Creating multiple numbers with certain number of bits set - algorithm

Problem
I need to create 32 Bit numbers (signed or unsigned doesn't matter, the highest bit will never be set anyway) and each number must have a given number of Bits set.
Naive Solution
The easiest solution is of course to start with the number of zero. Within a loop the number is now increased by one, the number of Bits is counted, if the count has the desired value, the number is stored to a list, if not the loop just repeats. The loop is stopped if enough numbers have been found. Of course this works just fine, but it's awfully slow once the number of desired Bits gets very high.
A Better Solution
The simplest number having (let's say) 5 Bits set is the number where the first 5 Bit are set. This number can be easily created. Within a loop the first bit is set and the number is shifted to the left by one. This loop runs 5 times and I found the first number with 5 Bits set. The next couple of numbers are easy to create as well. We now pretend the number to be 6 Bit wide and the highest one is not set. Now we start shifting the first zero bit to the right, so we get 101111, 110111, 111011, 111101, 111110. We could repeat this by adding another 0 to front and repeating this process. 0111110, 1011110, 1101110, etc. However that way numbers will grow much faster than necessary, as using this simple approach we leave out numbers like 1010111.
So is there a better way to create all possible permutations, a generic approach, that can be used, regardless how many bits the next number will have and regardless how many set bits we need set?

You can use the bit-twiddling hack from hackersdelight.org.
In his book he has code to get the next higher number with the same number of one-bit set.
If you use this as a primitive to increase your number all you have to do is to find a starting point. Getting the first number with N bits set is easy. It's just 2^(N-1) -1.
You will iterate through all possible numbers very fast that way.
unsigned next_set_of_n_elements(unsigned x)
{
unsigned smallest, ripple, new_smallest, ones;
if (x == 0) return 0;
smallest = (x & -x);
ripple = x + smallest;
new_smallest = (ripple & -ripple);
ones = ((new_smallest/smallest) >> 1) - 1;
return ripple | ones;
}
// test code (shown for two-bit digits)
void test (void)
{
int bits = 2;
int a = pow(2,bits) - 1;
int i;
for (i=0; i<100; i++)
{
printf ("next number is %d\n", a);
a = next_set_of_n_elements(a);
}
}

Try approaching the problem from the opposite way round - what you're trying to do is equivalent to "find n numbers in the range 0-31".
Suppose you're trying to find 4 numbers. You start with [0,1,2,3] and then increase the last number each time (getting [0,1,2,4], [0,1,2,5] ...) until you hit the limit [0,1,2,31]. Then increase the penultimate number, and set the last number to one higher: [0,1,3,4]. Go back to increasing the last number: [0,1,3,5], [0,1,3,6]... etc. Once you hit the end of this, you go back to [0,1,4,5] - eventually you reach [0,1,30,31] at which point you have to backtrack one step further: [0,2,3,4] and off you go again. Keep going until you finally end up with [28,29,30,31].
Given a set of numbers, it's obviously easy to convert them into the 32 bit numbers.

You want to generate combinations, see this Wikipedia article.

You either need Factoradic Permutations (Google on that) or one of algorithms on Wiki

Related

Efficiently find the smallest 'steady number' larger than a given integer

Let us call a number "steady" if sum of digits on odd positions is equal to sum of digits on even positions. For example 132 or 4059. Given a number N, program should output smallest/first "steady" number greater than N. For example if N = 4, answer = 11, if N = 123123, answer = 123134.
But the constraint is that N can be very large. Number of digits in N can be 100. And time limit is 1 second.
My approach was to take in N as a string store each digit in array of int type and add 1 using long arithmetic, than test if the number is steady or not, if Yes output it, if No add 1 again and test if it is steady. Do this until you get the answer.
It works on many tests, but when the difference between oddSum and EvenSum is very large like in 9090909090 program exceeds time limit. I could not come up with other algorithm. Intuitively I think there might be some pattern in swapping several last digits with each other and if necessary add or subtract something to them, but I don't know. I prefer a good HINT instead of answer, because I want to do it myself.
Use the algorithm that you would use. It goes like this:
Input: 9090909090
Input: 9090909090 Odd:0 Even:45
Input: 909090909? Odd:0 Even:45
Clearly no digit will work, we can make the odd at most 9
Input: 90909090?? Odd:0 Even:36
Clearly no digit will work, we removed a 9 and there is no larger digit (we have to make the number larger)
Input: 9090909??? Odd:0 Even:36
Clearly no digit will work. Even is bigger than odd, we can only raise odd to 18
Input: 909090???? Odd:0 Even:27
Clearly no digit will work, we removed a 9
Input: 90909????? Odd:0 Even:27
Perhaps a 9 will work.
Input: 909099???? Odd:9 Even:27
Zero is the smallest number that might work
Input: 9090990??? Odd:9 Even:27
We need 18 more and only have two digits, so 9 is the smallest number that can work
Input: 90909909?? Odd:18 Even:27
Zero is the smallest number that can work.
Input: 909099090? Odd:18 Even:27
9 is the only number that can work
Input: 9090990909 Odd:27 Even:27
Success
Do you see the method? Remove digits while a solution is impossible then add them back until you have the solution. At first, remove digits until a solution is possible. Only a number than the one you removed can be used. Then add numbers back using the smallest one possible at each stage until you have the solution.
You can try Digit DP technique .
Your parameter can be recur(pos,oddsum,evensum,str)
your state transitions will be like this :
bool ans=0
for(int i=0;i<10;i++)
{
ans|=recur(pos+1,oddsum+(pos%2?i:0),evensum+(pos%2?i:0),str+(i+'0')
if(ans) return 1;
}
Base case :
if(pos>=n) return oddsum==evensum;
Memorization: You only need to save pos,oddsum,evensum in your DP array. So your DP array will be DP[100][100*10][100*10]. This is 10^8 and will cause MLE, you have to prune some memory.
As oddsum+evensum<9*100 , we can have only one parameter SUM and add / subtract when odd/even . So our new recursion will look like this : recur(pos,sum,str)
state transitions will be like this :
bool ans=0
for(int i=0;i<10;i++)
{
ans|=recur(pos+1,SUM+(pos%2?i:-i),str+(i+'0')
if(ans) return 1;
}
Base case :
if(pos>=n) return SUM==0;
Memorization: now our Dp array will be 2d having [pos][sum] . we can say DP[100][10*100]
Find the parity with the smaller sum. Starting from the smallest digit of that parity, increase digits of that parity to the min of 9 and the remaining increase needed.
This gets you a larger steady number, but it may be too big.
E.g., 107 gets us 187, but 110 would do.
Next, repeatedly decrement the value of the nonzero digit in the largest position of each parity in our steady number where doing so doesn't reduce us below our target.
187,176,165,154,143,132,121,110
This last step as written is linear in the number of decrements. That's fast enough since there are at most 9*digits of them, but it can be optimized.

