So, I am trying to generate a word and then check if it is a real word using word index. Can someone help me figure out how to solve this, it is constantly giving me a never-ending loop. I just simply wanted to create random characters, and after each character see if it exists in the hashmap. First by checking to find the key which is the first letter of the word, and then by checking the substring of each word in that key selection.
public ArrayList<String> randomSize(int length) {
ArrayList<String> randomWords = new ArrayList<>(length);
String letters = "abcdefghijklmnopqrstuvwxyz";
// for loop add a new slot into randomWords
for (int eachSlot = 0; eachSlot < length; eachSlot++) {
// for each slot generate a random length for the word
int randWordLength = (int) (Math.random() * (10 - 0) + 0);
// every slot generate a random firstLetter
int slotFound = 0;
String firstConfirmedLetter = "";
// while the first letter is not found in WordIndex
while (slotFound == 0) {
int randNumer = (int) (Math.random() * (24 - 0) + 0);
String firstLetter = letters.substring(randNumer, randNumer + 1);
if (wordIndex.containsKey(firstLetter) == true)
{
firstConfirmedLetter = firstLetter;
randomWords.add(firstConfirmedLetter);
System.out.println(firstLetter);// working
randWordLength--;
slotFound = 1;
// if it is found end the while loop
}
}
// we found the first letter, now we need to find the rest of the letters
for (int eachLetter = 0; eachLetter < randWordLength; eachLetter++){
int isFound = 0;
// while letter is not found loop through until it is found with combimation to the previous letter
while (isFound == 0){
// gerate a random letter
int randLetter = (int) (Math.random() * (24 - 0) + 0);
String nextLetter = letters.substring(randLetter, randLetter + 1);
//create curr word
String currWord = randomWords.get(eachSlot) + nextLetter;// works until here
// loop through each word in wordIdex to find match
System.out.println(wordIndex.get(firstConfirmedLetter).size());
for(int i = 0; i< wordIndex.get(firstConfirmedLetter).size(); i++){
String test = wordIndex.get(firstConfirmedLetter).get(i);
if(test.length() > eachLetter+2){
System.out.println(test.substring(0,eachLetter+2));
if(test.substring(0,eachLetter+2).equals(currWord)){
String currState = randomWords.get(eachSlot);
randomWords.set(eachSlot,currWord);
isFound =1;
}
}
}
}
}
}
return randomWords;
}
The odds of generating a valid word randomly are low, so this approach is inefficient. Instead, randomly select a valid word from your dictionary:
private final List<String> words = wordIndex.values().stream()
.flatMap(List::stream)
.collect(Collectors.toList());
public List<String> randomSize(int length) {
Collections.shuffle(words);
return new ArrayList<>(words.subList(0, length));
}
Your code is very difficult to read and therefore difficult to fix, but here are some bugs in it:
The randWordLength chosen can be zero, but this will still result in a one character word being selected. I presume you intended to select words of length 1–10, inclusive.
You only randomly choose from the first 24 letters of your 26-letter set. Presumably, your dictionary contains words with all 26 letters, but these can never be found.
Most importantly, you are testing prefixes of words of any length, but you keep looping until you find a word of the specified length. As a simplified example, consider a dictionary of two words, "ab" and "acc". If a length of three is required, but the loop chooses the prefix "ab", it will loop forever, trying to find a three-letter word that starts with "ab".
You must match prefixes only against words of the required length.
You underestimate the universe of existing words.
There are: 24^10 possibilities, that is 3.6520347e16 possible words. It's not infinite if you let it running long enough, is just a terrible strategy.
You could increase the probability for early positives by combining random weighted generation like here https://stackoverflow.com/a/6409791/1803810 , with a distribution based on the frequency of the appearance of letters in english http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html.
What is the complexity of the algorithm is that is used to find the smallest snippet that contains all the search key words?
As stated, the problem is solved by a rather simple algorithm:
Just look through the input text sequentially from the very beginning and check each word: whether it is in the search key or not. If the word is in the key, add it to the end of the structure that we will call The Current Block. The Current Block is just a linear sequence of words, each word accompanied by a position at which it was found in the text. The Current Block must maintain the following Property: the very first word in The Current Block must be present in The Current Block once and only once. If you add the new word to the end of The Current Block, and the above property becomes violated, you have to remove the very first word from the block. This process is called normalization of The Current Block. Normalization is a potentially iterative process, since once you remove the very first word from the block, the new first word might also violate The Property, so you'll have to remove it as well. And so on.
So, basically The Current Block is a FIFO sequence: the new words arrive at the right end, and get removed by normalization process from the left end.
All you have to do to solve the problem is look through the text, maintain The Current Block, normalizing it when necessary so that it satisfies The Property. The shortest block with all the keywords in it you ever build is the answer to the problem.
