I'm using this marching cube algorithm to draw 3D isosurfaces (ported into C#, outputting MeshGeomtry3Ds, but otherwise the same). The resulting surfaces look great, but are taking a long time to calculate.
Are there any ways to speed up marching cubes? The most obvious one is to simply reduce the spatial sampling rate, but this reduces the quality of the resulting mesh. I'd like to avoid this.
I'm considering a two-pass system, where the first pass samples space much more coarsely, eliminating volumes where the field strength is well below my isolevel. Is this wise? What are the pitfalls?
Edit: the code has been profiled, and the bulk of CPU time is split between the marching cubes routine itself and the field strength calculation for each grid cell corner. The field calculations are beyond my control, so speeding up the cubes routine is my only option...
I'm still drawn to the idea of trying to eliminate dead space, since this would reduce the number of calls to both systems considerably.
I know this is a bit old, but I recently implemented Marching Cubes based on much the same source. There is a LOT of inefficiency here. At a minimum if you were doing something like
for (int x=0; x<densityArrayWidth; x++)
for (int z=0; z<densityArrayLength; z++)
for (int y=0; y<densityArrayHeight; y++)
Polygonize(Gridcell, isolevel, Triangles)
Look at how many times you'd be reallocating the edgeTable and Tritable! Those immediately need to move out to the overall class. I ditched the gridCell object as well, going directly from the points/values to the triangles.
In short it isn't just the algorithmic complexity, memory allocations (and in the base this does a huge amount of them) take time also.
Just in case anyone else ends up here, dead-space elimination through a coarser sampling rate makes virtually no difference at all. Any remotely safe (ie: allowing a border for sampling artifacts) coarser sampling ends up grabbing most of the grid anyway in any remotely non-trivial field.
Speeding up the underlying field evaluation (with heavy memoisation) seemed to mostly solve the performance problems.
Try marching tetrahedra instead -- the math is simpler, allowing you to consider fewer cases per cell.
each cube has 12 edges, if you go through each cube and find 12 intersection points, you are doing 4 times too many calculations for intersection points- you have to only use 3 edges in the bottom left corner of each cube, with an extra row in the top right corner of the zone, and then use a special upgrade to access all the values that you have found. I'm going to do a topic on this because it needs to be discussed and it's complicated.
Also, testing for areas in space that need polygons, by assessing the ISO level using Octree, and skipping areas far from the ISO level.
I had a look at propagation, but it isn't that reliable and efficient.
Related
Let's say I have a static object and a movable object which can be moved and rotated, what is the best way to very quickly calculate the difference of those two meshes?
Precision here is not so important, speed is though, since I have to use it in the update phase of the main loop.
Maybe, given the strict time limit, modifying the static object's vertices and triangles directly is to be preferred. Should voxels be preferred here instead?
EDIT: The use case is an interactive viewer of a wood panel (parallelepiped) and a milling tool (a revolved contour, some like these).
The milling tool can be rotated and can work oriented at varying degrees (5 axes).
EDIT 2: The milling tool may not pierce the wood.
EDIT 3: The panel can be as large as 6000x2000mm and the milling tool can be as little as 3x3mm.
If you need the best possible performance then the generic CSG approach may be too slow for you (but still depending on meshes and target hardware).
You may try to find some specialized algorithm, coded for your specific meshes. Let's say you have two cubes - one is a 'wall' and second is a 'window' - then it's much easier/faster to compute resulting mesh with your custom code, than full CSG. Unfortunately you don't say anything about your meshes.
You may also try to make it a 2D problem, use some simplified meshes to compute the result that will 'look like expected'.
If the movement of your meshes is somehow limited you may be able to precompute full or partial results for different mesh combinations to use at runtime.
You may use some space partitioning like BSP or Octrees to divide your meshes during precomputing stage. This way you could split one big problem into many smaller ones that may be faster to compute or at least to make the solution multi-threaded.
You've said about voxels - if you're fine with their look and limits you may voxelize both meshes and just read and mix two voxel values, instead of one. Then you would triangulate it using algorithm like Marching Cubes.
Those are all just some general ideas but we'll need better info to help you more.
EDIT:
With your description it looks like you're modeling some bas-relief, so you may use Relief Mapping to fake this effect. It's based on a height map stored as a texture, so you'd need to just update few pixels of the texture and render a plane. It should be quite fast compared to other approaches, the downside is that it's based on height map, so you can't get shapes that Tee Slot or Dovetail cutter would create.
