Best way of emulating enum in Ruby? (part two) - ruby

I'm new to Ruby so forgive me if this is something obvious..
I've made a class like so
class Element
attr_accessor :type
:type_integer
:type_string
end
(this is really just an example, not actual code)
Well, I've read Enums in Ruby and I'd prefer to go the Symbols route of having something like enumerations in other languages. I have a problem though, how can I keep my global scope clear while implementing this. What I'm wanting to be able to do is something like
e=Element.new
e.type=Element.type_integer
or something pretty simple and straight forward like that.

Symbols don't do anything to the global (or any other) scope (i.e. no variables or constants or anything else gets defined when you use symbols), so I guess the answer is: just use symbols and the global scope will be kept clear.
If you want to use e.type=Element.type_integer, while still using symbols, you could do:
class Element
def self.type_integer
:type_integer
end
end
Although I fail to see the upside vs. just using e.type = :type_integer directly.

Related

Is there a gem that provides support to detect changes to native ruby type instances?

Although I agree that extending native types and objects is a bad practice, inheriting from them should not be.
In a supposedly supporting gem (that I could not find), the way that the native types were to be used would be as follows:
require 'cool-unkown-light-gem'
class MyTypedArray < CoolArray # would love to directly < Array
def initialize(*args)
super(*args)
# some inits for DataArray
#caches_init = false
end
def name?(name)
init_caches unless !#caches_init
!!#cache_by_name[name]
end
def element(name)
init_caches unless !#caches_init
#cache_by_name[name]
end
private
# overrides the CoolArray method:
# CoolArray methods that modify self will call this method
def on_change
#caches_init = false
super
end
def init_caches
return #cache_by_name if #caches_init
#caches_init = true
#cache_by_name = self.map do |elem|
[elem.unique_name, elem]
end.to_h
end
end
Any method of the parent class not overridden by the child class that modifies self would call, let's say (in this case), the on_change function. Which would allow to do not have to re-define every single one of those methods to avoid losing track on changes.
Let's say the MyTypedArray would array Foo objects:
class Foo
attr_reader :unique_name
def initialize(name)
#unique_name = name
end
end
a short example of the expected behaviour of its usage:
my_array = MyTypedArray.new
my_array.push( Foo.new("bar") ).push( Foo.new("baz") )
my_array.element("bar").unique_name
# => "bar"
my_array.shift # a method that removes the first element from self
my_array.element("bar").unique_name
# => undefined method `unique_name' for nil:NilClass (NoMethodError)
my_array.name?("bar")
# => false
I understand that we should search for immutable classes, yet those native types support changes on the same object and we want a proper way to do an inheritance that is as brief and easy as possible.
Any thoughts, approaches, or recommendations are more than welcome, of course. I do not think I am the only one that have thought on this.
The reason why I am searching for a maintained gem is because different ruby versions may offer different supported methods or options for native types / classes.
[Edit]
The aim of the above is to figure out a pattern that works. I could just follow the rules and suggestions of other posts, yet would not get things work the way I am intended and when I see it proper (a coding language is made by and for humans, and not humans made for coding languages). I know everyone is proud of their achievements in learning, developing and making things shaped in a pattern that is well known in the community.
The target of the above is because all the methods of Array are more than welcome. I do not care if in the version 20 of Ruby they remove some methods of Array. By then my application will be obsolete or someone will achieve the same result in far less code.
Why Array?
Because the order matters.
Why an internal Hash?
Because for the usage I want to make of it, in overall, the cost of building the hash compensates the optimization it offers.
Why not just include Enumerable?
Because we just reduce the number of methods that change the object, but we do not actually have a pattern that allows to change #caches_init to false, so the Hash is rebuilt on next usage (so same problem as with Array)
Why not just whitelist and include target Array methods?
Because that does not get me where I want to be. What if I want anyone to still use pop, or shift but I do not want to redefine them, or even having to bother to manage my mixins and constantly having to use responds_to?? (perhaps that exercise is good to improve your skills in coding and read code from other people, but that is not what it should be)
Where I want to be?
I want to be in a position that I can re-use / inherit any, I repeat, any class (no matter if it is native or not). That is basic for an OOP language. And if we are not talking about an OOP language (but just some sugar at the top of it to make it appear as OOP), then let's keep ourselves open to analyse patterns that should work well (no matter if they are odd - for me is more odd that there are no intermediate levels; which is symptom of many conventional patterns, which in turn is symptom of poor support for certain features that are more widely required than what is accepted).
Why should a gem offer the above?
Well, let's humble it. The above is a very simple case (and even though not covered). You may gain in flexibility at some point by using what some people want to call the Ruby way. But at a cost when you move to bigger architectures. What if I want to create intermediate classes to inherit from? Enriched native classes that boost simple code, yet keeping it aligned with the language. It is easier to say this is not the Ruby way than trying to make the language closer to something that escalates well from the bottom.
I am not surprised that Rails and Ruby are almost "indistinctly" used by many. Because at some point, without some Rails support, what you have with Ruby is a lot of trouble. As, consequently, I am not surprised that Rails is so maintained.
Why should I redefine a pop, or a last, or first methods? For what? They are already implemented.
Why should I whitelist methods and create mixins? is that a object or method oriented programming?
Anyway... I do not expect anyone to share my view on this. I do see other patterns, and I will keep allowing my mind to find them. If anyone is open enough, please, feel free to share. Someone may criticize the approach and be right, but if you got there is because it worked.
To answer your question as it is written, no, there is no gem for this. This is not a possibility of the language, either in pure Ruby or in C which is used internally.
There is no mechanism in detect when self is changed, nor any way to detect if a method is pure (does not change self) or impure (does change self). It seems you want a way to "automatically" be able to know when a method is one or the other, and that, to put simply, is just not possible, nor is it in any language that I am aware of.
Internally (using your example) an Array is backed by a RArray structure in C. A struct is simple storage space: a way to look at an arbitrary block of memory. C does not care how you choose to look at memory, I could just as easily cast the pointer of this struct and say it is a now a pointer to an array of integers and change it that way, it will happily manipulate the memory as I tell it to, and there is nothing that can detect that I did so. Now add in the fact that anyone, any script, or any gem can do this and you have no control over it, and it just shows that this solution is fundamentally and objectively flawed.
This is why most (all?) languages that need to be notified when an object is changed use an observer pattern. You create a function that "notifies" when something changes, and you invoke that function manually when needed. If someone decides to subclass your class, they need only continue the pattern to raise that function if it changes the object state.
There is no such thing as an automatic way of doing this. As already explained, this is an "opt-in" or "whitelist" solution. If you want to subclass an existing object instead of using your own from scratch, then you need to modify its behavior accordingly.
That said, adding the functionality is not as daunting as you may think if you use some clever aliasing and meta-programming with module_eval, class_eval or the like.
# This is 100% untested and not even checked for syntax, just rough idea
def on_changed
# Do whatever you need here when object is changed
end
# Unpure methods like []=, <<, push, map!, etc, etc
unpure_methods.each do |name|
class_eval <<-EOS
alias #{name}_orig #{name}
def #{name}(*args, &block)
#{name}_orig(*args, &block)
on_changed
end
EOS
end