Random Numbers based on the ANU Quantum Random Numbers Server

I have been asked to use the ANU Quantum Random Numbers Service to create random numbers and use Random.rand only as a fallback.
module QRandom
def next
RestClient.get('http://qrng.anu.edu.au/API/jsonI.php?type=uint16&length=1'){ |response, request, result, &block|
case response.code
when 200
_json=JSON.parse(response)
if _json["success"]==true && _json["data"]
_json["data"].first || Random.rand(65535)
else
Random.rand(65535) #fallback
end
else
puts response #log problem
Random.rand(65535) #fallback
end
}
end
end
Their API service gives me a number between 0-65535. In order to create a random for a bigger set, like a random number between 0-99999, I have to do the following:
(QRandom.next.to_f*(99999.to_f/65535)).round
This strikes me as the wrong way of doing, since if I were to use a service (quantum or not) that creates numbers from 0-3 and transpose them into space of 0-9999 I have a choice of 4 numbers that I always get. How can I use the service that produces numbers between 0-65535 to create random numbers for a larger number set?
Since 65535 is 1111111111111111 in binary, you can just think of the random number server as a source of random bits. The fact that it gives the bits to you in chunks of 16 is not important, since you can make multiple requests and you can also ignore certain bits from the response.
So after performing that abstraction, what we have now is a service that gives you a random bit (0 or 1) whenever you want it.
Figure out how many bits of randomness you need. Since you want a number between 0 and 99999, you just need to find a binary number that is all ones and is greater than or equal to 99999. Decimal 99999 is equal to binary 11000011010011111, which is 17 bits long, so you will need 17 bits of randomness.
Now get 17 bits of randomness from the service and assemble them into a binary number. The number will be between 0 and 2**17-1 (131071), and it will be evenly distributed. If the random number happens to be greater than 99999, then throw away the bits you have and try again. (The probability of needing to retry should be less than 50%.)
Eventually you will get a number between 0 and 99999, and this algorithm should give you a totally uniform distribution.
How about asking for more numbers? Using the length parameter of that API you can just ask for extra numbers and sum them so you get bigger numbers like you want.
http://qrng.anu.edu.au/API/jsonI.php?type=uint16&length=2
You can use inject for the sum and the modulo operation to make sure the number is not bigger than you want.
json["data"].inject(:+) % MAX_NUMBER
I made some other changes to your code like using SecureRandom instead of the regular Random. You can find the code here:
https://gist.github.com/matugm/bee45bfe637f0abf8f29#file-qrandom-rb
Think of the individual numbers you are getting as 16 bits of randomness. To make larger random numbers, you just need more bits. The tricky bit is figuring out how many bits is enough. For example, if you wanted to generate numbers from an absolutely fair distribution from 0 to 65000, then it should be pretty obvious that 16 bits are not enough; even though you have the range covered, some numbers will have twice the probability of being selected than others.
There are a couple of ways around this problem. Using Ruby's Bignum (technically that happens behind the scenes, it works well in Ruby because you won't overflow your Integer type) it is possible to use a method that simply collects more bits until the result of a division could never be ambiguous - i.e. the difference when adding more significant bits to the division you are doing could never change the result.
This what it might look like, using your QRandom.next method to fetch bits in batches of 16:
def QRandom.rand max
max = max.to_i # This approach requires integers
power = 1
sum = 0
loop do
sum = 2**16 * sum + QRandom.next
power *= 2**16
lower_bound = sum * max / power
break lower_bound if lower_bound == ( (sum + 1) * max ) / power
end
end
Because it costs you quite a bit to fetch random bits from your chosen source, you may benefit from taking this to the most efficient form possible, which is similar in principle to Arithmetic Coding and squeezes out the maximum possible entropy from your source whilst generating unbiased numbers in 0...max. You would need to implement a method QRandom.next_bits( num ) that returned an integer constructed from a bitstream buffer originating with your 16-bit numbers:
def QRandom.rand max
max = max.to_i # This approach requires integers
# I prefer this: start_bits = Math.log2( max ).floor
# But this also works (and avoids suggestions the algo uses FP):
start_bits = max.to_s(2).length
sum = QRandom.next_bits( start_bits )
power = 2 ** start_bits
# No need for fractional bits if max is power of 2
return sum if power == max
# Draw 1 bit at a time to resolve fractional powers of 2
loop do
lower_bound = (sum * max) / power
break lower_bound if lower_bound == ((sum + 1) * max)/ power
sum = 2 * sum + QRandom.next_bits(1) # 0 or 1
power *= 2
end
end
This is the most efficient use of bits from your source possible. It is always as efficient or better than re-try schemes. The expected number of bits used per call to QRandom.rand( max ) is 1 + Math.log2( max ) - i.e. on average this allows you to draw just over the fractional number of bits needed to represent your range.

