How hard would it be to take an image of an object (in this case of a predefined object), and develop an algorithm to cut just that object out of a photo with a background of varying complexity.
Further to this, a photo's object (say a house, car, dog - but always of one type) would need to be transformed into a 3d render. I know there are 3d rendering engines available (at a cost, free, or with some clause), but for this to work the object (subject) would need to be measured in all sorts of ways - e.g. if this is a person, we need to measure height, the curvature of the shoulder, radius of the face, length of each finger, etc.
What would the feasibility of solving this problem be? Anyone know any good links specialing in this research area? I've seen open source solutions to this problem which leaves me with the question of the ease of measuring the object while tracing around it to crop it out.
Thanks
Essentially I want to take a 2d image (typical image:which is easier than a complex photo containing multiple objects, etc.)
,
But effectively I want to turn that into a 3d image, so wouldn't what I want to do involve building a 3d rendering/modelling engine?
Furthermore, that link I have provided goes into 3ds max, with a few properties set, and a render is made.
It sounds like you want to do several things, all in the domain of computer vision.
Object Recognition (i.e. find the predefined object)
3D Reconstruction (make the 3d model from the image)
Image Segmentation (cut out just the object you are worried about from the background)
I've ranked them in order of easiest to hardest (according to my limited understanding). All together I would say it is a very complicated problem. I would look at the following Wikipedia links for more information:
Computer Vision Overview (Wikipedia)
The Eight Point Algorithm (for 3d reconstruction)
Image Segmentation
You're right this is an extremely hard set of problems, particularly that of inferring 3D information from a 2D image. Only a very limited understanding exists of how our visual system extrapolates 3D information from 2D images, one such approach is known as "Shape from Shading" and the linked google search shows how much (and consequently how little) we know.
Rob
This is a very difficult task. The hardest part is not recognising or segmenting the object from the image, but rather inferring the 3-D geometry of the object from the 2-D image. You will have more success if you can use a stereoscopic camera (or a laser scanner, if you have access to one ;).
For the case of 2-D images, try googling for "shape-from-shading". This is a method for inferring 3-D shape from a 2-D image. It does make assumptions about illumination conditions and surface properties (BRDF and geometry) that may fail in many cases, but if you are using it for only a predefined class of objects (e.g. human faces) it can work reasonably well.
Assuming it's possible, that would be extremely difficult, especially with only one image of the object. The rasterizer has to guess at the depth and distances of objects.
What you describe sounds very similar to Microsoft PhotoSynth.
Related
Is it possible to make a 3D representation of an object by capturing many different angles using a webcam? If it is, how is it possible and how is the image-processing done?
My plan is to make a 3D representation of a person using a webcam, then from the 3D representation, i will be able to tell the person's vital statistics.
As Bart said (but did not post as an actual answer) this is entirely possible.
The research topic you are interested in is often called multi view stereo or something similar.
The basic idea resolves around using point correspondences between two (or more) images and then try to find the best matching camera positions. When the positions are found you can use stereo algorithms to back project the image points into a 3D coordinate system and form a point cloud.
From that point cloud you can then further process it to get the measurements you are looking for.
If you are completely new to the subject you have some fascinating reading to look forward to!
Bart proposed Multiple view geometry by Hartley and Zisserman, which is a very nice book indeed.
As Bart and Kigurai pointed out, this process has been studied under the title of "stereo" or "multi-view stereo" techniques. To be able to get a 3D model from a set of pictures, you need to do the following:
a) You need to know the "internal" parameters of a camera. This includes the focal length of the camera, the principal point of the image and account for radial distortion in the image.
b) You also need to know the position and orientation of each camera with respect to each other or a "world" co-ordinate system. This is called the "pose" of the camera.
There are algorithms to perform (a) and (b) which are described in Hartley and Zisserman's "Multiple View Geometry" book. Alternatively, you can use Noah Snavely's "Bundler" http://phototour.cs.washington.edu/bundler/ software to also do the same thing in a very robust manner.
Once you have the camera parameters, you essentially know how a 3D point (X,Y,Z) in the world maps to an image co-ordinate (u,v) on the photo. You also know how to map an image co-ordinate to the world. You can create a dense point cloud by searching for a match for each pixel on one photo in a photo taken from a different view-point. This requires a two-dimensional search. You can simplify this procedure by making the search 1-dimensional. This is called "rectification". You essentially take two photos and transform then so that their rows correspond to the same line in the world (simplified statement). Now you only have to search along image rows.
