 1-line solution.
Wrt the original algorithm request: Is there a limit on the size of the last number (beyond that it must be stored in a 32b int)?
(The original request is all I'm able to tackle lol.)
The one that produces the shortest list is:
bool negative=(n<1)?true:false;
int j=n%y;
if(n==0 || n==1)
{
list.append(n);
return;
}
while((long64)(n-j*y)>MAX_INT && y>1) //R has to be stored in int32
{
y--;
j=n%y;
}
if(y<=1)
fail //Number has no suitable candidate factors. This shouldn't happen
int i=0;
for(;i<j;i++)
{
list.append(y);
}
list.append(n-y*j);
if(negative)
list[0]*=-1;
return;
A little simplistic compared to most answers given so far but it achieves the desired functionality of the original post... It's a little dirty but hopefully useful :)
Isn't this modulus?
Let / be integer division (whole numbers) and % be modulo.
int result[3];
result[0] = y;
result[1] = x / y;
result[2] = x % y;
Just set x:=x/n where n is the largest number that is less both than x and y. When you end up with x<=y, this is your last number in the sequence.
Like in my comment above, I'm not sure I understand exactly the question. But assuming integers (n and a given y), this should work for the cases you stated:
multipliers[0] = n / y;
multipliers[1] = y;
addedNumber = n % y;

How to manually generate random numbers [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I want to generate random numbers manually. I know that every language have the rand or random function, but I'm curious to know how this is working.
Does anyone have code for that?
POSIX.1-2001 gives the following example of an implementation of rand() and srand(), possibly useful when one needs the same sequence on two different machines.
static unsigned long next = 1;
/* RAND_MAX assumed to be 32767 */
int myrand(void) {
next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);
}
void mysrand(unsigned seed) {
next = seed;
}
Have a look at the following:
Random Number Generation
Linear Congruential Generator - a popular approach also used in Java
List of Random Number Generators
And here's another link which elaborates on the use of LCG in Java's Random class
static void Main()
{
DateTime currentTime = DateTime.Now;
int maxValue = 100;
int hour = currentTime.Hour;
int minute = currentTime.Minute;
int second = currentTime.Second;
int milisecond = currentTime.Millisecond;
int randNum = (((hour + 1) * (minute + 1) * (second + 1) * milisecond) % maxValue);
Console.WriteLine(randNum);
Console.ReadLine();
}
Above shows a very simple piece of code to generate random numbers. It is a console program written in C#. If you know any kind of basic programming this should be understandable and easy to convert to any other language desired.
The DateTime simply takes in a current date and time, most programming languages have a facility to do this.
The hour, minute, second and milisecond variables break the date time value it up into its component parts. We are only interested in these parts so can ignore day. Again, in most languages dates and times are usually presented as strings. In .Net we have facilities that allow us to parse this information easily. But in most other languages where times are presented as strings, its is not overly difficult to parse the string for the parts that you want and convert them to their numbers. These facilities are usually provided even in the oldest of languages.
The seed essentially gives us a starting number which always changes. Traditionally you would just multiply this number by a decimal value between 0 and 1 this cuts out that step.
The upperRange defines the maximum value. So the number generated will never be above this value. Also it will never be below 0. So no ngeatives. But if you want negatives you could just negate it manually. (by multiplying it by -1)
The actual variable randNumis what holds the random value you are interested in.
The trick is to get the remainder (the modulus) after dividing the seed by the upper range. The remainder will always be smaller than the divisor which in this case is 100. Simple maths tells you that you cant have a remainder greater than the divisor. So if you divide by 10 you cant have a remainder greater than 10. It is this simple law that gets us our random number between 0 and 100 in this case.
The console.writeline simply outputs it to the screen.
The console.readline simply pauses the program so you can see it.