Where is Ruby code, generated via metaprogramming, stored, and is it viewable/printable?

I've just started learning about metaprogramming in Ruby, and found myself wondering if it was possible to view (in someway) the code that had been generated. I want to, as a coding exercise, write a short method that will generate a Ruby file containing either a few method definitions or, ideally, an entire class or module definition.
I was thinking that perhaps just building up a string representation of the file and then merely writing it out might be a way to accomplish that, but that way doesn't really necessitate the use of metaprogramming, and since my goal is a metaprogramming exercise, I would like to figure out a way to incorporate it into that process or else do it another way.
I guess, if I was to take the string-building approach, I would like to start with something like
klass_string = "class GeneratedClass\n\t<BODY>\nend"
and then somehow save the output of something like this
define_method( :initialize ) do
instance_variable_set("#var", "some_value")
end
in a string that could replace '' in klass_string and then written out to a file. I know I could just put the above code snippet directly into the string, and it would workout fine, but I would like to have the output in a more standard format, as if it'd been written by hand and not generated:
class GeneratedClass
def initialize
#var = 'some_value'
end
end
Could someone point me in the right direction?
I agree with your comment that this question isn't really about metaprogramming so much as dynamic code generation / execution and introspection. Those are interesting topics, but not really metaprogramming. In particular your question about outputting ruby code to strings is about introspection, where as your string injection question is about dynamic code (just to try give you the words to google about what you're interested in).
Since your question is general and really around introspection and dynamic code, I'm going to reference you to some canonical and useful projects that can help you learn more..
ParseTree & Ruby Parser and Sourcify
Ruby Parser is a pure ruby implementation of ParseTree, so I'd recommend starting there to learn how to examine and "stringify" Ruby code. Play around with all of those, and in particular learn how they examine code in Ruby to generate their results. You'll learn a ton about how things work under the hood. Eric Hodel among others is real smart about this stuff.. Be warned though, this is really advanced stuff, but if that's where you want to build expertise, hopefully those references will help!

