What is a Windows Handle? - windows

What is a "Handle" when discussing resources in Windows? How do they work?

It's an abstract reference value to a resource, often memory or an open file, or a pipe.
Properly, in Windows, (and generally in computing) a handle is an abstraction which hides a real memory address from the API user, allowing the system to reorganize physical memory transparently to the program. Resolving a handle into a pointer locks the memory, and releasing the handle invalidates the pointer. In this case think of it as an index into a table of pointers... you use the index for the system API calls, and the system can change the pointer in the table at will.
Alternatively a real pointer may be given as the handle when the API writer intends that the user of the API be insulated from the specifics of what the address returned points to; in this case it must be considered that what the handle points to may change at any time (from API version to version or even from call to call of the API that returns the handle) - the handle should therefore be treated as simply an opaque value meaningful only to the API.
I should add that in any modern operating system, even the so-called "real pointers" are still opaque handles into the virtual memory space of the process, which enables the O/S to manage and rearrange memory without invalidating the pointers within the process.

A HANDLE is a context-specific unique identifier. By context-specific, I mean that a handle obtained from one context cannot necessarily be used in any other aribtrary context that also works on HANDLEs.
For example, GetModuleHandle returns a unique identifier to a currently loaded module. The returned handle can be used in other functions that accept module handles. It cannot be given to functions that require other types of handles. For example, you couldn't give a handle returned from GetModuleHandle to HeapDestroy and expect it to do something sensible.
The HANDLE itself is just an integral type. Usually, but not necessarily, it is a pointer to some underlying type or memory location. For example, the HANDLE returned by GetModuleHandle is actually a pointer to the base virtual memory address of the module. But there is no rule stating that handles must be pointers. A handle could also just be a simple integer (which could possibly be used by some Win32 API as an index into an array).
HANDLEs are intentionally opaque representations that provide encapsulation and abstraction from internal Win32 resources. This way, the Win32 APIs could potentially change the underlying type behind a HANDLE, without it impacting user code in any way (at least that's the idea).
Consider these three different internal implementations of a Win32 API that I just made up, and assume that Widget is a struct.
Widget * GetWidget (std::string name)
{
Widget *w;
w = findWidget(name);
return w;
}
void * GetWidget (std::string name)
{
Widget *w;
w = findWidget(name);
return reinterpret_cast<void *>(w);
}
typedef void * HANDLE;
HANDLE GetWidget (std::string name)
{
Widget *w;
w = findWidget(name);
return reinterpret_cast<HANDLE>(w);
}
The first example exposes the internal details about the API: it allows the user code to know that GetWidget returns a pointer to a struct Widget. This has a couple of consequences:
the user code must have access to the header file that defines the Widget struct
the user code could potentially modify internal parts of the returned Widget struct
Both of these consequences may be undesirable.
The second example hides this internal detail from the user code, by returning just void *. The user code doesn't need access to the header that defines the Widget struct.
The third example is exactly the same as the second, but we just call the void * a HANDLE instead. Perhaps this discourages user code from trying to figure out exactly what the void * points to.
Why go through this trouble? Consider this fourth example of a newer version of this same API:
typedef void * HANDLE;
HANDLE GetWidget (std::string name)
{
NewImprovedWidget *w;
w = findImprovedWidget(name);
return reinterpret_cast<HANDLE>(w);
}
Notice that the function's interface is identical to the third example above. This means that user code can continue to use this new version of the API, without any changes, even though the "behind the scenes" implementation has changed to use the NewImprovedWidget struct instead.
The handles in these example are really just a new, presumably friendlier, name for void *, which is exactly what a HANDLE is in the Win32 API (look it up at MSDN). It provides an opaque wall between the user code and the Win32 library's internal representations that increases portability, between versions of Windows, of code that uses the Win32 API.