If you want the real geometry then I'd start from a simple plane as your panel (don't need full 3D yet, just a front surface) and divide it with a 2D grid. The grid element should be slightly bigger than the drill size and every element is a separate mesh. In the frame update you'd cut one, or at most 4 elements that are touched with a drill. Thanks to this grid all your cutting operations will be run with very simple mesh so they may work with your intended speed. You can also cut all current elements in separate threads. After the cutting is done you'll upload to the GPU only currently modified elements so you may end up with quite complex mesh but small modifications per frame.
Task
Perform many hit-tests on polygons. I have about 10,000 polygons with 1,000 points each. About 100,000,000 hit-tests will be performed against these polygons. The polygons may touch each other but never overlap.
Solution
Simple point-in-polygon test for every hit-test.
Problem
Far too slow.
Improvement
Rasterize the polygons and check which polygon the pixel of the hit-tests belongs to.
New problem
Rasterization of the polygons is slow. I'm using this algorithm: http://alienryderflex.com/polygon_fill/
Idea
Rasterize the polygons on the GPU since it's optimized for this task and can perform it in hardware.
Question
What do you think about my idea and can you give me advice where to start? Will it lead to high performance?
Sidenote
The area is sparsly covered with polygons. I want to maintain a list of pixels instead of a bitmap.
This answer suggests to use the GPU if you can:
How can I determine whether a 2D Point is within a Polygon?
Your case seems to be dominated by the hit tests, which are O(1) with rasterization. GPUs are able to rasterize to memory, but I am not aware of any GPU / rendering API that is able to work with a list of points. Also, with a list of points, you may lose the O(1) runtime for the hit check. You may be able to save some memory by using a 16 bit raster buffer (not sure if that's feasible with your GPU setup -- but you only seem to need 10000 colors).
Not sure if this may or may not be valid here on SO, but I was hoping someone can advise of the correct algorithm to use.
I have the following RAW data.
In the image you can see "steps". Essentially I wish to get these steps, but then get a moving average of all the data between. In the following image, you can see the moving average:
However you will notice that at the "steps", the moving average decreases the gradient where I wish to keep the high vertical gradient.
Is there any smoothing technique that will take into account a large vertical "offset", but smooth the other data?
Yup, I had to do something similar with images from a spacecraft.
Simple technique #1: use a median filter with a modest width - say about 5 samples, or 7. This provides an output value that is the median of the corresponding input value and several of its immediate neighbors on either side. It will get rid of those spikes, and do a good job preserving the step edges.
The median filter is provided in all number-crunching toolkits that I know of such as Matlab, Python/Numpy, IDL etc., and libraries for compiled languages such as C++, Java (though specific names don't come to mind right now...)
Technique #2, perhaps not quite as good: Use a Savitzky-Golay smoothing filter. This works by effectively making least-square polynomial fits to the data, at each output sample, using the corresponding input sample and a neighborhood of points (much like the median filter). The SG smoother is known for being fairly good at preserving peaks and sharp transistions.
The SG filter is usually provided by most signal processing and number crunching packages, but might not be as common as the median filter.
Technique #3, the most work and requiring the most experience and judgement: Go ahead and use a smoother - moving box average, Gaussian, whatever - but then create an output that blends between the original with the smoothed data. The blend, controlled by a new data series you create, varies from all-original (blending in 0% of the smoothed) to all-smoothed (100%).
To control the blending, start with an edge detector to detect the jumps. You may want to first median-filter the data to get rid of the spikes. Then broaden (dilation in image processing jargon) or smooth and renormalize the the edge detector's output, and flip it around so it gives 0.0 at and near the jumps, and 1.0 everywhere else. Perhaps you want a smooth transition joining them. It is an art to get this right, which depends on how the data will be used - for me, it's usually images to be viewed by Humans. An automated embedded control system might work best if tweaked differently.
The main advantage of this technique is you can plug in whatever kind of smoothing filter you like. It won't have any effect where the blend control value is zero. The main disadvantage is that the jumps, the small neighborhood defined by the manipulated edge detector output, will contain noise.
I recommend first detecting the steps and then smoothing each step individually.