Subtract a number's digits from the number until it reaches 0

Can anyone help me with some algorithm for this problem?
We have a big number (19 digits) and, in a loop, we subtract one of the digits of that number from the number itself.
We continue to do this until the number reaches zero. We want to calculate the minimum number of subtraction that makes a given number reach zero.
The algorithm must respond fast, for a 19 digits number (10^19), within two seconds. As an example, providing input of 36 will give 7:
1. 36 - 6 = 30
2. 30 - 3 = 27
3. 27 - 7 = 20
4. 20 - 2 = 18
5. 18 - 8 = 10
6. 10 - 1 = 9
7. 9 - 9 = 0
Thank you.
The minimum number of subtractions to reach zero makes this, I suspect, a very thorny problem, one that will require a great deal of backtracking potential solutions, making it possibly too expensive for your time limitations.
But the first thing you should do is a sanity check. Since the largest digit is a 9, a 19-digit number will require about 1018 subtractions to reach zero. Code up a simple program to continuously subtract 9 from 1019 until it becomes less than ten. If you can't do that within the two seconds, you're in trouble.
By way of example, the following program (a):
#include <stdio.h>
int main (int argc, char *argv[]) {
unsigned long long x = strtoull(argv[1], NULL, 10);
x /= 1000000000;
while (x > 9)
x -= 9;
return x;
}
when run with the argument 10000000000000000000 (1019), takes a second and a half clock time (and CPU time since it's all calculation) even at gcc insane optimisation level of -O3:
real 0m1.531s
user 0m1.528s
sys 0m0.000s
And that's with the one-billion divisor just before the while loop, meaning the full number of iterations would take about 48 years.
So a brute force method isn't going to help here, what you need is some serious mathematical analysis which probably means you should post a similar question over at https://math.stackexchange.com/ and let the math geniuses have a shot.
(a) If you're wondering why I'm getting the value from the user rather than using a constant of 10000000000000000000ULL, it's to prevent gcc from calculating it at compile time and turning it into something like:
mov $1, %eax
Ditto for the return x which will prevent it noticing I don't use the final value of x and hence optimise the loop out of existence altogether.
I don't have a solution that can solve 19 digit numbers in 2 seconds. Not even close. But I did implement a couple of algorithms (including a dynamic programming algorithm that solves for the optimum), and gained some insight that I believe is interesting.
Greedy Algorithm
As a baseline, I implemented a greedy algorithm that simply picks the largest digit in each step:
uint64_t countGreedy(uint64_t inputVal) {
uint64_t remVal = inputVal;
uint64_t nStep = 0;
while (remVal > 0) {
uint64_t digitVal = remVal;
uint_fast8_t maxDigit = 0;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > maxDigit) {
maxDigit = digit;
}
digitVal = nextDigitVal;
}
remVal -= maxDigit;
++nStep;
}
return nStep;
}
Dynamic Programming Algorithm
The idea for this is that we can calculate the optimum incrementally. For a given value, we pick a digit, which adds one step to the optimum number of steps for the value with the digit subtracted.
With the target function (optimum number of steps) for a given value named optSteps(val), and the digits of the value named d_i, the following relationship holds:
optSteps(val) = 1 + min(optSteps(val - d_i))
This can be implemented with a dynamic programming algorithm. Since d_i is at most 9, we only need the previous 9 values to build on. In my implementation, I keep a circular buffer of 10 values:
static uint64_t countDynamic(uint64_t inputVal) {
uint64_t minSteps[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
uint_fast8_t digit0 = 0;
for (uint64_t val = 10; val <= inputVal; ++val) {
digit0 = val % 10;
uint64_t digitVal = val;
uint64_t minPrevStep = 0;
bool prevStepSet = false;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > 0) {
uint64_t prevStep = 0;
if (digit > digit0) {
prevStep = minSteps[10 + digit0 - digit];
} else {
prevStep = minSteps[digit0 - digit];
}
if (!prevStepSet || prevStep < minPrevStep) {
minPrevStep = prevStep;
prevStepSet = true;
}
}
digitVal = nextDigitVal;
}
minSteps[digit0] = minPrevStep + 1;
}
return minSteps[digit0];
}
Comparison of Results
This may be considered a surprise: I ran both algorithms on all values up to 1,000,000. The results are absolutely identical. This suggests that the greedy algorithm actually calculates the optimum.
I don't have a formal proof that this is indeed true for all possible values. It intuitively kind of makes sense to me. If in any given step, you choose a smaller digit than the maximum, you compromise the immediate progress with the goal of getting into a more favorable situation that allows you to catch up and pass the greedy approach. But in all the scenarios I thought about, the situation after taking a sub-optimal step just does not get significantly more favorable. It might make the next step bigger, but that is at most enough to get even again.
Complexity
While both algorithms look linear in the size of the value, they also loop over all digits in the value. Since the number of digits corresponds to log(n), I believe the complexity is O(n * log(n)).
I think it's possible to make it linear by keeping counts of the frequency of each digit, and modifying them incrementally. But I doubt it would actually be faster. It requires more logic, and turns a loop over all digits in the value (which is in the range of 2-19 for the values we are looking at) into a fixed loop over 10 possible digits.
Runtimes
Not surprisingly, the greedy algorithm is faster to calculate a single value. For example, for value 1,000,000,000, the runtimes on my MacBook Pro are:
greedy: 3 seconds
dynamic: 36 seconds
On the other hand, the dynamic programming approach is obviously much faster at calculating all the values, since its incremental approach needs them as intermediate results anyway. For calculating all values from 10 to 1,000,000:
greedy: 19 minutes
dynamic: 0.03 seconds
As already shown in the runtimes above, the greedy algorithm gets about as high as 9 digit input values within the targeted runtime of 2 seconds. The implementations aren't really tuned, and it's certainly possible to squeeze out some more time, but it would be fractional improvements.
Ideas
As already explored in another answer, there's no chance of getting the result for 19 digit numbers in 2 seconds by subtracting digits one by one. Since we subtract at most 9 in each step, completing this for a value of 10^19 needs more than 10^18 steps. We mostly use computers that perform in the rough range of 10^9 operations/second, which suggests that it would take about 10^9 seconds.
Therefore, we need something that can take shortcuts. I can think of scenarios where that's possible, but haven't been able to generalize it to a full strategy so far.
For example, if your current value is 9999, you know that you can subtract 9 until you reach 9000. So you can calculate that you will make 112 steps ((9999 - 9000) / 9 + 1) where you subtract 9, which can be done in a few operations.
As said in comments already, and agreeing with #paxdiablo’s other answer, I’m not sure if there is an algorithm to find the ideal solution without some backtracking; and the size of the number and the time constraint might be tough as well.
A general consideration though: You might want to find a way to decide between always subtracting the highest digit (which will decrease your current number by the largest possible amount, obviously), and by looking at your current digits and subtracting which of those will give you the largest “new” digit.
Say, your current number only consists of digits between 0 and 5 – then you might be tempted to subtract the 5 to decrease your number by the highest possible value, and continue with the next step. If the last digit of your current number is 3 however, then you might want to subtract 4 instead – since that will give you 9 as new digit at the end of the number, instead of “only” 8 you would be getting if you subtracted 5.
Whereas if you have a 2 and two 9 in your digits already, and the last digit is a 1 – then you might want to subtract the 9 anyway, since you will be left with the second 9 in the result (at least in most cases; in some edge cases it might get obliterated from the result as well), so subtracting the 2 instead would not have the advantage of giving you a “high” 9 that you would otherwise not have in the next step, and would have the disadvantage of not lowering your number by as high an amount as subtracting the 9 would …
But every digit you subtract will not only affect the next step directly, but the following steps indirectly – so again, I doubt there is a way to always chose the ideal digit for the current step without any backtracking or similar measures.