This is a very simple piece of code to generate random numbers. If you ran this program at the exact same intervil every day (but you would have to do it at the same hour, minute, second and milisecond) for more than 1 day you would begin to generate the same set of numbers again and again each additional day. This is because it is tied to the time. That is the resolution of the generator. So if you know the code of this program, and the time it is run at, you can predict the number generated, but it wont be easy. That is why I used miliseconds. Use seconds or minutes only to see what I mean. So you could write a table showing when 1 goes in, 0 comes out, when 2 goes in 0 comes out and so on. You could then predict the output for every second, and the range of numbers generated. The more you increase the resolution (by increasing the numbers that change) the harder it is and the longer it takes to get a predictable pattern. This method is good enough for most peoples use.
That is the old school way of doing random number generation for basic games. It needed to be fast, and simple. It is. This also highlights exactly why, random numbers genaerators are not really random but psudo random.
I hope this is a reasonable answer to your question.
I assume you mean pseudo-random numbers. The simplest one I know (from writing videogames games back on old machines) worked like this:
seed=seed*5+1;
You do that every time random is called and then you use however many low bits you want. *5+1 has the nice property (IIRC) of hitting every possibility before repeating, no matter how many bits you are looking at.
The downside, of course, is its predictability. But that didn't matter in the games. We were grabbing random numbers like crazy for all sorts of things, and you'd never know what number was coming next.
Do a couple things like this in parallel, and combine the results. This is a linear congruential generator.
http://en.wikipedia.org/wiki/Random_number_generator
Describes the different types of random number generators and how they are created.
Aloha!
By manually do you mean "not using computer" or "write my own code"?
IF it is not using computer you can use things like dice, numbers in a bag and all those methods seen on telly when they select teams, winning Bingo series etc. Las Vegas is filled with these kinds of method used in processes (games) aimed at giving you bad odds and ROI. You can also get the great RAND book and turn to a randomly selected page:
http://www.amazon.com/Million-Random-Digits-Normal-Deviates/dp/0833030477
(Also, for some amusement, read the reviews)
For writing your own code you need to consider why not using the system provided RNG is not good enough. If you are using a modern OS it will have a RNG available for user programs that should be good enough for your application.
If you really need to implement your own there are a huge bunch of generators available. For non security usage you can look at LFSR chains, Congruential generators etc. Whatever the distribution you need (uniform, normal, exponential etc) you should be able to find algorithm descriptions and libraries with implementations.
For security usage you should look at things like Yarrow/Fortuna the NIST SP 800-89 specified PRNGs and RFC 4086 for good entropy sources needed to feed the PRNG. Or even better, use the one in the OS that should meet security RNG requirements.
Implementation of RNGs can be a fun exercise, but is very rarely needed. And don't invent your own algorithm unless it is for toy applications. Do NOT, repeat NOT invent RNGs for security applications (generating cryptographic keys for example), at least unless you do some seripus reading and investigation. You will thank me for it (I hope).
hopefuly im not redundant because i havent read all the links, but i believe you can get pretty close to true random generator. nowadays systems are often so complex that even the best geeks around need a lot of time to understand whats happening inside :) just open your mind and think if you can monitor some global system property, use it to seed to ... pick a network packet (not intended for you?) and compute "something" out of its content and use it to seed to ... etc. you can design the best for your needs with all those hints around ;)
The Mersenne twister has a very long period (2^19937-1).
Here's a very basic implementation in C++:
struct MT{
unsigned int *mt, k, g;
~MT(){ delete mt; }
MT(unsigned int seed) : mt(new unsigned int[624]), k(0), g(0){
for (int i=0; i<624; i++)
mt[i]=!i?seed:(1812433253U*(mt[i-1]^(mt[i-1]>>30))+i);
}
unsigned int operator()(){
unsigned int q=(mt[k]&0x80000000U)|(mt[(k+1)%624]&0x7fffffffU);
mt[k]=mt[(k+397)%624]^(q>>1)^((q&1)?0x9908b0dfU:0);
unsigned int y = mt[k];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680U;
y ^= (y << 15) & 0xefc60000U;
y ^= (y >> 18);
k = (k+1)%624;
return y;
}
};
One good way to get random numbers is to monitor the ambient level of noise coming through your computer's microphone. If you can get a driver (or language that supports mic input) and convert this to a number, you're well on your way!