For example, consider the text
CxxxAxxxBxxAxxCxBAxxxC
with keywords A, B and C. Looking through the text you'll build the following sequence of blocks
C
CA
CAB - all words, length 9 (CxxxAxxxB...)
CABA - all words, length 12 (CxxxAxxxBxxA...)
CABAC - violates The Property, remove first C
ABAC - violates The Property, remove first A
BAC - all words, length 7 (...BxxAxxC...)
BACB - violates The Property, remove first B
ACB - all words, length 6 (...AxxCxB...)
ACBA - violates The Property, remove first A
CBA - all words, length 4 (...CxBA...)
CBAC - violates The Property, remove first C
BAC - all words, length 6 (...BAxxxC)
The best block we built has length 4, which is the answer in this case
CxxxAxxxBxxAxx CxBA xxxC
The exact complexity of this algorithm depends on the input, since it dictates how many iterations the normalization process will make, but ignoring the normalization the complexity would trivially be O(N * log M), where N is the number of words in the text and M is the number of keywords, and O(log M) is the complexity of checking whether the current word belongs to the keyword set.
Now, having said that, I have to admit that I suspect that this might not be what you need. Since you mentioned Google in the caption, it might be that the statement of the problem you gave in your post is not complete. Maybe in your case the text is indexed? (With indexing the above algorithm is still applicable, just becomes more efficient). Maybe there's some tricky database that describes the text and allows for a more efficient solution (like without looking through the entire text)? I can only guess and you are not saying...
I think the solution proposed by AndreyT assumes no duplicates exists in the keywords/search terms. Also, the current block can get as big as the text itself if text contains lot of duplicate keywords.
For example:
Text: 'ABBBBBBBBBB'
Keyword text: 'AB'
Current Block: 'ABBBBBBBBBB'
Anyway, I have implemented in C#, did some basic testing, would be nice to get some feedback on whether it works or not :)
static string FindMinWindow(string text, string searchTerms)
{
Dictionary<char, bool> searchIndex = new Dictionary<char, bool>();
foreach (var item in searchTerms)
{
searchIndex.Add(item, false);
}
Queue<Tuple<char, int>> currentBlock = new Queue<Tuple<char, int>>();
int noOfMatches = 0;
int minLength = Int32.MaxValue;
int startIndex = 0;
for(int i = 0; i < text.Length; i++)
{
char item = text[i];
if (searchIndex.ContainsKey(item))
{
if (!searchIndex[item])
{
noOfMatches++;
}
searchIndex[item] = true;
var newEntry = new Tuple<char, int> ( item, i );
currentBlock.Enqueue(newEntry);
// Normalization step.
while (currentBlock.Count(o => o.Item1.Equals(currentBlock.First().Item1)) > 1)
{
currentBlock.Dequeue();
}
// Figuring out minimum length.
if (noOfMatches == searchTerms.Length)
{
var length = currentBlock.Last().Item2 - currentBlock.First().Item2 + 1;
if (length < minLength)
{
startIndex = currentBlock.First().Item2;
minLength = length;
}
}
}
}
return noOfMatches == searchTerms.Length ? text.Substring(startIndex, minLength) : String.Empty;
}
This is an interesting question.
To restate it more formally:
Given a list L (the web page) of length n and a set S (the query) of size k, find the smallest sublist of L that contains all the elements of S.
I'll start with a brute-force solution in hopes of inspiring others to beat it.
Note that set membership can be done in constant time, after one pass through the set. See this question.
Also note that this assumes all the elements of S are in fact in L, otherwise it will just return the sublist from 1 to n.
best = (1,n)
For i from 1 to n-k:
Create/reset a hash found[] mapping each element of S to False.
For j from i to n or until counter == k:
If found[L[j]] then counter++ and let found[L[j]] = True;
If j-i < best[2]-best[1] then let best = (i,j).
Time complexity is O((n+k)(n-k)). Ie, n^2-ish.
Here's a solution using Java 8.
static Map.Entry<Integer, Integer> documentSearch(Collection<String> document, Collection<String> query) {
Queue<KeywordIndexPair> queue = new ArrayDeque<>(query.size());
HashSet<String> words = new HashSet<>();
query.stream()
.forEach(words::add);
AtomicInteger idx = new AtomicInteger();
IndexPair interval = new IndexPair(0, Integer.MAX_VALUE);
AtomicInteger size = new AtomicInteger();
document.stream()
.map(w -> new KeywordIndexPair(w, idx.getAndIncrement()))
.filter(pair -> words.contains(pair.word)) // Queue.contains is O(n) so we trade space for efficiency
.forEach(pair -> {
// only the first and last elements are useful to the algorithm, so we don't bother removing
// an element from any other index. note that removing an element using equality
// from an ArrayDeque is O(n)
KeywordIndexPair first = queue.peek();
if (pair.equals(first)) {
queue.remove();
}
queue.add(pair);
first = queue.peek();
int diff = pair.index - first.index;
if (size.incrementAndGet() == words.size() && diff < interval.interval()) {
interval.begin = first.index;
interval.end = pair.index;
size.set(0);
}
});
return new AbstractMap.SimpleImmutableEntry<>(interval.begin, interval.end);
}
There are 2 static nested classes KeywordIndexPair and IndexPair, the implementation of which should be apparent from the names. Using a smarter programming language that supports tuples those classes wouldn't be necessary.