compression algorithm for sorted integers

I have a large sequence of random integers sorted from the lowest to the highest. The numbers start from 1 bit and end near 45 bits. In the beginning of the list I have numbers very close to each other: 4, 20, 23, 40, 66. But when the numbers start to get higher the distance between them is a bit higher too (actually the distance between them is aleatory). There are no duplicated numbers.
I'm using bit packing to save some space. Nonetheless, this file can get really big.
I would like to know what kind of compression algorithm can be used in this situation, or any other technique to save as much space as possible.
Thank you.
You can compress optimally if you know the true distribution of the data. If you can provide a probability distribution for each integer you can use arithmetic coding or other entropy coding techniques to compress to theoretical minimal size.
The trick is in predicting accurately.
First, you should probably compress the distances between the numbers because that allows you to make statistical statements. If you were to compress the numbers directly you'd have a hard time modelling them because they occur only once.
Next, you could try to build a very simple model to predict the next distance. Keep a histogram of all previously seen distances and calculate the probabilities from the frequencies.
You probably need to account for missing values (you clearly can't assign them 0 probability because that is not expressible) but you can use heuristics for that, like encoding the next distance bit-by-bit and predicting each bit individually. You will pay almost nothing for the high-order bits because they are almost always 0 and entropy encoding optimizes them away.
All of this is much simpler if you know the distribution. Example: You you are compressing a list of all prime numbers you know the theoretical distribution of distances because there are formulae for that. So you already have a perfect model.
There's a very simple and fairly effective compression technique which can be used for sorted integers in a known range. Like most compression schemes, it is optimized for serial access, although you can build an index to speed up random access if needed.
It's a type of delta encoding (i.e. each number is represented by the distance from the previous one), consisting of a vector of codes which are either
a single 1-bit, representing a delta of 2k which is added to the delta in the following code, or
a 0-bit followed by a k-bit delta, indicating that the next number is the specified delta from the previous one.
For example, if k is 4, the sequence:
00011 1 1 00000 1 00001
codes three numbers. The first four-bit encoding (3) is the first delta, taken from an initial value of 0, so the first number is 3. The next two solitary 1's accumulate to a delta of 2&centerdot;24, or 32, which is added to the following delta of 0000, for a total of 32. So the second number is 3+32=35. Finally, the last delta is a single 24 plus 1, total 17, and the third number is 35+17=52.
The 1-bit indicates that the next delta should be incremented by 2k (or, more generally, each delta is incremented by 2k times the number of immediately preceding 1-bits.)
Another, possibly better, way of thinking of this is that each delta is coded as a variable length bit sequence: 1i0(1|0)k, representing a delta of i&centerdot;2k+[the k-bit suffix]. But the first presentation aligns better with the optimality proof.
Since each "1" code represents an increment of 2k, there cannot be more than m/2k of them, where m is the largest number in the set to be compressed. The remaining codes all correspond to numbers, and have a total length of n&centerdot;(k + 1) where n is the size of the set. The optimal value of k is roughly log2 m/n, which in your case would be 7 or 8.
I did a quick proof of concept of the algorithm, without worrying about optimizations. It's still plenty fast; sorting the random sample takes a lot longer than compressing/decompressing it. I tried it with a few different seeds and vector sizes from 16,400,000 to 31,000,000 with a value range of [0, 4,000,000,000). The bits used per data value ranged from 8.59 (n=31000000) to 9.45 (n=16400000). All of the tests were done with 7-bit suffixes; log2 m/n varies from 7.01 (n=31000000) to 7.93 (n=16400000). I tried with 6-bit and 8-bit suffixes; except in the case of n=31000000 where the 6-bit suffixes were slightly smaller, the 7-bit suffix was always the best. So I guess that the optimal k is not exactly floor(log2 m/n) but it's not far off.
Compression code:
void Compress(std::ostream& os,
const std::vector<unsigned long>& v,
unsigned long k = 0) {
BitOut out(os);
out.put(v.size(), 64);
if (v.size()) {
unsigned long twok;
if (k == 0) {
unsigned long ratio = v.back() / v.size();
for (twok = 1; twok <= ratio / 2; ++k, twok *= 2) { }
} else {
twok = 1 << k;
}
out.put(k, 32);
unsigned long prev = 0;
for (unsigned long val : v) {
while (val - prev >= twok) { out.put(1); prev += twok; }
out.put(0);
out.put(val - prev, k);
prev = val;
}
}
out.flush(1);
}
Decompression:
std::vector<unsigned long> Decompress(std::istream& is) {
BitIn in(is);
unsigned long size = in.get(64);
if (size) {
unsigned long k = in.get(32);
unsigned long twok = 1 << k;
std::vector<unsigned long> v;
v.reserve(size);
unsigned long prev = 0;
for (; size; --size) {
while (in.get()) prev += twok;
prev += in.get(k);
v.push_back(prev);
}
}
return v;
}
It can be a bit awkward to use variable-length encodings; an alternative is to store the first bit of each code (1 or 0) in a bit vector, and the k-bit suffixes in a separate vector. This would be particularly convenient if k is 8.
A variant, which results in slight longer files but is a bit easier to build indexes for, is to only use the 1-bits as deltas. Then the deltas are always a&centerdot;2k for some a, possibly 0, where a is the number of consecutive 1 bits preceding the suffix code. The index then consists of the locations of every Nth 1-bit in the bit vector, and the corresponding index into the suffix vector (i.e. the index of the suffix corresponding with the next 0 in the bit vector).
One option that worked well for me in the past was to store a list of 64-bit integers as 8 different lists of 8-bit values. You store the high 8 bits of the numbers, then the next 8 bits, etc. For example, say you have the following 32-bit numbers:
0x12345678
0x12349785
0x13111111
0x13444444
The data stored would be (in hex):
12,12,13,13
34,34,11,44
56,97,11,44
78,85,11,44
I then ran that through the deflate compressor.
I don't recall what compression ratios I was able to achieve with this, but it was significantly better than compressing the numbers themselves.
I want to add another answer with the simplest possible solution:
Convert the numbers to deltas as discussed previously
Run it through the 7-zip LZMA2 algorithm. It is even multi-core ready
I think this will give almost perfect results in your case because the distances have a simple distribution. 7-zip will be able to pick it up.
You can use Delta Encoding and Protocol Buffers simply.
Like your example: 4, 20, 23, 40, 66.
Delta Encoding compressed: 4, 16, 3, 17, 26.
Then you store all numbers as varint in Protocol Buffers directly. Only need 1 byte for number between 0-127. And 2 bytes for number between 128-16384... This is enough for most scenes.
Further more you can use entropy coding(huffman) to achieve more effective compression rate than varint. Even less than 8bits per number.
Divide a number to 2 part. Like 17=...0001 0001(binary)=(5)0001. The first part (5) is valid bit count. The suffix part (0001) is without the leading 1.
Like the example: 4, 16, 3, 17, 26 = (3)00 (5)0000 (2)1 (5)0001 (5)1010
The first part will be between 0-45 even there are a lot of numbers. So they can be compressed by entropy coding like huffman effectively.
If your sequence is made up of pseudo-random numbers, such as might be generated by a typical digital computer, then I don't think that any compression scheme will beat, for brevity of representation, simply storing the code for the generator and whatever parameters you need to define its initial state.
If your sequence is made up of truly random numbers generated in some non-deterministic way then the other answers already posted offer a variety of good advice.