An algorithm for this can be also found in Hartley and Zisserman.
Finally, you need to do the matching based on some measure. There is a lot of literature out there on "stereo matching". Another word used is "disparity estimation". This is basically searching for the match of pixel (u,v) on one photo to its match (u, v') on the other photo. Once you have the match, the difference between them can be used to map back to a 3D point.
You can use Yasutaka Furukawa's "CMVS" or "PMVS2" software to do this. Or if you want to experiment by yourself, openCV is a open-source computer vision toolbox to do many of the sub-tasks required for this.
This can be done with two webcams in the same ways your eyes work. It is called stereoscopic vision.
Have a look at this:
http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html
An affordable alternative to get 3D data would be the Kinect camera system.
Maybe not the answer you are hoping for but Microsoft's Kinect is doing that exact thing, there are some open source drivers out there that allow you to connect it to your windows/linux box.
Given a set of 2d images that cover all dimensions of an object (e.g. a car and its roof/sides/front/read), how could I transform this into a 3d objdct?
Is there any libraries that could do this?
Thanks
These "2D images" are usually called "textures". You probably want a 3D library which allows you to specify a 3D model with bitmap textures. The library would depend on platform you are using, but start with looking at OpenGL!
OpenGL for PHP
OpenGL for Java
... etc.
I've heard of the program "Poser" doing this using heuristics for human forms, but otherwise I don't believe this is actually theoretically possible. You are asking to construct volumetric data from flat data (inferring the third dimension.)
I think you'd have to make a ton of assumptions about your geometry, and even then, you'd only really have a shell of the object. If you did this well, you'd have a contiguous surface representing the boundary of the object - not a volumetric object itself.
What you can do, like Tomas suggested, is slap these 2d images onto something. However, you still will need to construct a triangle mesh surface, and actually do all the modeling, for this to present a 3D surface.
I hope this helps.
What there is currently that can do anything close to what you are asking for automagically is extremely proprietary. No libraries, but there are some products.
This core issue is matching corresponding points in the images and being able to say, this spot in image A is this spot in image B, and they both match this spot in image C, etc.
There are three ways to go about this, manually matching (you have the photos and have to use your own brain to find the corresponding points), coded targets, and texture matching.
PhotoModeller, www.photomodeller.com, $1,145.00US, supports manual matching and coded targets. You print out a bunch of images, attach them to your object, shoot your photos, and the software finds the targets in each picture and creates a 3D object based on those points.
PhotoModeller Scanner, $2,595.00US, adds texture matching. Tiny bits of the the images are compared to see if they represent the same source area.
Both PhotoModeller products depend on shooting the images with a calibrated camera where you use a consistent focal length for every shot and you got through a calibration process to map the lens distortion of the camera.
If you can do manual matching, the Match Photo feature of Google SketchUp may do the job, and SketchUp is free. If you can shoot new photos, you can add your own targets like colored sticker dots to the object to help you generate contours.
If your images are drawings, like profile, plan view, etc. PhotoModeller will not help you, but SketchUp may be just the tool you need. You will have to build up each part manually because you will have to supply the intelligence to recognize which lines and points correspond from drawing to drawing.
I hope this helps.
is it possible to construct a 3d model of a still object if various images along with depth data was gathered from various angles, what I was thinking was have a sort of a circular conveyor belt where a kinect would be placed and the conveyor belt while the real object that is to be reconstructed in 3d space sits in the middle. The conveyor belt thereafter rotates around the image in a circle and lots of images are captured (perhaps 10 image per second) which would allow the kinect to catch an image from every angle including the depth data, theoretically this is possible. The model would also have to be recreated with the textures.
What I would like to know is whether there are any similar projects/software already available and any links would be appreciated
Whether this is possible within perhaps 6 months
How would I proceed to do this? Such as any similar algorithm you could point me to and such
Thanks,
MilindaD
It is definitely possible and there are a lot of 3D scanners which work out there, with more or less the same principle of stereoscopy.