A HANDLE in Win32 programming is a token that represents a resource that is managed by the Windows kernel. A handle can be to a window, a file, etc.
Handles are simply a way of identifying a particulate resource that you want to work with using the Win32 APIs.
So for instance, if you want to create a Window, and show it on the screen you could do the following:
// Create the window
HWND hwnd = CreateWindow(...);
if (!hwnd)
return; // hwnd not created
// Show the window.
ShowWindow(hwnd, SW_SHOW);
In the above example HWND means "a handle to a window".
If you are used to an object oriented language you can think of a HANDLE as an instance of a class with no methods who's state is only modifiable by other functions. In this case the ShowWindow function modifies the state of the Window HANDLE.
See Handles and Data Types for more information.

A handle is a unique identifier for an object managed by Windows. It's like a pointer, but not a pointer in the sence that it's not an address that could be dereferenced by user code to gain access to some data. Instead a handle is to be passed to a set of functions that can perform actions on the object the handle identifies.

So at the most basic level a HANDLE of any sort is a pointer to a pointer or
#define HANDLE void **
Now as to why you would want to use it
Lets take a setup:
class Object{
int Value;
}
class LargeObj{
char * val;
LargeObj()
{
val = malloc(2048 * 1000);
}
}
void foo(Object bar){
LargeObj lo = new LargeObj();
bar.Value++;
}
void main()
{
Object obj = new Object();
obj.val = 1;
foo(obj);
printf("%d", obj.val);
}
So because obj was passed by value (make a copy and give that to the function) to foo, the printf will print the original value of 1.
Now if we update foo to:
void foo(Object * bar)
{
LargeObj lo = new LargeObj();
bar->val++;
}
There is a chance that the printf will print the updated value of 2. But there is also the possibility that foo will cause some form of memory corruption or exception.
The reason is this while you are now using a pointer to pass obj to the function you are also allocating 2 Megs of memory, this could cause the OS to move the memory around updating the location of obj. Since you have passed the pointer by value, if obj gets moved then the OS updates the pointer but not the copy in the function and potentially causing problems.
A final update to foo of:
void foo(Object **bar){
LargeObj lo = LargeObj();
Object * b = &bar;
b->val++;
}
This will always print the updated value.
See, when the compiler allocates memory for pointers it marks them as immovable, so any re-shuffling of memory caused by the large object being allocated the value passed to the function will point to the correct address to find out the final location in memory to update.
Any particular types of HANDLEs (hWnd, FILE, etc) are domain specific and point to a certain type of structure to protect against memory corruption.

A handle is like a primary key value of a record in a database.
edit 1: well, why the downvote, a primary key uniquely identifies a database record, and a handle in the Windows system uniquely identifies a window, an opened file, etc, That's what I'm saying.

Think of the window in Windows as being a struct that describes it. This struct is an internal part of Windows and you don't need to know the details of it. Instead, Windows provides a typedef for pointer to struct for that struct. That's the "handle" by which you can get hold on the window.,

Related

CPP guidelines: Reseating a smart pointer

R.33 is confusing me. Can someone care to explain further? The meaning of "reseating" doesn't seem to work here. ??
R.33: Take a unique_ptr& parameter to express that a function reseats thewidget
Reason Using unique_ptr in this way both documents and enforces the function call’s reseating semantics.
Note “reseat” means “making a pointer or a smart pointer refer to a different object.”
Example
void reseat(unique_ptr&); // "will" or "might" reseat pointer
Example, bad
void thinko(const unique_ptr&); // usually not what you want
From the CPP guideline:
"reseat" means "making a reference or a smart pointer refer to a different object."
From modernescpp.com:
Let's look at each function signature in isolation. What does this
mean from the function perspective?
void share(std::shared_ptr<Widget> shaWid)
I'm for the lifetime of the function body a shared owner of the
Widget. At the begin of the function body, I will increase the
reference counter; at the end of the function, I will decrease the
reference counter; therefore, the Widget will stay alive, as long as I
use it.
void reseat(std::shared_ptr<Widget>& shaWid)
I'm not a shared owner of the Widget, because I will not change the
reference counter. I have not guaranteed that the Widget will stay
alive during the execution of my function, but I can reseat the
resource. A non-const lvalue reference is more like: I borrow the
resource and can reseat it.
void mayShare(const std::shared_ptr<Widget>& shaWid)
I only borrow the resource. Either can I extend the lifetime of the
resource nor can I reseat the resource. To be honest, you should use a
pointer (Widget*) or a reference (Widget&) as a parameter instead,
because there is no added value in using a std::shared_ptr.