Generate an integer that is not among four billion given ones

I have been given this interview question:
Given an input file with four billion integers, provide an algorithm to generate an integer which is not contained in the file. Assume you have 1 GB memory. Follow up with what you would do if you have only 10 MB of memory.
My analysis:
The size of the file is 4×109×4 bytes = 16 GB.
We can do external sorting, thus letting us know the range of the integers.
My question is what is the best way to detect the missing integer in the sorted big integer sets?
My understanding (after reading all the answers):
Assuming we are talking about 32-bit integers, there are 232 = 4*109 distinct integers.
Case 1: we have 1 GB = 1 * 109 * 8 bits = 8 billion bits memory.
Solution:
If we use one bit representing one distinct integer, it is enough. we don't need sort.
Implementation:
int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
Scanner in = new Scanner(new FileReader("a.txt"));
while(in.hasNextInt()){
int n = in.nextInt();
bitfield[n/radix] |= (1 << (n%radix));
}
for(int i = 0; i< bitfield.lenght; i++){
for(int j =0; j<radix; j++){
if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
}
}
}
Case 2: 10 MB memory = 10 * 106 * 8 bits = 80 million bits
Solution:
For all possible 16-bit prefixes, there are 216 number of
integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket.
Build the counter of each bucket through the first pass through the file.
Scan the buckets, find the first one who has less than 65536 hit.
Build new buckets whose high 16-bit prefixes are we found in step2
through second pass of the file
Scan the buckets built in step3, find the first bucket which doesnt
have a hit.
The code is very similar to above one.
Conclusion:
We decrease memory through increasing file pass.
A clarification for those arriving late: The question, as asked, does not say that there is exactly one integer that is not contained in the file—at least that's not how most people interpret it. Many comments in the comment thread are about that variation of the task, though. Unfortunately the comment that introduced it to the comment thread was later deleted by its author, so now it looks like the orphaned replies to it just misunderstood everything. It's very confusing, sorry.
Assuming that "integer" means 32 bits: 10 MB of space is more than enough for you to count how many numbers there are in the input file with any given 16-bit prefix, for all possible 16-bit prefixes in one pass through the input file. At least one of the buckets will have be hit less than 216 times. Do a second pass to find of which of the possible numbers in that bucket are used already.
If it means more than 32 bits, but still of bounded size: Do as above, ignoring all input numbers that happen to fall outside the (signed or unsigned; your choice) 32-bit range.
If "integer" means mathematical integer: Read through the input once and keep track of the largest number length of the longest number you've ever seen. When you're done, output the maximum plus one a random number that has one more digit. (One of the numbers in the file may be a bignum that takes more than 10 MB to represent exactly, but if the input is a file, then you can at least represent the length of anything that fits in it).
Statistically informed algorithms solve this problem using fewer passes than deterministic approaches.
If very large integers are allowed then one can generate a number that is likely to be unique in O(1) time. A pseudo-random 128-bit integer like a GUID will only collide with one of the existing four billion integers in the set in less than one out of every 64 billion billion billion cases.
If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.
A detailed discussion on this problem has been discussed in Jon Bentley "Column 1. Cracking the Oyster" Programming Pearls Addison-Wesley pp.3-10
Bentley discusses several approaches, including external sort, Merge Sort using several external files etc., But the best method Bentley suggests is a single pass algorithm using bit fields, which he humorously calls "Wonder Sort" :)
Coming to the problem, 4 billion numbers can be represented in :
4 billion bits = (4000000000 / 8) bytes = about 0.466 GB
The code to implement the bitset is simple: (taken from solutions page )
#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];
void set(int i) { a[i>>SHIFT] |= (1<<(i & MASK)); }
void clr(int i) { a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int test(int i){ return a[i>>SHIFT] & (1<<(i & MASK)); }
Bentley's algorithm makes a single pass over the file, setting the appropriate bit in the array and then examines this array using test macro above to find the missing number.
If the available memory is less than 0.466 GB, Bentley suggests a k-pass algorithm, which divides the input into ranges depending on available memory. To take a very simple example, if only 1 byte (i.e memory to handle 8 numbers ) was available and the range was from 0 to 31, we divide this into ranges of 0 to 7, 8-15, 16-22 and so on and handle this range in each of 32/8 = 4 passes.
HTH.
Since the problem does not specify that we have to find the smallest possible number that is not in the file we could just generate a number that is longer than the input file itself. :)
For the 1 GB RAM variant you can use a bit vector. You need to allocate 4 billion bits == 500 MB byte array. For each number you read from the input, set the corresponding bit to '1'. Once you done, iterate over the bits, find the first one that is still '0'. Its index is the answer.
If they are 32-bit integers (likely from the choice of ~4 billion numbers close to 232), your list of 4 billion numbers will take up at most 93% of the possible integers (4 * 109 / (232) ). So if you create a bit-array of 232 bits with each bit initialized to zero (which will take up 229 bytes ~ 500 MB of RAM; remember a byte = 23 bits = 8 bits), read through your integer list and for each int set the corresponding bit-array element from 0 to 1; and then read through your bit-array and return the first bit that's still 0.