You know how to do the smoothing, and edge/step detection is pretty easy also (see here, for example). A typical edge detection scheme is to smooth your data and then multiply/convolute/cross-corelate it with some filter (for example the array [-1,1] that will show you where the steps are). In a mathematical context this can be viewed as studying the derivative of your plot to find inflection points (for some of the filters).
An alternative "hackish" solution would be to do a moving average but exclude outliers from the smoothing. You can decide what an outlier is by using some threshold t. In other words, for each point p with value v, take x points surrounding it and find the subset of those points which are between v - t and v + t, and take the average of these points as the new value of p.
I am thinking of implement a image processing based solution for industrial problem.
The image is consists of a Red rectangle. Inside that I will see a matrix of circles. The requirement is to count the number of circles under following constraints. (Real application : Count the number of bottles in a bottle casing. Any missing bottles???)
The time taken for the operation should be very low.
I need to detect the red rectangle as well. My objective is to count the
items in package and there are no
mechanism (sensors) to trigger the
camera. So camera will need to capture
the photos continuously but the
program should have a way to discard
the unnecessary images.
Processing should be realtime.
There may be a "noise" in image capturing. You may see ovals instead of circles.
My questions are as follows,
What is the best edge detection algorithm that matches with the given
scenario?
Are there any other mechanisms that I can use other than the edge
detection?
Is there a big impact between the language I use and the performance of
the system?
AHH - YOU HAVE NOW TOLD US THE BOTTLES ARE IN FIXED LOCATIONS!
IT IS AN INCREDIBLY EASIER PROBLEM.
All you have to do is look at each of the 12 spots and see if there is a black area there or not. Nothing could be easier.
You do not have to do any edge or shape detection AT ALL.
It's that easy.
You then pointed out that the box might be rotatated, things could be jiggled. That the box might be rotated a little (or even a lot, 0 to 360 each time) is very easily dealt with. The fact that the bottles are in "slots" (even if jiggled) massively changes the nature of the problem. You're main problem (which is easy) is waiting until each new red square (crate) is centered under the camera. I just realised you meant "matrix" literally and specifically in the sentence in your original questions. That changes everything totally, compared to finding a disordered jumble of circles. Finding whether or not a blob is "on" at one of 12 points, is a wildly different problem to "identifying circles in an image". Perhaps you could post an image to wrap up the question.
Finally I believe Kenny below has identified the best solution: blob analysis.
"Count the number of bottles in a bottle casing"...
Do the individual bottles sit in "slots"? ie, there are 4x3 = 12 holes, one for each bottle.
In other words, you "only" have to determine if there is, or is not, a bottle in each of the 12 holes.
Is that correct?
If so, your problem is incredibly easier than the more general problem of a pile of bottles "anywhere".
Quite simply, where do we see the bottles from? The top, sides, bottom, or? Do we always see the tops/bottoms, or are they mixed (ie, packed top-to-tail). These issues make huge, huge differences.
Surf/Sift = overkill in this case you certainly don't need it.
If you want real time speed (about 20fps+ on a 800x600 image) I recommend using Cuda to implement edge detection using a standard filter scheme like sobel, then implement binarization + image closure to make sure the edges of circles are not segmented apart.
The hardest part will be fitting circles. This is assuming you already got to the step where you have taken edges and made sure they are connected using image closure (morphology.) At this point I would proceed as follows:
run blob analysis/connected components to segment out circles that do not touch. If circles can touch the next step will be trickier
for each connected componet/blob fit a circle or rectangle using RANSAC which can run in realtime (as opposed to Hough Transform which I believe is very hard to run in real time.)
Step 2 will be much harder if you can not segment the connected components that form circles seperately, so some additional thought should be invested on how to guarantee that condition.
Good luck.
Edit
Having thought about it some more, I feel like RANSAC is ideal for the case where the circle connected components do touch. RANSAC should hypothetically fit the circle to only a part of the connected component (due to its ability to perform well in the case of mostly outlier points.) This means that you could add an extra check to see if the fitted circle encompasses the entire connected component and if it does not then rerun RANSAC on the portion of the connected component that was left out. Rinse and repeat as many times as necessary.
Also I realize that I say circle but you could just as easily fit an ellipse instead of circles using RANSAC.
