Where is the proper place to perform validation given the following scenario/code below:
In MethodA only: since this is the public method which is meant to be used by external assemblies?
In MethodA and B since both these can be accessed outside the class?
Or Methods A, B and C since method C may be used by another internal method (but it might not efficient since the programmer can see the code for MethodC already and therefore should be able to know the valid parameters to pass)?
Thanks for any input.
public class A
{
public void MethodA(param)
{
MethodB(param);
}
internal void MethodB(param)
{
MethodC(param);
}
private void MethodC(param)
{
}
}
Parameter validation should always be performed regardless of the caller's location (inside or outside of the assembly). Defensive programming, one can say.
MethodC; that way the parameter always gets checked, even if someone comes along later and adds a call to MethodC from within class A, or they make MethodC public. Any exception should be bubbled up to where it can be best dealt with.
There isn't a 'proper' place, except to adhere to DRY principles and avoid copying the validation code to several places. I'd normally suggest that you delay validation to the latest possible stage, as then if the parameter is never used you don't need to spend time validating it though. This also gives the validation some locality to the place it is used, and you never need to think 'oh, has this parameter been validated yet?' as the validation is right there.
Given that a more likely senario would involve each method having different parameters and also probably some
if (P1 == 1) { MethodA(P2) } else { MethodB(P2) }
type logic in hte longer term it makes more sense to validate each parameter at the point of entry, escpecially as you may want different error handling depending on where hte method was called.
If the validation logic for a given parameter start to get complex ( i.e. more than five lines of code) then consider a private method to validate that parameter.
Related
I have heard that it is good practice to check public method arguments for validity and throw exceptions in the case that they are not valid. I have also heard that you should check the arguments of private methods using assertions.
A couple questions I have are:
Should you ever pass objects with multiple fields into private methods?
If you do, should you check the validity of all fields in the public method before doing so or check at time of use?
Should asserts in private methods be used just to check arguments or also in the case where you have object as null and it tries to call a method as shown below?
A.doSomething()
Should you ever pass objects with multiple fields into private methods?
There's nothing inherently wrong, bad, or special in doing so. You'll find yourself very restricted if you try to avoid passing complex objects to private methods.
If you do, should you check the validity of all fields in the public method before doing so or check at time of use?
This is entirely up to you.
If checking ahead of time will avoid doing a lot of unnecessary work, then it's probably a good idea to check earlier rather than later. (No point doing a lot of CPU work or some long network calls if you know that you've been given invalid input in the first place!)
However, you don't always know that what you've been given is invalid so there are cases where it might be impossible to check right away.
Should asserts in private methods be used just to check arguments or also in the case where you have object as null and it tries to call a method as shown below?
Asserts are typically used to make sure that your logic is right, not that inputs are right. Suppose that you're certain that the logic in some method is such that it will never return a negative number, you could put in an assert that will alert you if it does which indicates either a mistake in the implementation or in your design. You should use Exceptions to catch invalid inputs.
http://www.jetbrains.com/idea/webhelp/extract-parameter-object.html
I have always found extracting method parameters as an object a good idea, for methods which have a large number of parameters.
public void Method(A a, B b, C c, D d, E e);
becomes
public class Wrapper {A; B; C; D}
public void Method(Wrapper wrapper);
This allows me to:
Have better readability in my code
Perform validation of these parameters in the Wrapper class and reuse it across layers/components if need be.
Provide less brittle method signatures.
Are there any other advantages/disadvantages you see to this that would help convince someone who's is writing methods with lot of parameters?. I am coding C# 4 if that makes a difference.
The only disadvantage I can think of is having an additional abstraction in your system, requiring you to extract (although trivially) the actual data before access. I'm even not sure whether it can be called a disadvantage.
Most important advantage of parameters encapulation is having a robust well-defined interface which can accommodate future changes.
A deeper advantage is that as you wrap the parameters in a new class, you realize that some behavior can be moved to the new class. This is because the bodies of the methods that modify the parameters are likely to manipulate the parameters similarly. Moving this common behavior into the new class allows you to remove much code duplication. Parameter validation is just one example of a behavior that can be moved into the new class.
Given that there is file selection widget on the view and controller need to handle event of selecting file, should I rather write controller method:
public void fileSelected(String filePath){
//process filePath
}
or
public void fileSelected(){
String filePath = view.getSelectedFilePath();
//process filePath
}
The first approach seems to introduce less coupling between C and V: C don't know what exactly data does C need while handling given event.
But it requires creating a lot of verbose methods similar to getSelectedFile on V side.
On the other hand, second approach may lead to cluttered controller methods in more complex cases than in example (much more data to pass than just filePath).
From your own experience, which approach do you prefer?