In the case where you have less RAM (~10 MB), this solution needs to be slightly modified. 10 MB ~ 83886080 bits is still enough to do a bit-array for all numbers between 0 and 83886079. So you could read through your list of ints; and only record #s that are between 0 and 83886079 in your bit array. If the numbers are randomly distributed; with overwhelming probability (it differs by 100% by about 10-2592069) you will find a missing int). In fact, if you only choose numbers 1 to 2048 (with only 256 bytes of RAM) you'd still find a missing number an overwhelming percentage (99.99999999999999999999999999999999999999999999999999999999999995%) of the time.
But let's say instead of having about 4 billion numbers; you had something like 232 - 1 numbers and less than 10 MB of RAM; so any small range of ints only has a small possibility of not containing the number.
If you were guaranteed that each int in the list was unique, you could sum the numbers and subtract the sum with one # missing to the full sum (½)(232)(232 - 1) = 9223372034707292160 to find the missing int. However, if an int occurred twice this method will fail.
However, you can always divide and conquer. A naive method, would be to read through the array and count the number of numbers that are in the first half (0 to 231-1) and second half (231, 232). Then pick the range with fewer numbers and repeat dividing that range in half. (Say if there were two less number in (231, 232) then your next search would count the numbers in the range (231, 3*230-1), (3*230, 232). Keep repeating until you find a range with zero numbers and you have your answer. Should take O(lg N) ~ 32 reads through the array.
That method was inefficient. We are only using two integers in each step (or about 8 bytes of RAM with a 4 byte (32-bit) integer). A better method would be to divide into sqrt(232) = 216 = 65536 bins, each with 65536 numbers in a bin. Each bin requires 4 bytes to store its count, so you need 218 bytes = 256 kB. So bin 0 is (0 to 65535=216-1), bin 1 is (216=65536 to 2*216-1=131071), bin 2 is (2*216=131072 to 3*216-1=196607). In python you'd have something like:
import numpy as np
nums_in_bin = np.zeros(65536, dtype=np.uint32)
for N in four_billion_int_array:
nums_in_bin[N // 65536] += 1
for bin_num, bin_count in enumerate(nums_in_bin):
if bin_count < 65536:
break # we have found an incomplete bin with missing ints (bin_num)
Read through the ~4 billion integer list; and count how many ints fall in each of the 216 bins and find an incomplete_bin that doesn't have all 65536 numbers. Then you read through the 4 billion integer list again; but this time only notice when integers are in that range; flipping a bit when you find them.
del nums_in_bin # allow gc to free old 256kB array
from bitarray import bitarray
my_bit_array = bitarray(65536) # 32 kB
my_bit_array.setall(0)
for N in four_billion_int_array:
if N // 65536 == bin_num:
my_bit_array[N % 65536] = 1
for i, bit in enumerate(my_bit_array):
if not bit:
print bin_num*65536 + i
break
Why make it so complicated? You ask for an integer not present in the file?
According to the rules specified, the only thing you need to store is the largest integer that you encountered so far in the file. Once the entire file has been read, return a number 1 greater than that.
There is no risk of hitting maxint or anything, because according to the rules, there is no restriction to the size of the integer or the number returned by the algorithm.
This can be solved in very little space using a variant of binary search.
Start off with the allowed range of numbers, 0 to 4294967295.
Calculate the midpoint.
Loop through the file, counting how many numbers were equal, less than or higher than the midpoint value.
If no numbers were equal, you're done. The midpoint number is the answer.
Otherwise, choose the range that had the fewest numbers and repeat from step 2 with this new range.
This will require up to 32 linear scans through the file, but it will only use a few bytes of memory for storing the range and the counts.
This is essentially the same as Henning's solution, except it uses two bins instead of 16k.
EDIT Ok, this wasn't quite thought through as it assumes the integers in the file follow some static distribution. Apparently they don't need to, but even then one should try this:
There are ≈4.3 billion 32-bit integers. We don't know how they are distributed in the file, but the worst case is the one with the highest Shannon entropy: an equal distribution. In this case, the probablity for any one integer to not occur in the file is
( (2³²-1)/2³² )⁴ ⁰⁰⁰ ⁰⁰⁰ ⁰⁰⁰ ≈ .4
The lower the Shannon entropy, the higher this probability gets on the average, but even for this worst case we have a chance of 90% to find a nonoccurring number after 5 guesses with random integers. Just create such numbers with a pseudorandom generator, store them in a list. Then read int after int and compare it to all of your guesses. When there's a match, remove this list entry. After having been through all of the file, chances are you will have more than one guess left. Use any of them. In the rare (10% even at worst case) event of no guess remaining, get a new set of random integers, perhaps more this time (10->99%).
Memory consumption: a few dozen bytes, complexity: O(n), overhead: neclectable as most of the time will be spent in the unavoidable hard disk accesses rather than comparing ints anyway.
The actual worst case, when we do not assume a static distribution, is that every integer occurs max. once, because then only
1 - 4000000000/2³² ≈ 6%
of all integers don't occur in the file. So you'll need some more guesses, but that still won't cost hurtful amounts of memory.
If you have one integer missing from the range [0, 2^x - 1] then just xor them all together. For example:
>>> 0 ^ 1 ^ 3
2
>>> 0 ^ 1 ^ 2 ^ 3 ^ 4 ^ 6 ^ 7
5
(I know this doesn't answer the question exactly, but it's a good answer to a very similar question.)
They may be looking to see if you have heard of a probabilistic Bloom Filter which can very efficiently determine absolutely if a value is not part of a large set, (but can only determine with high probability it is a member of the set.)
Based on the current wording in the original question, the simplest solution is:
Find the maximum value in the file, then add 1 to it.
Use a BitSet. 4 billion integers (assuming up to 2^32 integers) packed into a BitSet at 8 per byte is 2^32 / 2^3 = 2^29 = approx 0.5 Gb.
To add a bit more detail - every time you read a number, set the corresponding bit in the BitSet. Then, do a pass over the BitSet to find the first number that's not present. In fact, you could do this just as effectively by repeatedly picking a random number and testing if it's present.