Test:
Document: apple, banana, apple, apple, dog, cat, apple, dog, banana, apple, cat, dog
Query: banana, cat
Interval: 8, 10
For all the words, maintain min and max index in case there is going to be more than one entry; if not both min and mix index will same.
import edu.princeton.cs.algs4.ST;
public class DicMN {
ST<String, Words> st = new ST<>();
public class Words {
int min;
int max;
public Words(int index) {
min = index;
max = index;
}
}
public int findMinInterval(String[] sw) {
int begin = Integer.MAX_VALUE;
int end = Integer.MIN_VALUE;
for (int i = 0; i < sw.length; i++) {
if (st.contains(sw[i])) {
Words w = st.get(sw[i]);
begin = Math.min(begin, w.min);
end = Math.max(end, w.max);
}
}
if (begin != Integer.MAX_VALUE) {
return (end - begin) + 1;
}
return 0;
}
public void put(String[] dw) {
for (int i = 0; i < dw.length; i++) {
if (!st.contains(dw[i])) {
st.put(dw[i], new Words(i));
}
else {
Words w = st.get(dw[i]);
w.min = Math.min(w.min, i);
w.max = Math.max(w.max, i);
}
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
DicMN dic = new DicMN();
String[] arr1 = { "one", "two", "three", "four", "five", "six", "seven", "eight" };
dic.put(arr1);
String[] arr2 = { "two", "five" };
System.out.print("Interval:" + dic.findMinInterval(arr2));
}
}
What is the quickest way to find the first character which only appears once in a string?
It has to be at least O(n) because you don't know if a character will be repeated until you've read all characters.
So you can iterate over the characters and append each character to a list the first time you see it, and separately keep a count of how many times you've seen it (in fact the only values that matter for the count is "0", "1" or "more than 1").
When you reach the end of the string you just have to find the first character in the list that has a count of exactly one.
Example code in Python:
def first_non_repeated_character(s):
counts = defaultdict(int)
l = []
for c in s:
counts[c] += 1
if counts[c] == 1:
l.append(c)
for c in l:
if counts[c] == 1:
return c
return None
This runs in O(n).
I see that people have posted some delightful answers below, so I'd like to offer something more in-depth.
An idiomatic solution in Ruby
We can find the first un-repeated character in a string like so:
def first_unrepeated_char string
string.each_char.tally.find { |_, n| n == 1 }.first
end
How does Ruby accomplish this?
Reading Ruby's source
Let's break down the solution and consider what algorithms Ruby uses for each step.
First we call each_char on the string. This creates an enumerator which allows us to visit the string one character at a time. This is complicated by the fact that Ruby handles Unicode characters, so each value we get from the enumerator can be a variable number of bytes. If we know our input is ASCII or similar, we could use each_byte instead.
The each_char method is implemented like so:
rb_str_each_char(VALUE str)
{
RETURN_SIZED_ENUMERATOR(str, 0, 0, rb_str_each_char_size);
return rb_str_enumerate_chars(str, 0);
}
In turn, rb_string_enumerate_chars is implemented as:
rb_str_enumerate_chars(VALUE str, VALUE ary)
{
VALUE orig = str;
long i, len, n;
const char *ptr;
rb_encoding *enc;
str = rb_str_new_frozen(str);
ptr = RSTRING_PTR(str);
len = RSTRING_LEN(str);
enc = rb_enc_get(str);
if (ENC_CODERANGE_CLEAN_P(ENC_CODERANGE(str))) {
for (i = 0; i < len; i += n) {
n = rb_enc_fast_mbclen(ptr + i, ptr + len, enc);
ENUM_ELEM(ary, rb_str_subseq(str, i, n));
}
}
else {
for (i = 0; i < len; i += n) {
n = rb_enc_mbclen(ptr + i, ptr + len, enc);
ENUM_ELEM(ary, rb_str_subseq(str, i, n));
}
}
RB_GC_GUARD(str);
if (ary)
return ary;
else
return orig;
}
From this we can see that it calls rb_enc_mbclen (or its fast version) to get the length (in bytes) of the next character in the string so that it can iterate the next step. By lazily iterating over a string, reading just one character at a time, we end up doing just one full pass over the input string as tally consumes the iterator.
