I'm trying to write a program which will pseudorandomly autogenerate (based on a seed value so I can re-run the same test more than once) a growing directory structure consisting of files. (this is to stress test a source control database installation)
I was wondering if any of you were aware of something similar to the quasirandom "space-filling" sequences (e.g. van der Corput sequences or Halton sequences) that might work here.
edit: Or a fractal algorithm. This sounds suspiciously like a fractal algorithm.
edit 2: Never mind, I think I figured out the obvious solution, start with an empty tree, and just use sequential outputs of a pseudorandom generator to deterministically (based on the generated number and the state of the tree generated so far) do one of N actions, e.g. make a new subdirectory, add a new file, rename a file, delete a file, etc.
I want to do it this way rather than just sequentially dump files into a folder structure, because we're running into a situation where we are having some problems with large #s of files, and are not sure exactly what the cause is. (tree depth, # of renames, # of deletes, etc.)
It's not just 1 fixed tree I need to generate, the use strategy is: grow the tree structure a little bit, evaluate some performance statistics, grow the tree structure a little more, evaluate some performance statistics, etc.
If this is just for testing, what is wrong with some simple, naive generation algorithm? Like, generate a random (1-10) amount of subdirectories, generate names for them, then for each directory recursively generate subdirectories and some amount of files.
This is easily customizable and you can control the seed for rand. For funkier needs, the distribution of the amounts of files/directories can be non-linear, but something that suits your needs more.
Sounds something that can be whipped up in half an hour and get done with. I fail to see a need for something mathemathical or complex. Unless this is just for fun, of course :-)
As you mention in your second edit, I would probably implement the whole thing as a file tree traversal, with the PRNG deciding "change to directory", "create directory", "move up one level", "create file", "delete file" and have another value to determine what file to delete, what directory to change to and to generate names for files and directories.
I used a similar method to stress-test a workflow server I wrote (though I didn't need to keep track of where work items were, just needed to randomly pick one to operate on).
This is a set of different problems which makes it a fun puzzle.
First we have the pseudorandom number generator. There is a lot of stuff available. I only expect a function that creates a number in the range 0..n-1.
Then we have an algorithm to determine the number of subnodes on a single node. It is tempting to use a linear function but that is not a fair representation to reality. So you can create the following function:
randomsize() {
int n = Random(0,10);
if (n<10) return n;
return Random(0,9) + 10 * random;
}
This function produces small numbers. Most will be in the range 0..9 but the top is virtually endless. If you want to have bigger numbers you could also use a bigger threshold
randomsize() {
int n = Random(0,100);
if (n<10) return n;
return Random(0,9) + 10 * random;
}
The last problem is how to create a tree. This is rather simple. But you should keep in mind that the algorith has to end. So you need to do one of the following:
use a max depth
decrement the generated number based on the nesting level
determine the number of leaves as a percentage of the total subnodes. This percentage should increment at higher levels (10-50 at first level, 20-60 at second.. 50-100 at fifth, 60-100 at sixth, until 90-100 at nineth and higher.
Ofcourse you can tweak the parameters to create your required tree.
Related
The Problem
On a server, I host ids in a json file. From clients, I need to mandate the server to intersect and sometimes negate these ids (the ids never travel to the client even though the client instructs the server its operations to perform).
I typically have 1000's of ids, often have 100,000's of ids, and have a maximum of 56,000,000 of them, where each value is unique and between -100,000,000 and +100,000,000.
These ids files are stable and do not change (so it is possible to generate a different representation for it that is better adapted for the calculations if needed).
Sample ids
Largest file sizes
I need an algorithm that will intersect ids in the sub-second range for most cases. What would you suggest? I code in java, but do not limit myself to java for the resolution of this problem (I could use JNI to bridge to native language).
Potential solutions to consider
Although you could not limit yourselves to the following list of broad considerations for solutions, here is a list of what I internally debated to resolve the situation.
Neural-Network pre-qualifier: Train a neural-network for each ids list that accepts another list of ids to score its intersection potential (0 means definitely no intersection, 1 means definitely there is an intersection). Since neural networks are good and efficient at pattern recognition, I am thinking of pre-qualifying a more time-consuming algorithm behind it.
Assembly-language: On a Linux server, code an assembly module that does such algorithm. I know that assembly is a mess to maintain and code, but sometimes one need the speed of an highly optimized algorithm without the overhead of a higher-level compiler. Maybe this use-case is simple enough to benefit from an assembly language routine to be executed directly on the Linux server (and then I'd always pay attention to stick with the same processor to avoid having to re-write this too often)? Or, alternately, maybe C would be close enough to assembly to produce clean and optimized assembly code without the overhead to maintain assembly code.