Is a bad practice to monkey patch a base ruby class?

I'm working on a ruby project in which we are planning to do some operations with ruby strings. Some operations are simple (like counting the number of words) and others more complex (like checking if a given string is in the correct language).
A possible way to implement this is by patching the String class with extra methods, without modifying any existing methods, and adding behaviors like "some string".word_count and "some string".cjk?.
Another approach, based on FileUtils is to create a class or module full of methods and always use string as parameters, like OddClassName.word_count("some string") and OddClassName.cjk?("some string"). We like the first better because of readability.
I understand that monkey patching a basic class as described in the first alternative can have name clashes. However, if this is the main application, not a library, should I worry with it at all?
So, the questions are:
Is adding methods to ruby base classes a bad practice? If yes, is that in all cases or only in some cases?
What is the best approach to accomplish this?
What could be the name of 'OddClassName'?
Please suggest any alternatives.
Monkey patching isn't considered to be a bad practice unless you are writing odd methods that do not have PatchedClass-related behavior (for example, String.monkeyPatchForMakingJpegFromString is rather bad, but Jpeg.fromString is good enough.)
But if your project is rather large, the libraries that you use in it may happen to have colliding patches, so you may have one more problem with all these patching stuffs. In Ruby 2.0, refinements come to an aid. They work as follows: you define a module, refine your (even core) class in it, and then use that module where it's necessary. So, in your code it works as:
YourClass.new.refinedMethodFromCoreClass #=> some result
But
CoreClass.refinedMethodFromCoreClass
produces undefined method exception.
That's all monkey patching stuff: monkey patching is useful and convenient, but refinements add some features, that make your code more secure, maintainable and neat.
I'd use a new class, call it Doc or something because getting the word count and checking languages sounds like operations for documents.
Let it take a string as a constructor parameter and have modifications chain to return a new Doc. Also give it a to_s method that returns the string.
class Doc
def initialize(str)
#str = str
end
def to_s
#str
end
define word_count, cjk?, etc.
end
Doc.new("Some document").word_count
# => 2

How do I write a Date transform method?

It's very simple. Here's what I want to do with a date that is formatted as YYYYMMDD:
month = datestring[0:2]
day = datestring[2:2]
year = datestring[4:4]
return "#{month}/#{day}/#{year}"
The problem is, and I've never understood this about Ruby, do I do:
a module?
a mixin?
something else?
I know what I want to do, I just have NO idea what kind of file or structure to put it in. And if it's a module, do I prefix the method name with the name of the module:
module DateHelper
def DateHelper.transform(datestring)
...
end
end
Why or why wouldn't I do this? Thanks a lot for helping to clear something up that's represented a mental block for me.
Instead of modules, consider using objects with composition:
class DateString
def initialize(date)
#date_string = date
end
def format
...
end
end
Now you can do:
my_date_string = DateString.new("20121203")
puts my_date_string.format # => "12/03/2012"
This answer covers the ruby-philosophical part of your question, but if you're doing a lot of date formatting, consider using a gem that already does it for you.
The code in your question is suggestive of a mixin, which is one possible way to go. It is more idiomatically written like this:
module DateHelper
def date_to_some_format(date)
...
end
end
Notice that the method is an instance method, and that it has a name that won't potentially clash with other methods in an arbitrary class. If you wanted the method available at the class-level, one way you could do this would be:
class SomeClass
class << self
include DateHelper
...
end
end
That is one way to handle class-level mixins; there are others as well.
Whether you want a mixin will depend upon the context. Does the date formatting involve code that you find repeating all over the place in unrelated classes? Is it a one-off that you will never use again? Is remembering state required? Is the date format so useful it might be made into an extension to a core library? The answer to these questions will suggest whether the code should be handled in a mixin or in some other way. (Mixins are generally implemented in Ruby with modules.) Part of really learning ruby is getting a sense of the answers to these questions in different contexts; there are few simple answers in this regard, and to a certain extent things depend upon convention, personal preference and house style.
As an aside, one way to get the date format you're looking for is this (following your input date format of YYYYMMDD):
Date.strptime("20100101", "%Y%m%d").strftime("%m/%d/%Y")
You would not necessarily chain it together in this way in your code—Brendan Benson's response provides a good approach, for example—although you might not need something fancy if you're only doing this in one place.