Tally is then implemented like so:
static void
tally_up(VALUE hash, VALUE group)
{
VALUE tally = rb_hash_aref(hash, group);
if (NIL_P(tally)) {
tally = INT2FIX(1);
}
else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
tally += INT2FIX(1) & ~FIXNUM_FLAG;
}
else {
tally = rb_big_plus(tally, INT2FIX(1));
}
rb_hash_aset(hash, group, tally);
}
static VALUE
tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
ENUM_WANT_SVALUE();
tally_up(hash, i);
return Qnil;
}
Here, tally_i uses RB_BLOCK_CALL_FUNC_ARGLIST to call repeatedly to tally_up, which updates the tally hash on every iteration.
Rough time & memory analysis
The each_char method doesn't allocate an array to eagerly hold the characters of the string, so it has a small constant memory overhead. When we tally the characters, we allocate a hash and put our tally data into it which in the worst case scenario can take up as much memory as the input string times some constant factor.
Time-wise, tally does a full scan of the string, and calling find to locate the first non-repeated character will scan the hash again, each of which carry O(n) worst-case complexity.
However, tally also updates a hash on every iteration. Updating the hash on every character can be as slow as O(n) again, so the worst case complexity of this Ruby solution is perhaps O(n^2).
However, under reasonable assumptions, updating a hash has an O(1) complexity, so we can expect the average case amortized to look like O(n).
My old accepted answer in Python
You can't know that the character is un-repeated until you've processed the whole string, so my suggestion would be this:
def first_non_repeated_character(string):
chars = []
repeated = []
for character in string:
if character in chars:
chars.remove(character)
repeated.append(character)
else:
if not character in repeated:
chars.append(character)
if len(chars):
return chars[0]
else:
return False
Edit: originally posted code was bad, but this latest snippet is Certified To Work On Ryan's Computerâ„¢.
Why not use a heap based data structure such as a minimum priority queue. As you read each character from the string, add it to the queue with a priority based on the location in the string and the number of occurrences so far. You could modify the queue to add priorities on collision so that the priority of a character is the sum of the number appearances of that character. At the end of the loop, the first element in the queue will be the least frequent character in the string and if there are multiple characters with a count == 1, the first element was the first unique character added to the queue.
Here is another fun way to do it. Counter requires Python2.7 or Python3.1
>>> from collections import Counter
>>> def first_non_repeated_character(s):
... return min((k for k,v in Counter(s).items() if v<2), key=s.index)
...
>>> first_non_repeated_character("aaabbbcddd")
'c'
>>> first_non_repeated_character("aaaebbbcddd")
'e'
Lots of answers are attempting O(n) but are forgetting the actual costs of inserting and removing from the lists/associative arrays/sets they're using to track.
If you can assume that a char is a single byte, then you use a simple array indexed by the char and keep a count in it. This is truly O(n) because the array accesses are guaranteed O(1), and the final pass over the array to find the first element with 1 is constant time (because the array has a small, fixed size).
If you can't assume that a char is a single byte, then I would propose sorting the string and then doing a single pass checking adjacent values. This would be O(n log n) for the sort plus O(n) for the final pass. So it's effectively O(n log n), which is better than O(n^2). Also, it has virtually no space overhead, which is another problem with many of the answers that are attempting O(n).
Counter requires Python2.7 or Python3.1
>>> from collections import Counter
>>> def first_non_repeated_character(s):
... counts = Counter(s)
... for c in s:
... if counts[c]==1:
... return c
... return None
...
>>> first_non_repeated_character("aaabbbcddd")
'c'
>>> first_non_repeated_character("aaaebbbcddd")
'e'
Refactoring a solution proposed earlier (not having to use extra list/memory). This goes over the string twice. So this takes O(n) too like the original solution.
def first_non_repeated_character(s):
counts = defaultdict(int)
for c in s:
counts[c] += 1
for c in s:
if counts[c] == 1:
return c
return None
The following is a Ruby implementation of finding the first nonrepeated character of a string:
def first_non_repeated_character(string)
string1 = string.split('')
string2 = string.split('')
string1.each do |let1|
counter = 0
string2.each do |let2|
if let1 == let2
counter+=1
end
end
if counter == 1
return let1
break
end
end
end
p first_non_repeated_character('dont doddle in the forest')
And here is a JavaScript implementation of the same style function:
var first_non_repeated_character = function (string) {
var string1 = string.split('');
var string2 = string.split('');
var single_letters = [];
for (var i = 0; i < string1.length; i++) {
var count = 0;
for (var x = 0; x < string2.length; x++) {
if (string1[i] == string2[x]) {
count++
}
}
if (count == 1) {
return string1[i];
}
}
}
console.log(first_non_repeated_character('dont doddle in the forest'));
console.log(first_non_repeated_character('how are you today really?'));
In both cases I used a counter knowing that if the letter is not matched anywhere in the string, it will only occur in the string once so I just count it's occurrence.