Actually BitSet.nextClearBit(0) will tell you the first non-set bit.
Looking at the BitSet API, it appears to only support 0..MAX_INT, so you may need 2 BitSets - one for +'ve numbers and one for -'ve numbers - but the memory requirements don't change.
If there is no size limit, the quickest way is to take the length of the file, and generate the length of the file+1 number of random digits (or just "11111..." s). Advantage: you don't even need to read the file, and you can minimize memory use nearly to zero. Disadvantage: You will print billions of digits.
However, if the only factor was minimizing memory usage, and nothing else is important, this would be the optimal solution. It might even get you a "worst abuse of the rules" award.
If we assume that the range of numbers will always be 2^n (an even power of 2), then exclusive-or will work (as shown by another poster). As far as why, let's prove it:
The Theory
Given any 0 based range of integers that has 2^n elements with one element missing, you can find that missing element by simply xor-ing the known values together to yield the missing number.
The Proof
Let's look at n = 2. For n=2, we can represent 4 unique integers: 0, 1, 2, 3. They have a bit pattern of:
0 - 00
1 - 01
2 - 10
3 - 11
Now, if we look, each and every bit is set exactly twice. Therefore, since it is set an even number of times, and exclusive-or of the numbers will yield 0. If a single number is missing, the exclusive-or will yield a number that when exclusive-ored with the missing number will result in 0. Therefore, the missing number, and the resulting exclusive-ored number are exactly the same. If we remove 2, the resulting xor will be 10 (or 2).
Now, let's look at n+1. Let's call the number of times each bit is set in n, x and the number of times each bit is set in n+1 y. The value of y will be equal to y = x * 2 because there are x elements with the n+1 bit set to 0, and x elements with the n+1 bit set to 1. And since 2x will always be even, n+1 will always have each bit set an even number of times.
Therefore, since n=2 works, and n+1 works, the xor method will work for all values of n>=2.
The Algorithm For 0 Based Ranges
This is quite simple. It uses 2*n bits of memory, so for any range <= 32, 2 32 bit integers will work (ignoring any memory consumed by the file descriptor). And it makes a single pass of the file.
long supplied = 0;
long result = 0;
while (supplied = read_int_from_file()) {
result = result ^ supplied;
}
return result;
The Algorithm For Arbitrary Based Ranges
This algorithm will work for ranges of any starting number to any ending number, as long as the total range is equal to 2^n... This basically re-bases the range to have the minimum at 0. But it does require 2 passes through the file (the first to grab the minimum, the second to compute the missing int).
long supplied = 0;
long result = 0;
long offset = INT_MAX;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
result = result ^ (supplied - offset);
}
return result + offset;
Arbitrary Ranges
We can apply this modified method to a set of arbitrary ranges, since all ranges will cross a power of 2^n at least once. This works only if there is a single missing bit. It takes 2 passes of an unsorted file, but it will find the single missing number every time:
long supplied = 0;
long result = 0;
long offset = INT_MAX;
long n = 0;
double temp;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
n++;
result = result ^ (supplied - offset);
}
// We need to increment n one value so that we take care of the missing
// int value
n++
while (n == 1 || 0 != (n & (n - 1))) {
result = result ^ (n++);
}
return result + offset;
Basically, re-bases the range around 0. Then, it counts the number of unsorted values to append as it computes the exclusive-or. Then, it adds 1 to the count of unsorted values to take care of the missing value (count the missing one). Then, keep xoring the n value, incremented by 1 each time until n is a power of 2. The result is then re-based back to the original base. Done.
Here's the algorithm I tested in PHP (using an array instead of a file, but same concept):
function find($array) {
$offset = min($array);
$n = 0;
$result = 0;
foreach ($array as $value) {
$result = $result ^ ($value - $offset);
$n++;
}
$n++; // This takes care of the missing value
while ($n == 1 || 0 != ($n & ($n - 1))) {
$result = $result ^ ($n++);
}
return $result + $offset;
}
Fed in an array with any range of values (I tested including negatives) with one inside that range which is missing, it found the correct value each time.
Another Approach
Since we can use external sorting, why not just check for a gap? If we assume the file is sorted prior to the running of this algorithm:
long supplied = 0;
long last = read_int_from_file();
while (supplied = read_int_from_file()) {
if (supplied != last + 1) {
return last + 1;
}
last = supplied;
}
// The range is contiguous, so what do we do here? Let's return last + 1:
return last + 1;
Trick question, unless it's been quoted improperly. Just read through the file once to get the maximum integer n, and return n+1.
Of course you'd need a backup plan in case n+1 causes an integer overflow.
Check the size of the input file, then output any number which is too large to be represented by a file that size. This may seem like a cheap trick, but it's a creative solution to an interview problem, it neatly sidesteps the memory issue, and it's technically O(n).
void maxNum(ulong filesize)
{
ulong bitcount = filesize * 8; //number of bits in file
for (ulong i = 0; i < bitcount; i++)
{
Console.Write(9);
}
}
Should print 10 bitcount - 1, which will always be greater than 2 bitcount. Technically, the number you have to beat is 2 bitcount - (4 * 109 - 1), since you know there are (4 billion - 1) other integers in the file, and even with perfect compression they'll take up at least one bit each.
The simplest approach is to find the minimum number in the file, and return 1 less than that. This uses O(1) storage, and O(n) time for a file of n numbers. However, it will fail if number range is limited, which could make min-1 not-a-number.
The simple and straightforward method of using a bitmap has already been mentioned. That method uses O(n) time and storage.