The first approach is my favourite. The only difference is I would rather use an object (like Mario suggested) to pass arguments to the method. This way method's signature will not change when you add or remove some of the arguments. Less coupling is always good :)
One more thing:
If You want to try the second solution I recommend using a ViewFactory to remove view logic from the controller.
The first approach is the way to go;
public void fileSelected(String filePath){
//process filePath
}
The Controller should not care about how the View looks like or how it's implemented. It gets much clearer for the developer as well, when creating/updating the view, to know what an action in the controller wants. Also it makes it easier for method overloading.
Though, I don't know really how String filePath = view.getSelectedFilePath(); would work. Are we talking about parsing the View code/markup?
On the other hand, second approach may lead to cluttered controller methods in more complex cases than in example (much more data to pass than just filePath).
That's when you would create a View Model class (let's say we name it MyViewModel) to store all the properties that you need to send (may it be 10 properties) and then pass that in the action: fileSelected(MyViewModel model). That's how it's intended to be used and what the *ModelBinder's in asp.net mvc are there to help you with.
I think you need to look at this from a step back.
Worry less about how it gets in, and be more concerned with validation and error raising.
Tomorrow, your requirements could change and demand that you source the information via a different architectural approach. You could refactor the setup of [inputs / an input object] into a base controller class - or one of several classes for different controller domains.
If you focus on proper validation, whether within the controller (scrubbing) or outside of it (unit tests), then you perform more thorough decoupling though duck typing.
I would go with the first approach. It's reusable and separates concerns. Even if the method of getting the filePath in the future were to change, it won't affect your method's functionality.
The good style (Clean Code book) says that a method's name should describe what the method does. So for example if I have a method that verifies an address, stores it in a database, and sends an email, should the name be something such as verifyAddressAndStoreToDatabaseAndSendEmail(address);
or
verifyAddress_StoreToDatabase_SendEmail(address);
although I can divide that functionality in 3 methods, I'll still need a method to call these 3 methods. So a large method name is inevitable.
Having And named methods certainly describes what the method does, but IMO it's not very readable as names can be very very large. How would you solve it?
EDIT: Maybe I could use fluent style to decompose the method name such as:
verifyAddress(address).storeToDatabase().sendEmail();
but I need a way to ensure the order of invocation. Maybe by using the state pattern, but this causes the code to grow.
How I approach this is to make the 3 smaller methods as you mentioned and then in the higher method that calls the 3 smaller ones, I name it after the "why" I need to do those three things.
Try to define why you need to do those steps and use that as the basis of the method name.
A single method should not do 3 things. Thus divide the work into 3 methods:
verifyAddress
storeAddress
sendEmail
I'm following up on my previous comment, but I've got more here than would fit reasonably in a comment so I'm answering.
The details of the method belong in the documentation not in the name of the method (in my opinion). Think of it this way... By putting SendEmail in the name of the method, you're committing implementation details to the method name. What if a decision is made down the road to send notification via SMS or twitter or something else instead of email? Do you change the name of the method and break your API, or do you have a method name that misleads the consumers of the API? Something to consider.
If you insist on keeping the functionality of the method in its name, I'd urge you to find something more generic. Perhaps something along the lines of VerifySaveAndNotify(Address address). That way, the method name tells you what it's doing without specifying how it does it. The parameter of type Address let's you know what is being verified and saved. All of that works together to make your method name informative, flexible, and terse.
EDIT: Maybe I could use fluent style to decompose the method name such as:
verifyAddress(address).storeToDatabase().sendEmail();
but I need a way to ensure the order of invocation. Maybe by using the state pattern, but this causes the code to grow.
To ensure ordering of commands in a fluent style, each result would be an object that exposes only the functionality required by the next step. For example:
public class Verifier
{
public DataStorer VerifyAddress(string address)
{
...
return new DataStorer(address);
}
}
public class DataStorer
{
public Emailer StoreToDataBase()
{
...
return new Emailer(...);
}
}
public class Emailer
{
public void SendEmail()
{
...
}
}
This is handy if you need to create a very granular design and want to optimise your classes for reuseability, but is likely to be design overkill under most circumstances. Better probably as others have said to choose a name that represents what the whole process is supposed to represent. You could simply call it "StoreAndEmail", making an assumption that verification is something you do routinely before committing data to any destination. The alternative if you don't mind names being long is to simply describe it in full and accept that a long name is necessary. In the end, it really doesn't cost you anything, but can certainly make you code more specific in its intent.