When to use RSpec let()?

I tend to use before blocks to set instance variables. I then use those variables across my examples. I recently came upon let(). According to RSpec docs, it is used to
... to define a memoized helper method. The value will be cached across multiple calls in the same example but not across examples.
How is this different from using instance variables in before blocks? And also when should you use let() vs before()?
I always prefer let to an instance variable for a couple of reasons:
Instance variables spring into existence when referenced. This means that if you fat finger the spelling of the instance variable, a new one will be created and initialized to nil, which can lead to subtle bugs and false positives. Since let creates a method, you'll get a NameError when you misspell it, which I find preferable. It makes it easier to refactor specs, too.
A before(:each) hook will run before each example, even if the example doesn't use any of the instance variables defined in the hook. This isn't usually a big deal, but if the setup of the instance variable takes a long time, then you're wasting cycles. For the method defined by let, the initialization code only runs if the example calls it.
You can refactor from a local variable in an example directly into a let without changing the
referencing syntax in the example. If you refactor to an instance variable, you have to change
how you reference the object in the example (e.g. add an #).
This is a bit subjective, but as Mike Lewis pointed out, I think it makes the spec easier to read. I like the organization of defining all my dependent objects with let and keeping my it block nice and short.
A related link can be found here: http://www.betterspecs.org/#let
The difference between using instances variables and let() is that let() is lazy-evaluated. This means that let() is not evaluated until the method that it defines is run for the first time.
The difference between before and let is that let() gives you a nice way of defining a group of variables in a 'cascading' style. By doing this, the spec looks a little better by simplifying the code.
I have completely replaced all uses of instance variables in my rspec tests to use let(). I've written a quickie example for a friend who used it to teach a small Rspec class: http://ruby-lambda.blogspot.com/2011/02/agile-rspec-with-let.html
As some of the other answers here says, let() is lazy evaluated so it will only load the ones that require loading. It DRYs up the spec and make it more readable. I've in fact ported the Rspec let() code to use in my controllers, in the style of inherited_resource gem. http://ruby-lambda.blogspot.com/2010/06/stealing-let-from-rspec.html
Along with lazy evaluation, the other advantage is that, combined with ActiveSupport::Concern, and the load-everything-in spec/support/ behavior, you can create your very own spec mini-DSL specific to your application. I've written ones for testing against Rack and RESTful resources.
The strategy I use is Factory-everything (via Machinist+Forgery/Faker). However, it is possible to use it in combination with before(:each) blocks to preload factories for an entire set of example groups, allowing the specs to run faster: http://makandra.com/notes/770-taking-advantage-of-rspec-s-let-in-before-blocks
It is important to keep in mind that let is lazy evaluated and not putting side-effect methods in it otherwise you would not be able to change from let to before(:each) easily.
You can use let! instead of let so that it is evaluated before each scenario.
In general, let() is a nicer syntax, and it saves you typing #name symbols all over the place. But, caveat emptor! I have found let() also introduces subtle bugs (or at least head scratching) because the variable doesn't really exist until you try to use it... Tell tale sign: if adding a puts after the let() to see that the variable is correct allows a spec to pass, but without the puts the spec fails -- you have found this subtlety.
I have also found that let() doesn't seem to cache in all circumstances! I wrote it up in my blog: http://technicaldebt.com/?p=1242
Maybe it is just me?
Dissenting voice here: after 5 years of rspec I don't like let very much.
1. Lazy evaluation often makes test setup confusing
It becomes difficult to reason about setup when some things that have been declared in setup are not actually affecting state, while others are.
Eventually, out of frustration someone just changes let to let! (same thing without lazy evaluation) in order to get their spec working. If this works out for them, a new habit is born: when a new spec is added to an older suite and it doesn't work, the first thing the writer tries is to add bangs to random let calls.
Pretty soon all the performance benefits are gone.
2. Special syntax is unusual to non-rspec users
I would rather teach Ruby to my team than the tricks of rspec. Instance variables or method calls are useful everywhere in this project and others, let syntax will only be useful in rspec.