I think this should do it in C. This operates in O(n) time with no ambiguity about order of insertion and deletion operators. This is a counting sort (simplest form of a bucket sort, which itself is the simple form of a radix sort).
unsigned char find_first_unique(unsigned char *string)
{
int chars[256];
int i=0;
memset(chars, 0, sizeof(chars));
while (string[i++])
{
chars[string[i]]++;
}
i = 0;
while (string[i++])
{
if (chars[string[i]] == 1) return string[i];
}
return 0;
}
In Ruby:
(Original Credit: Andrew A. Smith)
x = "a huge string in which some characters repeat"
def first_unique_character(s)
s.each_char.detect { |c| s.count(c) == 1 }
end
first_unique_character(x)
=> "u"
def first_non_repeated_character(string):
chars = []
repeated = []
for character in string:
if character in repeated:
... discard it.
else if character in chars:
chars.remove(character)
repeated.append(character)
else:
if not character in repeated:
chars.append(character)
if len(chars):
return chars[0]
else:
return False
Other JavaScript solutions are quite c-style solutions here is a more JavaScript-style solution.
var arr = string.split("");
var occurences = {};
var tmp;
var lowestindex = string.length+1;
arr.forEach( function(c){
tmp = c;
if( typeof occurences[tmp] == "undefined")
occurences[tmp] = tmp;
else
occurences[tmp] += tmp;
});
for(var p in occurences) {
if(occurences[p].length == 1)
lowestindex = Math.min(lowestindex, string.indexOf(p));
}
if(lowestindex > string.length)
return null;
return string[lowestindex];
}
in C, this is almost Shlemiel the Painter's Algorithm (not quite O(n!) but more than 0(n2)).
But will outperform "better" algorithms for reasonably sized strings because O is so small. This can also easily tell you the location of the first non-repeating string.
char FirstNonRepeatedChar(char * psz)
{
for (int ii = 0; psz[ii] != 0; ++ii)
{
for (int jj = ii+1; ; ++jj)
{
// if we hit the end of string, then we found a non-repeat character.
//
if (psz[jj] == 0)
return psz[ii]; // this character doesn't repeat
// if we found a repeat character, we can stop looking.
//
if (psz[ii] == psz[jj])
break;
}
}
return 0; // there were no non-repeating characters.
}
edit: this code is assuming you don't mean consecutive repeating characters.
Here's an implementation in Perl (version >=5.10) that doesn't care whether the repeated characters are consecutive or not:
use strict;
use warnings;
foreach my $word(#ARGV)
{
my #distinct_chars;
my %char_counts;
my #chars=split(//,$word);
foreach (#chars)
{
push #distinct_chars,$_ unless $_~~#distinct_chars;
$char_counts{$_}++;
}
my $first_non_repeated="";
foreach(#distinct_chars)
{
if($char_counts{$_}==1)
{
$first_non_repeated=$_;
last;
}
}
if(length($first_non_repeated))
{
print "For \"$word\", the first non-repeated character is '$first_non_repeated'.\n";
}
else
{
print "All characters in \"$word\" are repeated.\n";
}
}
Storing this code in a script (which I named non_repeated.pl) and running it on a few inputs produces:
jmaney> perl non_repeated.pl aabccd "a huge string in which some characters repeat" abcabc
For "aabccd", the first non-repeated character is 'b'.
For "a huge string in which some characters repeat", the first non-repeated character is 'u'.
All characters in "abcabc" are repeated.
Here's a possible solution in ruby without using Array#detect (as in this answer). Using Array#detect makes it too easy, I think.
ALPHABET = %w(a b c d e f g h i j k l m n o p q r s t u v w x y z)
def fnr(s)
unseen_chars = ALPHABET.dup
seen_once_chars = []
s.each_char do |c|
if unseen_chars.include?(c)
unseen_chars.delete(c)
seen_once_chars << c
elsif seen_once_chars.include?(c)
seen_once_chars.delete(c)
end
end
seen_once_chars.first
end
Seems to work for some simple examples:
fnr "abcdabcegghh"
# => "d"
fnr "abababababababaqababa"
=> "q"
Suggestions and corrections are very much appreciated!
Try this code:
public static String findFirstUnique(String str)
{
String unique = "";
foreach (char ch in str)
{
if (unique.Contains(ch)) unique=unique.Replace(ch.ToString(), "");
else unique += ch.ToString();
}
return unique[0].ToString();
}
In Mathematica one might write this:
string = "conservationist deliberately treasures analytical";
Cases[Gather # Characters # string, {_}, 1, 1][[1]]
{"v"}
This snippet code in JavaScript
var string = "tooth";
var hash = [];
for(var i=0; j=string.length, i<j; i++){
if(hash[string[i]] !== undefined){
hash[string[i]] = hash[string[i]] + 1;
}else{
hash[string[i]] = 1;
}
}
for(i=0; j=string.length, i<j; i++){
if(hash[string[i]] === 1){
console.info( string[i] );
return false;
}
}
// prints "h"
Different approach here.
scan each element in the string and create a count array which stores the repetition count of each element.