You probably know this, but just to contextualize: The idea is to get two images from the same point and to use triangulation to compute the 3d coordinates of the point in your scene. Although this is quite easy, the big issue is to find the correspondence between the points in your 2 images, and this is where you need a good software to extract and recognize similar points.
There is an open-source project called Meshlab for 3d vision, which includes 3d reconstruction* algorithms. I don't know the details of the algorithms, but the software is definitely a good entrance point if you want to play with 3d.
I used to know some other ones, I will try to find them and add them here:
Insight3d
(*Wiki page has no content, redirects to login for editing)
Check out https://bitbucket.org/tobin/kinect-point-cloud-demo/overview which is a code sample for the Kinect for Windows SDK that does specifically this. Currently it uses the bitmaps captured by the depth sensor, and iterates through the byte array to create a point cloud in a PLY format that can read by MeshLab. The next stage of us is to apply/refine a delanunay triangle algoirthim to form a mesh instead of points, which a texture can be applied. A third stage would then me a mesh merging formula to combine multiple caputres from the Kinect to form a full 3D object mesh.
This is based on some work I done in June using Kinect for the purposes of 3D printing capture.
The .NET code in this source code repository will however get you started with what you want to achieve.
Autodesk has a piece of software that will do what you are asking for it is called "Photofly". It is currently in the labs section. Using a series of images taken from multiple angles the 3d geometry is created and then photo mapped with your images to create the scene.
If you interested more in theoretical (i mean if you want to know how) part of this problem,
here is some document from Microsoft Research about moving depth camera and 3D reconstruction.
Try out VisualSfM (http://ccwu.me/vsfm/) by Changchang Wu (http://ccwu.me/)
It takes multiple images from different angles of the scene and outputs a 3D point cloud.
The algorithm is called "Structure from Motion".
Brief idea of the algorithm : It involves extracting feature points in each image; finding correspondences between them across images; building feature tracks, estimating camera matrices and thereby the 3D coordinates of the feature points.
i want to identify a ball in the picture. I am thiking of using sobel edge detection algorithm,with this i can detect the round objects in the image.
But how do i differentiate between different objects. For example, a foot ball is there in one picture and in another picture i have a picture of moon.. how to differentiate what object has been detected.
When i use my algorithm i get ball in both the cases. Any ideas?
Well if all the objects you would like to differentiate are round, you could even use a hough transformation for round objects. This is a very good way of distinguishing round objects.
But your basic problem seems to be classification - sorting the objects on your image into different classes.
For this you don't really need a Neural Network, you could simply try with a Nearest Neighbor match. It's functionalities are a bit like neural networks since you can give it several reference pictures where you tell the system what can be seen there and it will optimize itself to the best average values for each attribute you detected. By this you get a dictionary of clusters for the different types of objects.
But for this you'll of course first need something that distinguishes a ball from a moon.
Since they are all real round objects (which appear as circles) it will be useless to compare for circularity, circumference, diameter or area (only if your camera is steady and if you know a moon will always have the same size on your images, other than a ball).
So basically you need to look inside the objects itself and you can try to compare their mean color value or grayscale value or the contrast inside the object (the moon will mostly have mid-gray values whereas a soccer ball consists of black and white parts)
You could also run edge filters on the segmented objects just to determine which is more "edgy" in its texture. But for this there are better methods I guess...
So basically what you need to do first:
Find several attributes that help you distinguish the different round objects (assuming they are already separated)
Implement something to get these values out of a picture of a round object (which is already segmented of course, so it has a background of 0)
Build a system that you feed several images and their class to have a supervised learning system and feed it several images of each type (there are many implementations of that online)
Now you have your system running and can give other objects to it to classify.
For this you need to segment the objects in the image, by i.e Edge filters or a Hough Transformation
For each of the segmented objects in an image, let it run through your classification system and it should tell you which class (type of object) it belongs to...
Hope that helps... if not, please keep asking...
When you apply an edge detection algorithm you lose information.
Thus the moon and the ball are the same.
The moon has a diiferent color, a different texture, ... you can use these informations to differnentiate what object has been detected.
That's a question in AI.
If you think about it, the reason you know it's a ball and not a moon, is because you've seen a lot of balls and moons in your life.
So, you need to teach the program what a ball is, and what a moon is. Give it some kind of dictionary or something.