Images and GPU: GPU and image processing could be used and instead of comparing ids, I could BITAND images. That is, I create a B&W image of each ids list. Since each id have unique values between -100,000,000 and +100,000,000 (where a maximum of 56,000,000 of them are used), the image would be mostly black, but the pixel would become white if the corresponding id is set. Then, instead of keeping the list of ids, I'd keep the images, and do a BITAND operation on both images to intersect them. This may be fast indeed, but then to translate the resulting image back to ids may be the bottleneck. Also, each image could be significantly large (maybe too large for this to be a viable solution). An estimate of a 200,000,000 bits sequence is 23MB each, just loading this in memory is quite demanding.
String-matching algorithms: String comparisons have many adapted algorithms that are typically extremely efficient at their task. Create a binary file for each ids set. Each id would be 4 bytes long. The corresponding binary file would have each and every id sequenced as their 4 bytes equivalent into it. The algorithm could then be to process the smallest file to match each 4 bytes sequence as a string into the other file.
Am I missing anything? Any other potential solution? Could any of these approaches be worth diving into them?
I did not yet try anything as I want to secure a strategy before I invest what I believe will be a significant amount of time into this.
EDIT #1:
Could the solution be a map of hashes for each sector in the list? If the information is structured in such a way that each id resides within its corresponding hash key, then, the smaller of the ids set could be sequentially ran and matching the id into the larger ids set first would require hashing the value to match, and then sequentially matching of the corresponding ids into that key match?
This should make the algorithm an O(n) time based one, and since I'd pick the smallest ids set to be the sequentially ran one, n is small. Does that make sense? Is that the solution?
Something like this (where the H entry is the hash):
{
"H780" : [ 45902780, 46062780, -42912780, -19812780, 25323780, 40572780, -30131780, 60266780, -26203780, 46152780, 67216780, 71666780, -67146780, 46162780, 67226780, 67781780, -47021780, 46122780, 19973780, 22113780, 67876780, 42692780, -18473780, 30993780, 67711780, 67791780, -44036780, -45904780, -42142780, 18703780, 60276780, 46182780, 63600780, 63680780, -70486780, -68290780, -18493780, -68210780, 67731780, 46092780, 63450780, 30074780, 24772780, -26483780, 68371780, -18483780, 18723780, -29834780, 46202780, 67821780, 29594780, 46082780, 44632780, -68406780, -68310780, -44056780, 67751780, 45912780, 40842780, 44642780, 18743780, -68220780, -44066780, 46142780, -26193780, 67681780, 46222780, 67761780 ],
"H782" : [ 27343782, 67456782, 18693782, 43322782, -37832782, 46152782, 19113782, -68411782, 18763782, 67466782, -68400782, -68320782, 34031782, 45056782, -26713782, -61776782, 67791782, 44176782, -44096782, 34041782, -39324782, -21873782, 67961782, 18703782, 44186782, -31143782, 67721782, -68340782, 36103782, 19143782, 19223782, 31711782, 66350782, 43362782, 18733782, -29233782, 67811782, -44076782, -19623782, -68290782, 31721782, 19233782, 65726782, 27313782, 43352782, -68280782, 67346782, -44086782, 67741782, -19203782, -19363782, 29583782, 67911782, 67751782, 26663782, -67910782, 19213782, 45992782, -17201782, 43372782, -19992782, -44066782, 46142782, 29993782 ],
"H540" : [...
You can convert each file (list of ids) into a bit-array of length 200_000_001, where bit at index j is set if the list contains value j-100_000_000. It is possible, because the range of id values is fixed and small.
Then you can simply use bitwise and and not operations to intersect and negate lists of ids. Depending on the language and libraries used, it would require operating element-wise: iterating over arrays and applying corresponding operations to each index.
Finally, you should measure your performance and decide whether you need to do some optimizations, such as parallelizing operations (you can work on different parts of arrays on different processors), preloading some of arrays (or all of them) into memory, using GPU, etc.
First, the bitmap approach will produce the required performance, at a huge overhead in memory. You'll need to benchmark it, but I'd expect times of maybe 0.2 seconds, with that almost entirely dominated by the cost of loading data from disk, and then reading the result.
However there is another approach that is worth considering. It will use less memory most of the time. For most of the files that you state, it will perform well.