Next time again start from first element in the array and print the first occurrence of element with count = 1
C code
-----
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
char t_c;
char *t_p = argv[1] ;
char count[128]={'\0'};
char ch;
for(t_c = *(argv[1]); t_c != '\0'; t_c = *(++t_p))
count[t_c]++;
t_p = argv[1];
for(t_c = *t_p; t_c != '\0'; t_c = *(++t_p))
{
if(count[t_c] == 1)
{
printf("Element is %c\n",t_c);
break;
}
}
return 0;
}
input is = aabbcddeef output is = c
char FindUniqueChar(char *a)
{
int i=0;
bool repeat=false;
while(a[i] != '\0')
{
if (a[i] == a[i+1])
{
repeat = true;
}
else
{
if(!repeat)
{
cout<<a[i];
return a[i];
}
repeat=false;
}
i++;
}
return a[i];
}
Here is another approach...we could have a array which will store the count and the index of the first occurrence of the character. After filling up the array we could jst traverse the array and find the MINIMUM index whose count is 1 then return str[index]
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <climits>
using namespace std;
#define No_of_chars 256
//store the count and the index where the char first appear
typedef struct countarray
{
int count;
int index;
}countarray;
//returns the count array
countarray *getcountarray(char *str)
{
countarray *count;
count=new countarray[No_of_chars];
for(int i=0;i<No_of_chars;i++)
{
count[i].count=0;
count[i].index=-1;
}
for(int i=0;*(str+i);i++)
{
(count[*(str+i)].count)++;
if(count[*(str+i)].count==1) //if count==1 then update the index
count[*(str+i)].index=i;
}
return count;
}
char firstnonrepeatingchar(char *str)
{
countarray *array;
array = getcountarray(str);
int result = INT_MAX;
for(int i=0;i<No_of_chars;i++)
{
if(array[i].count==1 && result > array[i].index)
result = array[i].index;
}
delete[] (array);
return (str[result]);
}
int main()
{
char str[] = "geeksforgeeks";
cout<<"First non repeating character is "<<firstnonrepeatingchar(str)<<endl;
return 0;
}
Function:
This c# function uses a HashTable (Dictionary) and have a performance O(2n) worstcase.
private static string FirstNoRepeatingCharacter(string aword)
{
Dictionary<string, int> dic = new Dictionary<string, int>();
for (int i = 0; i < aword.Length; i++)
{
if (!dic.ContainsKey(aword.Substring(i, 1)))
dic.Add(aword.Substring(i, 1), 1);
else
dic[aword.Substring(i, 1)]++;
}
foreach (var item in dic)
{
if (item.Value == 1) return item.Key;
}
return string.Empty;
}
Example:
string aword = "TEETER";
Console.WriteLine(FirstNoRepeatingCharacter(aword)); //print: R
I have two strings i.e. 'unique' and 'repeated'. Every character appearing for the first time, gets added to 'unique'. If it is repeated for the second time, it gets removed from 'unique' and added to 'repeated'. This way, we will always have a string of unique characters in 'unique'.
Complexity big O(n)
public void firstUniqueChar(String str){
String unique= "";
String repeated = "";
str = str.toLowerCase();
for(int i=0; i<str.length();i++){
char ch = str.charAt(i);
if(!(repeated.contains(str.subSequence(i, i+1))))
if(unique.contains(str.subSequence(i, i+1))){
unique = unique.replaceAll(Character.toString(ch), "");
repeated = repeated+ch;
}
else
unique = unique+ch;
}
System.out.println(unique.charAt(0));
}
The following code is in C# with complexity of n.
using System;
using System.Linq;
using System.Text;
namespace SomethingDigital
{
class FirstNonRepeatingChar
{
public static void Main()
{
String input = "geeksforgeeksandgeeksquizfor";
char[] str = input.ToCharArray();
bool[] b = new bool[256];
String unique1 = "";
String unique2 = "";
foreach (char ch in str)
{
if (!unique1.Contains(ch))
{
unique1 = unique1 + ch;
unique2 = unique2 + ch;
}
else
{
unique2 = unique2.Replace(ch.ToString(), "");
}
}
if (unique2 != "")
{
Console.WriteLine(unique2[0].ToString());
Console.ReadLine();
}
else
{
Console.WriteLine("No non repeated string");
Console.ReadLine();
}
}
}
}
The following solution is an elegant way to find the first unique character within a string using the new features which have been introduced as part as Java 8. This solution uses the approach of first creating a map to count the number of occurrences of each character. It then uses this map to find the first character which occurs only once. This runs in O(N) time.