Also, I'd like to comment that when I say CUDA is a good choice I mean CUDA is a good choice to implement the sobel filter + binirization + image closing on. Connected components and RANSAC are probably best left to the CPU, but you can try pushing them onto CUDA though I don't know how much of an advantage a GPU will give you for those 2 over a CPU.
For the circles, try the Hough transform.
other mechanisms: dunno
Compiled languages will possibly be faster.
SIFT should have a very good response to circular objects - it is patented, though. GLOHis a similar algorithm, but I do not know if there are any implementations readily available.
Actually, doing some more research, SURF is an improved version of SIFT with quite a few implementations available, check out the links on the wikipedia page.
Sum of colors + convex hull to detect boundary. You need, mostly, 4 corners of a rectangle, and not it's sides?
No motion, no second camera, a little choice - lot of math methods against a little input (color histograms, color distribution matrix). Dunno.
Java == high memory consumption, Lisp == high brain consumption, C++ == memory/cpu/speed/brain use optimum.
If the contrast is good, blob analysis is the algorithm for the job.
I'm trying to write a simple tracking routine to track some points on a movie.
Essentially I have a series of 100-frames-long movies, showing some bright spots on dark background.
I have ~100-150 spots per frame, and they move over the course of the movie. I would like to track them, so I'm looking for some efficient (but possibly not overkilling to implement) routine to do that.
A few more infos:
the spots are a few (es. 5x5) pixels in size
the movement are not big. A spot generally does not move more than 5-10 pixels from its original position. The movements are generally smooth.
the "shape" of these spots is generally fixed, they don't grow or shrink BUT they become less bright as the movie progresses.
the spots don't move in a particular direction. They can move right and then left and then right again
the user will select a region around each spot and then this region will be tracked, so I do not need to automatically find the points.
As the videos are b/w, I though I should rely on brigthness. For instance I thought I could move around the region and calculate the correlation of the region's area in the previous frame with that in the various positions in the next frame. I understand that this is a quite naïve solution, but do you think it may work? Does anyone know specific algorithms that do this? It doesn't need to be superfast, as long as it is accurate I'm happy.
Thank you
nico
Sounds like a job for Blob detection to me.
I would suggest the Pearson's product. Having a model (which could be any template image), you can measure the correlation of the template with any section of the frame.
The result is a probability factor which determine the correlation of the samples with the template one. It is especially applicable to 2D cases.
It has the advantage to be independent from the sample absolute value, since the result is dependent on the covariance related with the mean of the samples.
Once you detect an high probability, you can track the successive frames in the neightboor of the original position, and select the best correlation factor.
However, the size and the rotation of the template matter, but this is not the case as I can understand. You can customize the detection with any shape since the template image could represent any configuration.
Here is a single pass algorithm implementation , that I've used and works correctly.
This has got to be a well reasearched topic and I suspect there won't be any 100% accurate solution.
Some links which might be of use:
Learning patterns of activity using real-time tracking. A paper by two guys from MIT.
Kalman Filter. Especially the Computer Vision part.
Motion Tracker. A student project, which also has code and sample videos I believe.
Of course, this might be overkill for you, but hope it helps giving you other leads.
Simple is good. I'd start doing something like:
1) over a small rectangle, that surrounds a spot:
2) apply a weighted average of all the pixel coordinates in the area
3) call the averaged X and Y values the objects position
4) while scanning these pixels, do something to approximate the bounding box size
5) repeat next frame with a slightly enlarged bounding box so you don't clip spot that moves
The weight for the average should go to zero for pixels below some threshold. Number 4 can be as simple as tracking the min/max position of anything brighter than the same threshold.
This will of course have issues with spots that overlap or cross paths. But for some reason I keep thinking you're tracking stars with some unknown camera motion, in which case this should be fine.
I'm afraid that blob tracking is not simple, not if you want to do it well.
Start with blob detection as genpfault says.
Now you have spots on every frame and you need to link them up. If the blobs are moving independently, you can use some sort of correspondence algorithm to link them up. See for instance http://server.cs.ucf.edu/~vision/papers/01359751.pdf.
Now you may have collisions. You can use mixture of gaussians to try to separate them, give up and let the tracks cross, use any other before-and-after information to resolve the collisions (e.g. if A and B collide and A is brighter before and will be brighter after, you can keep track of A; if A and B move along predictable trajectories, you can use that also).
Or you can collaborate with a lab that does this sort of stuff all the time.