GetFunctionPointerForDelegate and pin pointer

Hi this is in regard to some code given in C++ CLI i action which i have trouble understanding.The code is given below
delegate bool EnumWindowsDelegateProc(
IntPtr hwnd,IntPtr lParam);
ref class WindowEnumerator
{
private:
EnumWindowsDelegateProc^ _WindowFound;
public:
WindowEnumerator(EnumWindowsDelegateProc^ handler)
{
_WindowFound = handler;
}
void Init()
{
pin_ptr<EnumWindowsDelegateProc^> tmp = &_WindowFound;
EnumWindows((WNDENUMPROC)
Marshal::GetFunctionPointerForDelegate(
_WindowFound).ToPointer(), 0);
}
};
In the above code _WindowFound has been pinned so GC wont moove it.The Question is
Isn't tmp only valid inside Int() thus _WindowFound pinned only
during call to Int() ?
If thats the case Isn't there a chance the delegate location in
memory might change at the time EnumWindows calls it as a function
pointer?
A pin_ptr<> automatically unpins, RAII-style, when code execution leaves the block that it is declared it. So it will be pinned for the entire body of the Init() method in your code. So your 2 bullet does not apply.
It is notable that the code is in not infact correct. It works, but by accident. Marshal.GetFunctionPointerForDelegate() invokes the stub compiler to auto-generate the native code that's needed to allow the native code to invoke the delegate target. The lifetime of that stub is controlled by the lifetime of the delegate object. In other words, as soon as the delegate object gets garbage collected, the stub will be destroyed as well.
Pinning the delegate object does not in any way affect the stub. It is already unmovable, the GC never moves code. It works by accident because pinning an object requires creating an extra GC handle for the object (GCHandle::Alloc), enough to prevent premature collection.
It doesn't make an enormous difference in this kind of code, EnumWindows() is slow anyway. Not necessarily the case when you call other native code that requires a callback, avoiding pinning should always be a goal in general. All you have to do is let the jitter see a reference to the delegate object beyond the code where it can still be used, like this:
void Init() {
EnumWindows((WNDENUMPROC)
Marshal::GetFunctionPointerForDelegate(
_WindowFound).ToPointer(), 0);
GC::KeepAlive(_WindowFound);
}
Very efficient, GC::KeepAlive() doesn't generate any code, it just tells the jitter to extend the lifetime of the _WIndowFound reference so it can't be collected while EnumWindows() is executing. Even that is overkill in this specific case since somebody is going to have a reference to the WindowEnumerator object in order to retrieve _WindowFound, but better safe than sorry.

Convert C++/CLI delegate^ to long and back

How can I convert PaintDelegate^ to a long to be sent as the refCon param so that once inside the TrackTransferCB I can convert it back and invoke it? The long it is converted to doesn't have to mean anything as long as I can convert it back to the delegate.
This is the general idea:
PaintDelegate^ paintDel = ...;
refCon = (long)paintDel; // This conversion doesn't work
...
static OSErr TrackTransferCB(Track t, long refCon) {
(PaintDelegate^)refCon->Invoke(); // This conversion doesn't work
}
Which conversions will work this way?
Delegate objects are garbage collected objects, just like any other non-value type in .NET. Which means that the garbage collector can move them. Which means that getting their address cannot work, the address will change when the GC compacts the heap.
I'm guessing you need to do this to pass unmanaged code some kind of reference to the delegate. A handle is the typical solution. Just keep a counter around that you increment each time you create a new object. Store it in a Dictionary<int, PaintDelegate^>^ and pass the counter value to the unmanaged code.
Marshal::GetFunctionPointerForDelegate() is another approach, the unmanaged code can now directly invoke the delegate target. Not a long but a void*. You do however still have to store the delegate object somewhere safe so it won't get garbage collected. I recommend the former.