First let's use Cap'n Proto for a file format. The type can be something like this:
struct Ids {
is_negated #0 :Bool;
ids #1 :List(Int32);
}
The key is that ids are always kept sorted. So list operations are a question of running through them in parallel. And now:
Applying not is just flipping is_negated.
If neither is negated, it is a question of finding IDs in both lists.
If the first is not negated and the second is, you just want to find IDs in the first that are not in the second.
If the first is negated and the second is not, you just want to find IDs in the second that are not in the first.
If both are negated, you just want to find all ids in either list.
If your list has 100k entries, then the file will be about 400k. A not requires copying 400k of data (very fast). And intersecting with another list of the same size involves 200k comparisons. Integer comparisons complete in a clock cycle, and branch mispredictions take something like 10-20 clock cycles. So you should be able to do this operation in the 0-2 millisecond range.
Your worst case 56,000,000 file will take over 200 MB and intersecting 2 of them can take around 200 million operations. This is in the 0-2 second range.
For the 56 million file and a 10k file, your time is almost all spent on numbers in the 56 million file and not in the 10k one. You can speed that up by adding a "galloping" mode where you do a binary search forward in the larger file looking for the next matching number and picking most of them. Do be warned that this code tends to be tricky and involves lots of mispredictions. You'll have to benchmark it to find out how big a size difference is needed.
In general this approach will lose for your very biggest files. But it will be a huge win for most of the sizes of file that you've talked about.
I want to create a representation of the state of all files in a folder (ignoring order), so that I can send this state to another computer to check if we are in sync. This "state representation" is 3 numbers concatenated by . which are:
sum . product . number of items
The "sum" is the numerical addition all of the file's md5 numerical representations.
The product is the multiplication of all of the file's md5 numerical representations.
The number of items is just the number of files.
The main reason for doing this is that this allows me to create unique states iteratively/quickly when I add or delete a file (a modification being a combination of delete then add). Also, one should end up with the same "state" even if the same set of operations are performed in any random order.
Adding A File
Generate the file's md5
Calculate the md5's numerical value (x).
Add x to the sum
Multiply the product by x
Increment the number of items.
Removing A File
Generate the file's md5
Calculate the md5's numerical value (x).
Subtract x from the sum
Divide the product by x
Decrement the number of items.
Problems
Since the numerical representations of hashes can be quite large, I may have to use a library to generate results using strings rather than integers which may be quite slow.
With the limited testing I have done, I have not been able to create "collisions" where a collision is where two different sets of file hashes could produce the same state (remember that we are ignoring the order of the file hashes).
Question
I'm sure that I can't be the first person to want to achieve such a thing. Is there an algorithm or iterative hash function that aims to do the same thing already, preferably in PHP, Java, or Python? Is there a term for this type of thing, all I could think of was "iterative hash"? Is there a flaw with this algorithm that I haven't spotted, such as with "collisions" making generated state representations non-unique?
How many states can your file system take ? infinity for all practical purposes.
How long is your hash length ? short enough to be efficient, finite in any case.
Will I get collisions ? Yes.
So, your hash approach seems fine, particularly if it spreads correctly points that are close, i.e. the state of the fs differing by content of just one file hashes to very different values.
However, you should depend on your hash to produce collisions in the long run, it's a mathematical certainty that probability goes to one that someday you get a collision, given that collision chance is not 0.
So to be really safe, you probably need a full MD5 exchange, if speed and fast updates are the goal your scheme sounds good, but I would back it up with more infrequent exchanges of longer keys, just to be on the safe side if sync is mission critical.
I hope it's not too obvious a question: is there a random number generation algorithm that doesn't depend on previously returned values, so that I can get (for example) the 50th number in the sequence, without computing the previous 49?
The reason is that I am making roguelike that will be persistent (so that I can recreate the exact same level from the same seed), but to compute certain features of each level, I don't want to have to "compute" all previous features just to get the random number generator to the correct "state" of having been used, for example, 100 times so far. I would like to be able to query the 101st random number without determining previous values so that the program can create level features separately.
You can encrypt ordinary sequence number [1..N] with any cipher,
and by this way - generate unique pseudorandom value for each SeqNo.
If you use a linear congruential random number generator, it is trivial to compute the $n$-th element generated from a given seed. But it is probably easier just to stash away the state at the "interesting" points of the game.
OTOH, if you want to "restart" the game at a certain point, you'll presumably want to be able to recreate the dungeon's features, but (due to different player actions) the RNG usage will be different from then on. I.e., if started at the same point, if I shoot twice at a monster the RNG will be used more times than if I just run away; the next item generated will get different values. Perhaps what you really want is several independent random number streams, and saving the states as needed?