import static java.util.stream.Collectors.counting;
import static java.util.stream.Collectors.groupingBy;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
// Runs in O(N) time and uses lambdas and the stream API from Java 8
// Also, it is only three lines of code!
private static String findFirstUniqueCharacterPerformantWithLambda(String inputString) {
// convert the input string into a list of characters
final List<String> inputCharacters = Arrays.asList(inputString.split(""));
// first, construct a map to count the number of occurrences of each character
final Map<Object, Long> characterCounts = inputCharacters
.stream()
.collect(groupingBy(s -> s, counting()));
// then, find the first unique character by consulting the count map
return inputCharacters
.stream()
.filter(s -> characterCounts.get(s) == 1)
.findFirst()
.orElse(null);
}
Here is one more solution with o(n) time complexity.
public void findUnique(String string) {
ArrayList<Character> uniqueList = new ArrayList<>();
int[] chatArr = new int[128];
for (int i = 0; i < string.length(); i++) {
Character ch = string.charAt(i);
if (chatArr[ch] != -1) {
chatArr[ch] = -1;
uniqueList.add(ch);
} else {
uniqueList.remove(ch);
}
}
if (uniqueList.size() == 0) {
System.out.println("No unique character found!");
} else {
System.out.println("First unique character is :" + uniqueList.get(0));
}
}
I read through the answers, but did not see any like mine, I think this answer is very simple and fast, am I wrong?
def first_unique(s):
repeated = []
while s:
if s[0] not in s[1:] and s[0] not in repeated:
return s[0]
else:
repeated.append(s[0])
s = s[1:]
return None
test
(first_unique('abdcab') == 'd', first_unique('aabbccdad') == None, first_unique('') == None, first_unique('a') == 'a')
Question : First Unique Character of a String
This is the simplest solution.
public class Test4 {
public static void main(String[] args) {
String a = "GiniGinaProtijayi";
firstUniqCharindex(a);
}
public static void firstUniqCharindex(String a) {
int[] count = new int[256];
for (int i = 0; i < a.length(); i++) {
count[a.charAt(i)]++;
}
int index = -1;
for (int i = 0; i < a.length(); i++) {
if (count[a.charAt(i)] == 1) {
index = i;
break;
} // if
}
System.out.println(index);// output => 8
System.out.println(a.charAt(index)); //output => P
}// end1
}
IN Python :
def firstUniqChar(a):
count = [0] * 256
for i in a: count[ord(i)] += 1
element = ""
for items in a:
if(count[ord(items) ] == 1):
element = items ;
break
return element
a = "GiniGinaProtijayi";
print(firstUniqChar(a)) # output is P
Using Java 8 :
public class Test2 {
public static void main(String[] args) {
String a = "GiniGinaProtijayi";
Map<Character, Long> map = a.chars()
.mapToObj(
ch -> Character.valueOf((char) ch)
).collect(
Collectors.groupingBy(
Function.identity(),
LinkedHashMap::new,
Collectors.counting()));
System.out.println("MAP => " + map);
// {G=2, i=5, n=2, a=2, P=1, r=1, o=1, t=1, j=1, y=1}
Character chh = map
.entrySet()
.stream()
.filter(entry -> entry.getValue() == 1L)
.map(entry -> entry.getKey())
.findFirst()
.get();
System.out.println("First Non Repeating Character => " + chh);// P
}// main
}
how about using a suffix tree for this case... the first unrepeated character will be first character of longest suffix string with least depth in tree..
Create Two list -
unique list - having only unique character .. UL
non-unique list - having only repeated character -NUL
for(char c in str) {
if(nul.contains(c)){
//do nothing
}else if(ul.contains(c)){
ul.remove(c);
nul.add(c);
}else{
nul.add(c);
}
I recently found a contest problem that asks you to compute the minimum number of characters that must be inserted (anywhere) in a string to turn it into a palindrome.
For example, given the string: "abcbd" we can turn it into a palindrome by inserting just two characters: one after "a" and another after "d": "adbcbda".
This seems to be a generalization of a similar problem that asks for the same thing, except characters can only be added at the end - this has a pretty simple solution in O(N) using hash tables.
I have been trying to modify the Levenshtein distance algorithm to solve this problem, but haven't been successful. Any help on how to solve this (it doesn't necessarily have to be efficient, I'm just interested in any DP solution) would be appreciated.
Note: This is just a curiosity. Dav proposed an algorithm which can be modified to DP algorithm to run in O(n^2) time and O(n^2) space easily (and perhaps O(n) with better bookkeeping).
Of course, this 'naive' algorithm might actually come in handy if you decide to change the allowed operations.
Here is a 'naive'ish algorithm, which can probably be made faster with clever bookkeeping.
Given a string, we guess the middle of the resulting palindrome and then try to compute the number of inserts required to make the string a palindrome around that middle.