It has also been researched in how to get "true randomness" - since computers are nothing more than binary machines, they can't give us "true randomness". After a while, the sequence will begin to repeat itself. The quest for better random number generation is still going, but they say monitoring ambient noise levels in a room is one good way to prevent pattern forming in your random generation.
You can look up this wiki article for more information on the science behind random number generation.
If you are looking for a theoretical treatment on random numbers, probably you can have a look at Volume 2 of the The art of computer programming. It has a chapter dedicated to random numbers. See if it helps you out.
If you are wanting to manually, hard code, your own random generator I can't give you efficiency, however, I can give you reliability. I actually decided to write some code using time to test a computer's processing speed by counting in time and that turned into me writing my own random number generator using the counting algorithm for modulo (the count is random). Please, try it for yourselves and test on number distributions within a large test-set. By the way, this is written in python.
def count_in_time(n):
import time
count = 0
start_time = time.clock()
end_time = start_time + n
while start_time < end_time:
count += 1
start_time += (time.clock() - start_time)
return count
def generate_random(time_to_count, range_nums, rand_lst_size):
randoms = []
iterables = range(range_nums)
count = 0
for i in range(rand_lst_size):
count += count_in_time(time_to_count)
randoms.append(iterables[count%len(iterables)])
return randoms
This document is a very nice write up of pseudo-random number generation and has a number of routines included (in C). It also discusses the need for appropriate seeding of the random number generators (see rule 3). Particularly useful for this is the use of /dev/randon/ (if you are on a linux machine).
Note: the routines included in this document are alot simpler to code up than the Mersenne Twister. See also the WELLRNG generator, which is supposed to have better theoretical properties, as an alternative to the MT.
Read the rands book of random numbers (monte carlo book of random numbers) the numbers in it are randomly generated for you!!! My grandfather worked for rand.
Most RNGs(random number generators) will require a small bit of initialization. This is usually to perform a seeding operation and store the results of the seeded values for later use. Here is an example of a seeding method from a randomizer I wrote for a game engine:
/// <summary>
/// Initializes the number array from a seed provided by <paramref name="seed">seed</paramref>.
/// </summary>
/// <param name="seed">Unsigned integer value used to seed the number array.</param>
private void Initialize(uint seed)
{
this.randBuf[0] = seed;
for (uint i = 1; i < 100; i++)
{
this.randBuf[i] = (uint)(this.randBuf[i - 1] >> 1) + i;
}
}
This is called from the constructor of the randomizing class. Now the real random numbers can be rolled/calculated using the aforementioned seeded values. This is usually where the actual randomizing algorithm is applied. Here is another example:
/// <summary>
/// Refreshes the list of values in the random number array.
/// </summary>
private void Roll()
{
for (uint i = 0; i < 99; i++)
{
uint y = this.randBuf[i + 1] * 3794U;
this.randBuf[i] = (((y >> 10) + this.randBuf[i]) ^ this.randBuf[(i + 399) % 100]) + i;
if ((this.randBuf[i] % 2) == 1)
{
this.randBuf[i] = (this.randBuf[i + 1] << 21) ^ (this.randBuf[i + 1] * (this.randBuf[i + 1] & 30));
}
}
}
Now the rolled values are stored for later use in this example, but those numbers can also be calculated on the fly. The upside to precalculating is a slight performance increase. Depending on the algorithm used, the rolled values could be directly returned or go through some last minute calculations when requested by the code. Here is an example that takes from the prerolled values and spits out a very good looking pseudo random number:
/// <summary>
/// Retrieves a value from the random number array.
/// </summary>
/// <returns>A randomly generated unsigned integer</returns>
private uint Random()
{
if (this.index == 0)
{
this.Roll();
}
uint y = this.randBuf[this.index];
y = y ^ (y >> 11);
y = y ^ ((y << 7) + 3794);
y = y ^ ((y << 15) + 815);
y = y ^ (y >> 18);
this.index = (this.index + 1) % 100;
return y;
}

Resources