3. The "benefits" allow us to easily ignore good design changes
let() is good for expensive dependencies that we don't want to create over and over.
It also pairs well with subject, allowing you to dry up repeated calls to multi-argument methods
Expensive dependencies repeated in many times, and methods with big signatures are both points where we could make the code better:
maybe I can introduce a new abstraction that isolates a dependency from the rest of my code (which would mean fewer tests need it)
maybe the code under test is doing too much
maybe I need to inject smarter objects instead of a long list of primitives
maybe I have a violation of tell-don't-ask
maybe the expensive code can be made faster (rarer - beware of premature optimisation here)
In all these cases, I can address the symptom of difficult tests with a soothing balm of rspec magic, or I can try address the cause. I feel like I spent way too much of the last few years on the former and now I want some better code.
To answer the original question: I would prefer not to, but I do still use let. I mostly use it to fit in with the style of the rest of the team (it seems like most Rails programmers in the world are now deep into their rspec magic so that is very often). Sometimes I use it when I'm adding a test to some code that I don't have control of, or don't have time to refactor to a better abstraction: i.e. when the only option is the painkiller.
let is functional as its essentially a Proc. Also its cached.
One gotcha I found right away with let... In a Spec block that is evaluating a change.
let(:object) {FactoryGirl.create :object}
expect {
post :destroy, id: review.id
}.to change(Object, :count).by(-1)
You'll need to be sure to call let outside of your expect block. i.e. you're calling FactoryGirl.create in your let block. I usually do this by verifying the object is persisted.
object.persisted?.should eq true
Otherwise when the let block is called the first time a change in the database will actually happen due to the lazy instantiation.
Update
Just adding a note. Be careful playing code golf or in this case rspec golf with this answer.
In this case, I just have to call some method to which the object responds. So I invoke the _.persisted?_ method on the object as its truthy. All I'm trying to do is instantiate the object. You could call empty? or nil? too. The point isn't the test but bringing the object ot life by calling it.
So you can't refactor
object.persisted?.should eq true
to be
object.should be_persisted
as the object hasn't been instantiated... its lazy. :)
Update 2
leverage the let! syntax for instant object creation, which should avoid this issue altogether. Note though it will defeat a lot of the purpose of the laziness of the non banged let.
Also in some instances you might actually want to leverage the subject syntax instead of let as it may give you additional options.
subject(:object) {FactoryGirl.create :object}
"before" by default implies before(:each). Ref The Rspec Book, copyright 2010, page 228.
before(scope = :each, options={}, &block)
I use before(:each) to seed some data for each example group without having to call the let method to create the data in the "it" block. Less code in the "it" block in this case.
I use let if I want some data in some examples but not others.
Both before and let are great for DRYing up the "it" blocks.
To avoid any confusion, "let" is not the same as before(:all). "Let" re-evaluates its method and value for each example ("it"), but caches the value across multiple calls in the same example. You can read more about it here: https://www.relishapp.com/rspec/rspec-core/v/2-6/docs/helper-methods/let-and-let
Note to Joseph -- if you are creating database objects in a before(:all) they won't be captured in a transaction and you're much more likely to leave cruft in your test database. Use before(:each) instead.
The other reason to use let and its lazy evaluation is so you can take a complicated object and test individual pieces by overriding lets in contexts, as in this very contrived example:
context "foo" do
let(:params) do
{ :foo => foo, :bar => "bar" }
end
let(:foo) { "foo" }
it "is set to foo" do
params[:foo].should eq("foo")
end
context "when foo is bar" do
let(:foo) { "bar" }
# NOTE we didn't have to redefine params entirely!
it "is set to bar" do
params[:foo].should eq("bar")
end
end
end
I use let to test my HTTP 404 responses in my API specs using contexts.
To create the resource, I use let!. But to store the resource identifier, I use let. Take a look how it looks like:
let!(:country) { create(:country) }
let(:country_id) { country.id }
before { get "api/countries/#{country_id}" }
it 'responds with HTTP 200' { should respond_with(200) }
context 'when the country does not exist' do
let(:country_id) { -1 }
it 'responds with HTTP 404' { should respond_with(404) }
end
That keeps the specs clean and readable.

Resources