If the string is of length n, there are 2n+1 possible middles (Each character, between two characters, just before and just after the string).
Suppose we consider a middle which gives us two strings L and R (one to left and one to right).
If we are using inserts, I believe the Longest Common Subsequence algorithm (which is a DP algorithm) can now be used the create a 'super' string which contains both L and reverse of R, see Shortest common supersequence.
Pick the middle which gives you the smallest number inserts.
This is O(n^3) I believe. (Note: I haven't tried proving that it is true).
My C# solution looks for repeated characters in a string and uses them to reduce the number of insertions. In a word like program, I use the 'r' characters as a boundary. Inside of the 'r's, I make that a palindrome (recursively). Outside of the 'r's, I mirror the characters on the left and the right.
Some inputs have more than one shortest output: output can be toutptuot or outuputuo. My solution only selects one of the possibilities.
Some example runs:
radar -> radar, 0 insertions
esystem -> metsystem, 2 insertions
message -> megassagem, 3 insertions
stackexchange -> stegnahckexekchangets, 8 insertions
First I need to check if an input is already a palindrome:
public static bool IsPalindrome(string str)
{
for (int left = 0, right = str.Length - 1; left < right; left++, right--)
{
if (str[left] != str[right])
return false;
}
return true;
}
Then I need to find any repeated characters in the input. There may be more than one. The word message has two most-repeated characters ('e' and 's'):
private static bool TryFindMostRepeatedChar(string str, out List<char> chs)
{
chs = new List<char>();
int maxCount = 1;
var dict = new Dictionary<char, int>();
foreach (var item in str)
{
int temp;
if (dict.TryGetValue(item, out temp))
{
dict[item] = temp + 1;
maxCount = temp + 1;
}
else
dict.Add(item, 1);
}
foreach (var item in dict)
{
if (item.Value == maxCount)
chs.Add(item.Key);
}
return maxCount > 1;
}
My algorithm is here:
public static string MakePalindrome(string str)
{
List<char> repeatedList;
if (string.IsNullOrWhiteSpace(str) || IsPalindrome(str))
{
return str;
}
//If an input has repeated characters,
// use them to reduce the number of insertions
else if (TryFindMostRepeatedChar(str, out repeatedList))
{
string shortestResult = null;
foreach (var ch in repeatedList) //"program" -> { 'r' }
{
//find boundaries
int iLeft = str.IndexOf(ch); // "program" -> 1
int iRight = str.LastIndexOf(ch); // "program" -> 4
//make a palindrome of the inside chars
string inside = str.Substring(iLeft + 1, iRight - iLeft - 1); // "program" -> "og"
string insidePal = MakePalindrome(inside); // "og" -> "ogo"
string right = str.Substring(iRight + 1); // "program" -> "am"
string rightRev = Reverse(right); // "program" -> "ma"
string left = str.Substring(0, iLeft); // "program" -> "p"
string leftRev = Reverse(left); // "p" -> "p"
//Shave off extra chars in rightRev and leftRev
// When input = "message", this loop converts "meegassageem" to "megassagem",
// ("ee" to "e"), as long as the extra 'e' is an inserted char
while (left.Length > 0 && rightRev.Length > 0 &&
left[left.Length - 1] == rightRev[0])
{
rightRev = rightRev.Substring(1);
leftRev = leftRev.Substring(1);
}
//piece together the result
string result = left + rightRev + ch + insidePal + ch + right + leftRev;
//find the shortest result for inputs that have multiple repeated characters
if (shortestResult == null || result.Length < shortestResult.Length)
shortestResult = result;
}
return shortestResult;
}
else
{
//For inputs that have no repeated characters,
// just mirror the characters using the last character as the pivot.
for (int i = str.Length - 2; i >= 0; i--)
{
str += str[i];
}
return str;
}
}
Note that you need a Reverse function:
public static string Reverse(string str)
{
string result = "";
for (int i = str.Length - 1; i >= 0; i--)
{
result += str[i];
}
return result;
}
C# Recursive solution adding to the end of the string:
There are 2 base cases. When length is 1 or 2. Recursive case: If the extremes are equal, then
make palindrome the inner string without the extremes and return that with the extremes.
If the extremes are not equal, then add the first character to the end and make palindrome the
inner string including the previous last character. return that.
public static string ConvertToPalindrome(string str) // By only adding characters at the end
{
if (str.Length == 1) return str; // base case 1
if (str.Length == 2 && str[0] == str[1]) return str; // base case 2
else
{
if (str[0] == str[str.Length - 1]) // keep the extremes and call
return str[0] + ConvertToPalindrome(str.Substring(1, str.Length - 2)) + str[str.Length - 1];
else //Add the first character at the end and call
return str[0] + ConvertToPalindrome(str.Substring(1, str.Length - 1)) + str[0];
}
}