When I am making methods with return values, I usually try and set things up so that there is never a case when the method is called in such a way that it would have to return some default value. When I started I would often write methods that did something, and would either return what they did or, if they failed to do anything, would return null. But I hate having ugly if(!null) statements all over my code,
I'm reading a re-guide to ruby that I read many moons ago, by the pragmatic programmers, and I notice that they often return self (ruby's this) when they wouldn't normally return anything. This is, they say, in order to be able to chain method calls, as in this example using setters that return the object whose attributes they set.
tree.setColor(green).setDecor(gaudy).setPractical(false)
Initially I find this sort of thing attractive. There have been a couple of times when I have rejoiced at being able to chain method calls, like Player.getHand().getSize() but this is somewhat different in that the object of the method call changes from step to step.
What does Stack Overflow think about return values? Are there any patterns or idioms that come to mind warmly when you think of return values? Any great ways to avoid frustration and increase beauty?
In my humble opinion, there are three kinds of return-cases that you should take into consideration:
Object property manipulation
The first is the manipulation of object properties. The pattern you describe here is very often used when manipulating objects. A very typical scenario is using it together with a factory. Consider this hypothetical creation call:
// When the object has manipulative methods:
Pizza p = PizzaFactory().create().addAnchovies().addTomatoes();
// When the factory has manipulative methods working on the
// object, IMHO more elegant from a semantic point of view:
Pizza p = PizzaFactory().create().addAnchovies().addTomatoes().getPizza();
It allows for a quick grasp at what exactly is being created or how an object is manipulated, because the methods form one human-readable expression. It's definitely nice, but don't overuse. A rule of thumb is that this might be used with methods whose return value you could also declare as void.
Evaluating object properties
The second might be when a method evaluates something on an object. Consider, for example, the method car.getCurrentSpeed(), that could be interpreted as a message to an object asking for the current speed and returning that. It would simply return the value, not too complicated. :)
Make object do this or that
The third might be when a method makes an perform an operation, returning some sort of value indicating how well the caller's intention was fulfilled - but laying out such a method could be difficult:
int new_gear = 20;
if (car.gears.changeGear(new_gear)) // does that mean success or fail?
This is where you can see a difficulty in designing the method. Should it return 0 upon success or failure? How about -1 if the gear could not be set, because the car only has 5 gears? Does that mean the current gear is at -1 now, too? The method could return the gear it changed to, meaning you would have to compare the argument supplied to the method to the return code. That would work. On the other hand, you could simply return either true or false for failure or false or true for failure. Which one to use could be decided by estimating if you'd expect those method calls to rather fail or succeed.
In my humble opinion, there is a way to better express the semantics of such return values, by giving them a semantic description. Future developers interacting with your objects will love you for not having to look up the comments or documentation for your methods:
class GearSystem {
// (...)
public:
enum GearChangeResult
{ GearChangeSuccess, NonExistingGear, MechanicalGearProblem };
GearChangeResult changeGear (int gear);
};
That way, it becomes perfectly obvious for any programmer looking at your code, what the return value means (consider: if (gears.changeGear(20) == GearSystem::GearChangeSuccess) - much clearer what that means than the example above)
Antipattern: Failures as return codes.
The fourth possibility for a return value I actually omitted, because in my opinion it isn't any: when there's an error in your program, like a logic error or a failure that needs to be dealt with - you could theoretically return a value indicating so. But today, that's not done so often anymore (or should not be), because for that, there are exceptions.
I don't agree that methods should never return null. The most obvious examples are from systems programming. For instance, if someone asks to open a file, you simply have to give them null if the open fails. There is no sane alternative. There are other cases where null is appropriate, such as a getNextNode(node) method, when called on the last node of a linked list. So I guess what these cases have in common is that null represents "no object" (either no file handle or no list node), which makes sense.
In other cases, the method should never fail, and there is an appropriate exception facility. Then, I think method chaining like your example can be used to great effect. I think it's a bit funny that you seem to believe this is an innovation of the "Pragmatic Programmers". In fact, it dates to Lisp if not before.
Returning this is also used in the "builder pattern", another case where method chaining can enhance readability as well as writing convenience.
A null is often returned as an out-of-band value to indicate that no result could be produced. I believe that this is perfectly reasonable when getting no result is a normal event; examples would include a null return from readLine() at end-of-file, or a null returned when providing a non-existent key to the get(...) method of a Map. Reading to the end of the file is normal behavior (as opposed to an IOException, which indicates that something went abnormally wrong while trying to read). Similarly, looking up a key and being told that it has no value is a normal case.
A good alternative to null for some cases is a "null object", which is a full-fledged instance of the result class, but which has appropriate state and behavior for a "nobody's home" case. For instance, the result of looking up a non-existent user ID might well be a NullUser object which has a zero-length name and no permissions to do anything in the system.
It's confusing to me. OO programming languages need Smalltalk's semicolon:
tree color: green;
decor: gaudy;
practical: false.
obj method1; method2. means "call method1 on obj then method2 on obj". This kind of object setup is very common.