There are lots of roguelike games around, mostly open source. Some are limited/small (from "build a game in a day" sort of competitions), and might make a good starting point for you. Why start your own, and not hack on an existing one?
Given two files containing list of words(around million), We need to find out the words that are in common.
Use Some efficient algorithm, also not enough memory availble(1 million, certainly not).. Some basic C Programming code, if possible, would help.
The files are not sorted.. We can use some sort of algorithm... Please support it with basic code...
Sorting the external file...... with minimum memory available,, how can it be implement with C programming.
Anybody game for external sorting of a file... Please share some code for this.
Yet another approach.
General. first, notice that doing this sequentially takes O(N^2). With N=1,000,000, this is a LOT. Sorting each list would take O(N*log(N)); then you can find the intersection in one pass by merging the files (see below). So the total is O(2N*log(N) + 2N) = O(N*log(N)).
Sorting a file. Now let's address the fact that working with files is much slower than with memory, especially when sorting where you need to move things around. One way to solve this is - decide the size of the chunk that can be loaded into memory. Load the file one chunk at a time, sort it efficiently and save into a separate temporary file. The sorted chunks can be merged (again, see below) into one sorted file in one pass.
Merging. When you have 2 sorted lists (files or not), you can merge them into one sorted list easily in one pass: have 2 "pointers", initially pointing to the first entry in each list. In each step, compare the values the pointers point to. Move the smaller value to the merged list (the one you are constructing) and advance its pointer.
You can modify the merge algorithm easily to make it find the intersection - if pointed values are equal move it to the results (consider how do you want to deal with duplicates).
For merging more than 2 lists (as in sorting the file above) you can generalize the algorithm for using k pointers.
If you had enough memory to read the first file completely into RAM, I would suggest reading it into a dictionary (word -> index of that word ), loop over the words of the second file and test if the word is contained in that dictionary. Memory for a million words is not much today.
If you have not enough memory, split the first file into chunks that fit into memory and do as I said above for each of that chunk. For example, fill the dictionary with the first 100.000 words, find every common word for that, then read the file a second time extracting word 100.001 up to 200.000, find the common words for that part, and so on.
And now the hard part: you need a dictionary structure, and you said "basic C". When you are willing to use "basic C++", there is the hash_map data structure provided as an extension to the standard library by common compiler vendors. In basic C, you should also try to use a ready-made library for that, read this SO post to find a link to a free library which seems to support that.
Your problem is: Given two sets of items, find the intersaction (items common to both), while staying within the constraints of inadequate RAM (less than the size of any set).
Since finding an intersaction requires comparing/searching each item in another set, you must have enough RAM to store at least one of the sets (the smaller one) to have an efficient algorithm.
Assume that you know for a fact that the intersaction is much smaller than both sets and fits completely inside available memory -- otherwise you'll have to do further work in flushing the results to disk.
If you are working under memory constraints, partition the larger set into parts that fit inside 1/3 of the available memory. Then partition the smaller set into parts the fit the second 1/3. The remaining 1/3 memory is used to store the results.
Optimize by finding the max and min of the partition for the larger set. This is the set that you are comparing from. Then when loading the corresponding partition of the smaller set, skip all items outside the min-max range.
First find the intersaction of both partitions through a double-loop, storing common items to the results set and removing them from the original sets to save on comparisons further down the loop.
Then replace the partition in the smaller set with the second partition (skipping items outside the min-max). Repeat. Notice that the partition in the larger set is reduced -- with common items already removed.
After running through the entire smaller set, repeat with the next partition of the larger set.
Now, if you do not need to preserve the two original sets (e.g. you can overwrite both files), then you can further optimize by removing common items from disk as well. This way, those items no longer need to be compared in further partitions. You then partition the sets by skipping over removed ones.
I would give prefix trees (aka tries) a shot.
My initial approach would be to determine a maximum depth for the trie that would fit nicely within my RAM limits. Pick an arbitrary depth (say 3, you can tweak it later) and construct a trie up to that depth, for the smaller file. Each leaf would be a list of "file pointers" to words that start with the prefix encoded by the path you followed to reach the leaf. These "file pointers" would keep an offset into the file and the word length.
Then process the second file by reading each word from it and trying to find it in the first file using the trie you constructed. It would allow you to fail faster on words that don't match. The deeper your trie, the faster you can fail, but the more memory you would consume.