A 2-pass method with 2^16 counting-buckets has also been mentioned. It reads 2*n integers, so uses O(n) time and O(1) storage, but it cannot handle datasets with more than 2^16 numbers. However, it's easily extended to (eg) 2^60 64-bit integers by running 4 passes instead of 2, and easily adapted to using tiny memory by using only as many bins as fit in memory and increasing the number of passes correspondingly, in which case run time is no longer O(n) but instead is O(n*log n).
The method of XOR'ing all the numbers together, mentioned so far by rfrankel and at length by ircmaxell answers the question asked in stackoverflow#35185, as ltn100 pointed out. It uses O(1) storage and O(n) run time. If for the moment we assume 32-bit integers, XOR has a 7% probability of producing a distinct number. Rationale: given ~ 4G distinct numbers XOR'd together, and ca. 300M not in file, the number of set bits in each bit position has equal chance of being odd or even. Thus, 2^32 numbers have equal likelihood of arising as the XOR result, of which 93% are already in file. Note that if the numbers in file aren't all distinct, the XOR method's probability of success rises.
Strip the white space and non numeric characters from the file and append 1. Your file now contains a single number not listed in the original file.
From Reddit by Carbonetc.
For some reason, as soon as I read this problem I thought of diagonalization. I'm assuming arbitrarily large integers.
Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.
You can use bit flags to mark whether an integer is present or not.
After traversing the entire file, scan each bit to determine if the number exists or not.
Assuming each integer is 32 bit, they will conveniently fit in 1 GB of RAM if bit flagging is done.
Just for the sake of completeness, here is another very simple solution, which will most likely take a very long time to run, but uses very little memory.
Let all possible integers be the range from int_min to int_max, and
bool isNotInFile(integer) a function which returns true if the file does not contain a certain integer and false else (by comparing that certain integer with each integer in the file)
for (integer i = int_min; i <= int_max; ++i)
{
if (isNotInFile(i)) {
return i;
}
}
For the 10 MB memory constraint:
Convert the number to its binary representation.
Create a binary tree where left = 0 and right = 1.
Insert each number in the tree using its binary representation.
If a number has already been inserted, the leafs will already have been created.
When finished, just take a path that has not been created before to create the requested number.
4 billion number = 2^32, meaning 10 MB might not be sufficient.
EDIT
An optimization is possible, if two ends leafs have been created and have a common parent, then they can be removed and the parent flagged as not a solution. This cuts branches and reduces the need for memory.
EDIT II
There is no need to build the tree completely too. You only need to build deep branches if numbers are similar. If we cut branches too, then this solution might work in fact.
I will answer the 1 GB version:
There is not enough information in the question, so I will state some assumptions first:
The integer is 32 bits with range -2,147,483,648 to 2,147,483,647.
Pseudo-code:
var bitArray = new bit[4294967296]; // 0.5 GB, initialized to all 0s.
foreach (var number in file) {
bitArray[number + 2147483648] = 1; // Shift all numbers so they start at 0.
}
for (var i = 0; i < 4294967296; i++) {
if (bitArray[i] == 0) {
return i - 2147483648;
}
}
As long as we're doing creative answers, here is another one.
Use the external sort program to sort the input file numerically. This will work for any amount of memory you may have (it will use file storage if needed).
Read through the sorted file and output the first number that is missing.
Bit Elimination
One way is to eliminate bits, however this might not actually yield a result (chances are it won't). Psuedocode:
long val = 0xFFFFFFFFFFFFFFFF; // (all bits set)
foreach long fileVal in file
{
val = val & ~fileVal;
if (val == 0) error;
}
Bit Counts
Keep track of the bit counts; and use the bits with the least amounts to generate a value. Again this has no guarantee of generating a correct value.
Range Logic
Keep track of a list ordered ranges (ordered by start). A range is defined by the structure:
struct Range
{
long Start, End; // Inclusive.
}
Range startRange = new Range { Start = 0x0, End = 0xFFFFFFFFFFFFFFFF };
Go through each value in the file and try and remove it from the current range. This method has no memory guarantees, but it should do pretty well.
2128*1018 + 1 ( which is (28)16*1018 + 1 ) - cannot it be a universal answer for today? This represents a number that cannot be held in 16 EB file, which is the maximum file size in any current file system.
I think this is a solved problem (see above), but there's an interesting side case to keep in mind because it might get asked:
If there are exactly 4,294,967,295 (2^32 - 1) 32-bit integers with no repeats, and therefore only one is missing, there is a simple solution.
Start a running total at zero, and for each integer in the file, add that integer with 32-bit overflow (effectively, runningTotal = (runningTotal + nextInteger) % 4294967296). Once complete, add 4294967296/2 to the running total, again with 32-bit overflow. Subtract this from 4294967296, and the result is the missing integer.
The "only one missing integer" problem is solvable with only one run, and only 64 bits of RAM dedicated to the data (32 for the running total, 32 to read in the next integer).
Corollary: The more general specification is extremely simple to match if we aren't concerned with how many bits the integer result must have. We just generate a big enough integer that it cannot be contained in the file we're given. Again, this takes up absolutely minimal RAM. See the pseudocode.
# Grab the file size
fseek(fp, 0L, SEEK_END);
sz = ftell(fp);
# Print a '2' for every bit of the file.
for (c=0; c<sz; c++) {
for (b=0; b<4; b++) {
print "2";
}
}
As Ryan said it basically, sort the file and then go over the integers and when a value is skipped there you have it :)
EDIT at downvoters: the OP mentioned that the file could be sorted so this is a valid method.
If you don't assume the 32-bit constraint, just return a randomly generated 64-bit number (or 128-bit if you're a pessimist). The chance of collision is 1 in 2^64/(4*10^9) = 4611686018.4 (roughly 1 in 4 billion). You'd be right most of the time!
(Joking... kind of.)

Resources