The problem with a dictionary of course would be that to match the object with all the objects in the dictionary would take time.
So the best solution would probably using Neural networks. I don't know what programming language you're using, but there are Neural network implementations to most languages i've encountered.
You'll have to read a bit about it, decide what kind of neural network, and its architecture.
After you have it implemented it gets easy. You just give it a lot of pictures to learn (neural networks get a vector as input, so you can give it the whole picture).
For each picture you give it, you tell it what it is. So you give it like 20 different moon pictures, 20 different ball pictures. After that you tell it to learn (built in function usually).
The neural network will go over the data you gave it, and learn how to differentiate the 2 objects.
Later you can use that network you taught, give it a picture, and it a mark of what it thinks it is, like 30% ball, 85% moon.
This has been discussed before. Have a look at this question. More info here and here.
I am looking for a solution to do the following:
( the focus of my question is step 2. )
a picture of a house including the front yard
extract information from the picture like the dimensions and location of the house, trees, sidewalk, and car. Also, the textures and colors of the house, cars, trees, and sidewalk.
use extracted information to generate a model
How can I extract that information?
You could also consult Tatiana Jaworska research on this. As I understood, this details at least 1 new algorithm to feature extraction (targeted at roofs, doors, ...) by colour (RGB). More intriguing, the last publication also uses parameterized objects to be identified in the house images... that must might be a really good starting point for what you're trying to do.
link to her publications:
http://www.springerlink.com/content/w518j70542780r34/
http://portal.acm.org/citation.cfm?id=1578785
http://www.ibspan.waw.pl/~jaworska/TJ_BOS2010.pdf
Yes. You can extract these information from a picture.
1. You just identify these objects in a picture using some detection algorithms.
2. Measure these objects dimensions and generate a model using extracted information.
well actually your desired goal is not so easy to achieve. First of all you'll need a good way to figure what what is what and what is where on your image. And there simply is no easy "algorithm" for detecting houses/cars/whatsoever on an image. There are ways to segment different objects (like cars) from an image, but those don't work generally. Especially on houses this would be hard since each house looks different and it's hard to find one solid measurement for "this is house and this is not"...
Am I assuming it right that you are trying to simply photograph a house (with front yard) and build a texturized 3D-model out of it? This is not going to work since you need several photos of the house to get positions of walls/corners and everything in 3D space (There are approaches that try a mesh reconstruction with one image only but they lack of depth information and results are fairly poor). So if you would like to create 3D-mdoels you will need several photos of different angles of the house.
There are several different approaches that use this kind of technique to reconstruct real world objects to triangle-meshes.
Basically they work after the principle:
Try to find points in images of different viewpoint which are the same on an object. Considering you are photographing a house this could be salient structures likes corners of windows/doors or corners or edges on the walls/roof/...
Knowing where one and the same point of your house is in several different photos and knowing the position of the camera of both photos you can reconstruct this point in 3D-space.
Doing this for a lot of equal points will "empower" you to reconstruct the shape of your house as a 3D-model by triangulating the points.
Taking parts of the image as textures and mapping them on the generated model would work as well since you know where what is.
You should have a look at these papers:
http://www.graphicon.ru/1999/3D%20Reconstruction/Valiev.pdf
http://people.csail.mit.edu/wojciech/pubs/LabeledRec.pdf
http://people.csail.mit.edu/sparis/publi/2006/oceans/Paris_06_3D_Reconstruction.ppt
The second paper even has an example of doing exactly what you try to achieve, namely reconstruct a textured 3D-model of a house photographed from different angles.
The third link is a powerpoint presentation that shows how the reconstruction works and shows the drawbacks there are.
So you should get familiar with these papers to see what problems you are up to... If you then want to try this on your own have a look at OpenCV. This library provides some methods for feature extraction in images. You then can try to find salient points in each image and try to match them.
Good luck on your project... If you have problems, please keep asking!
I suggest to look at this blog
https://jwork.org/main/node/35
that shows how to identify certain features on images using a convolutional neural network. This particular blog discusses how to identify human faces on images from a large set of random images. You can adjust this example to train neural network using some other images. Note that even in the case of human faces, the identification rate is about 85%, therefore, more complex objects can be even harder to identify