Of course, like Stephen Chung said, you still need RAM to store enough information to describe at least one of the files, if you really need an efficient algorithm. If you don't have enough memory -- and you probably don't, because I estimate my approach would require approximately the same amount of memory you would need to load a file whose words were 14-22 characters long -- then you have to process even the first file by parts. In that case, I would actually recommend using the trie for the larger file, not the smaller. Just partition it in parts that are no bigger than the smaller file (or no bigger than your RAM constraints allow, really) and do the whole process I described for each part.
Despite the length, this is sort of off the top of my head. I might be horribly wrong in some details, but this is how I would initially approach the problem and then see where it would take me.
If you're looking for memory efficiency with this sort of thing you'll be hard pushed to get time efficiency. My example will be written in python, but should be relatively easy to implement in any language.
with open(file1) as file_1:
current_word_1 = read_to_delim(file_1, delim)
while current_word_1:
with open(file2) as file_2:
current_word_2 = read_to_delim(file_2, delim)
while current_word_2:
if current_word_2 == current_word_1:
print current_word_2
current_word_2 = read_to_delim(file_2, delim)
current_word_1 = read_to_delim(file_1, delim)
I leave read_to_delim to you, but this is the extreme case that is memory-optimal but time-least-optimal.
depending on your application of course you could load the two files in a database, perform a left outer join, and discard the rows for which one of the two columns is null
We get these ~50GB data files consisting of 16 byte codes, and I want to find any code that occurs 1/2% of the time or more. Is there any way I can do that in a single pass over the data?
Edit: There are tons of codes - it's possible that every code is different.
EPILOGUE: I've selected Darius Bacon as best answer, because I think the best algorithm is a modification of the majority element he linked to. The majority algorithm should be modifiable to only use a tiny amount of memory - like 201 codes to get 1/2% I think. Basically you just walk the stream counting up to 201 distinct codes. As soon as you find 201 distinct codes, you drop one of each code (deduct 1 from the counters, forgetting anything that becomes 0). At the end, you have dropped at most N/201 times, so any code occurring more times than that must still be around.
But it's a two pass algorithm, not one. You need a second pass to tally the counts of the candidates. It's actually easy to see that any solution to this problem must use at least 2 passes (the first batch of elements you load could all be different and one of those codes could end up being exactly 1/2%)
Thanks for the help!
Metwally et al., Efficient Computation of Frequent and Top-k Elements in Data Streams (2005). There were some other relevant papers I read for my work at Yahoo that I can't find now; but this looks like a good start.
Edit: Ah, see this Brian Hayes article. It sketches an exact algorithm due to Demaine et al., with references. It does it in one pass with very little memory, yielding a set of items including the frequent ones you're looking for, if they exist. Getting the exact counts takes a (now-tractable) second pass.
this will depend on the distribution of the codes. if there are a small enough number of distinct codes you can build a http://en.wikipedia.org/wiki/Frequency_distribution in core with a map. otherwise you probably will have to build a http://en.wikipedia.org/wiki/Histogram and then make multiple passes over the data examining frequencies of codes in each bucket.
Sort chunks of the file in memory, as if you were performing and external sort. Rather than writing out all of the sorted codes in each chunk, however, you can just write each distinct code and the number of occurrences in that chunk. Finally, merge these summary records to find the number of occurrences of each code.
This process scales to any size data, and it only makes one pass over the input data. Multiple merge passes may be required, depending on how many summary files you want to open at once.
Sorting the file allows you to count the number of occurrences of each code using a fixed amount of memory, regardless of the input size.
You also know the total number of codes (either by dividing the input size by a fixed code size, or by counting the number of variable length codes during the sorting pass in a more general problem).
So, you know the proportion of the input associated with each code.
This is basically the pipeline sort * | uniq -c
If every code appears just once, that's no problem; you just need to be able to count them.
That depends on how many different codes exist, and how much memory you have available.
My first idea would be to build a hash table of counters, with the codes as keys. Loop through the entire file, increasing the counter of the respective code, and counting the overall number. Finally, filter all keys with counters that exceed (* overall-counter 1/200).
If the files consist solely of 16-byte codes, and you know how large each file is, you can calculate the number of codes in each file. Then you can find the 0.5% threshold and follow any of the other suggestions to count the occurrences of each code, recording each one whose frequency crosses the threshold.
Do the contents of each file represent a single data set, or is there an arbitrary cutoff between files? In the latter case, and assuming a fairly constant distribution of codes over time, you can make your life simpler by splitting each file into smaller, more manageable chunks. As a bonus, you'll get preliminary results faster and can pipeline then into the next process earlier.