State of object after std::move construction

Is it legal/proper c++0x to leave an object moved for the purpose of move-construction in a state that can only be destroyed? For instance:
class move_constructible {...};
int main()
{
move_constructible x;
move_constructible y(std::move(x));
// From now on, x can only be destroyed. Any other method will result
// in a fatal error.
}
For the record, I'm trying to wrap in a c++ class a c struct with a pointer member which is always supposed to be pointing to some allocated memory area. All the c library API relies on this assumption. But this requirement prevents to write a truly cheap move constructor, since in order for x to remain a valid object after the move it will need its own allocated memory area. I've written the destructor in such a way that it will first check for NULL pointer before calling the corresponding cleanup function from the c API, so that at least the struct can be safely destroyed after the move.
Yes, the language allows this. In fact it was one of the purposes of move semantics. It is however your responsibility to ensure that no other methods get called and/or provide proper diagnostics. Note, usually you can also use at least the assignment operator to "revive" your variable, such as in the classical example of swapping two values.
See also this question

How can I stop execution in the Visual Studio Debugger when a private member variable changes value?

Let's say my class has a private integer variable called count.
I've already hit a breakpoint in my code. Now before I press continue, I want to make it so the debugger will stop anytime count gets a new value assigned to it.
Besides promoting count to a field and setting a breakpoint on the set method of the field, is there any other way to do this?
What you're looking for is not possible in managed code. In C++ this is known as data break point. It allows you to break whenever a block of memory is altered by the running program. But this is only available in pure native C++ code.
A short version of why this is not implemented is that it's much harder in managed code. Native code is nice and predictable. You create memory and it doesn't move around unless you create a new object (or explicitly copy memory).
Managed code is much more complex because it's a garbage collected language. The CLR commonly moves objects around in memory. Therefore simply watching a bit of memory is not good enough. It requires GC interaction.
This is just one of the issues with implementing managed break points.
I assume you're trying to do this because you want to see where the change in value came from. You already stated the way I've always done it: create a property, and break on the set accessor (except that you must then always use that set accessor for this to work).
Basically, I'd say that since a private field is only storage you can't break on it because the private field isn't a breakable instruction.
The only way I can think do do this, is to right click on the variable, and select "Find all references". Once it finds all the references, you can create a new breakpoint at each point in the code where the variable is assigned a value. This would probable work pretty well, unless you were passing the variable in by reference to another function and changing the value in there. In that case, you'd need some way of watching a specific point in memory to see when it changed. I'm not sure if such a tool exists in VS.
Like ChrisW commented. You can set a 'Data Breakpoint' but only for native (non-managed) code. The garbage collector will move allocated memory blocks around when the garbage collector runs. Thus, data breakpoints are not possible for managed code.
Otherwise, no. You must encapsulate access to your item for which you want to 'break on modify'. Since its a private member already, I suggest following Kibbee's suggestion of setting breakpoints wherever its used.
Besides promoting count to a field and setting a breakpoint on the set method of the field, is there any other way to do this?
Make it a property of a different class, create an instance of the class, and set a breakpoint on the property.
Instead of ...
test()
{
int i = 3;
...etc...
i = 4;
}
... have ...
class Int
{
int m;
internal Int(int i) { m = i; }
internal val { set { m = value; } get { return m; } }
}
test()
{
Int i = new Int(3);
...etc...
i.val = 4;
}
The thing is that, using C#, the actual memory location of everything is being moved continually: and therefore the debugger can't easily use the CPU's 'break on memory access' debugging register, and it's easier for the debugger to, instead, implement a code-location breakpoint.

Resources