How to get audio data from the Macbook microphone? - cocoa

I am looking to write a small audio processing program, and I need some way to get audio input from the microphone in a Macbook.
Buffer polling? Notifications? What class/framework should I be aware of?

one of the easiest ways is with audio queues. its fairly abstracted, with a fair bit of doco and examples, simpler than delving into audio units, and the depths of core audio.
here is the official link.

Use Core Audio: http://developer.apple.com/mac/library/documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html

Related

Performant AV1 encoding, does it exist?

I'm developing a VoD application as a white label product that runs in a SaaS context using K8s. To enable streaming, I take the input video and re-convert it into HLS segments in multiple version and codecs to reach maximum compatibility.
Yesterday I started implementing AV1 as codec, as it will in near future detach h264 as it's more efficient with the same level of compatibility across all the available browsers.
That was the point where things started to get strange, as I want to have this codec instead of h264 ^^.
If you take a look at the following doc pages from ffmpeg: https://trac.ffmpeg.org/wiki/Encode/AV1
You will notice that there are 3 main encoders available to handle encoding to av1. These are: libaom, SVT-AV1 and rav1e. No matter which one of these I try, the performance is slow, even slower than with HEVC. Recently I came along a news article about Netflix and that they are upgrading their library to AV1. If I take a look at the numbers of media elements Netflix offers, the amount is just huge, and I really don't understand how they did it. From what I know, SVT-AV1 is developed by Netflix in cooperation with Intel, So I assume they somehow rely on hardware encoding using an Intel CPU extension.
Does somebody maybe know more and how they did it? I really can't imagine that they just do CPU only encoding. A movie would take days to get encoded.
Thanks in advance
Encoding quality and quality differs heavily between all encoders. SVT-AV1 is the fastest but looks like garbage. For real-time encoding you should probably use GPU's. Intels GPU's don't really put out great quality AV1 encodes though, Nvidia's H265 is basically the same quality.
With Nvidia and AMD soon getting AV1 encoding hardware support (currently drivers are a bit lacking but it's already possible on Nvidia). AMD GPU's coming out for it soon.

AVFoundation - macOS - 2 cameras simultaneous recording with compression

I'm programming video capturing app and need to have 2 input sources (USB cams) to record from at the same time.
When I record only the raw footage simultaneously without compression at is working quite well (Low CPU load, no video lags), but when the compression is turned on the CPU is very high and the footage is lagging.
How to solve it? Or how to tune-up the settings so that it can be accomplished?
Note: the Raw streams are to big and thus cannot be used, otherwise I would not bother with compression at all and just leave it as it is.
The AVFoundation framework in its current configuration is setup to provide HW acceleration only for one source at time. For multiple accelerated sources one need to go deeper to VideoToolbox framework and even deeper.

Method for audio playback with known output latency on Windows

I have a C++ application that receives a timestamped audio stream and attempts to play the audio samples as close as possible to the specified timestamp. To do so I need to know the delay (with reasonable accuracy) from when I place the audio samples in the output buffer until the audio is actually heard.
There are many discussions about audio output latency but everything I have found is about minimizing latency. This is irrelevant to me, all I need is an (at run-time) known latency.
On Linux I solve this with snd_pcm_delay() with very good results, but I'm looking for a decent solution for Windows.
I have looked at the following:
With OpenAL I have measured delays at 80ms that are unaccounted for. I assume this isn't a hardcoded value and I haven't found any API to read the latency. There are some extensions to OpenAL that claims to support this but from what I can tell it's only implemented on Linux.
Wasapi has GetStreamLatency() which sounds like the real deal but this is apparently only some thread polling interval or something so it's also useless. I still have 30ms unaccounted delay on my machine.
DirectSound has no API for getting latency? But can I get close enough by just keeping track of my output buffers?
Edit in response to Brad's comment:
My impression of ASIO is that it is primarily targeted for professional audio applications and audio connoiseurs, and that the user might have to install special sound card drivers and I will have to deal with licensing. Feature-wise it seems like a good option though.

Look for fastest video encoder with least lag to stream webcam streaming to ipad

I'm looking for the fastest way to encode a webcam stream that will be viewable in a html5 video tag. I'm using a Pandaboard: http://www.digikey.com/product-highlights/us/en/texas-instruments-pandaboard/686#tabs-2 for the hardware. Can use gstreamer, cvlc, ffmpeg. I'll be using it to drive a robot, so need the least amount of lag in the video stream. Quality doesn't have to be great and it doesn't need audio. Also, this is only for one client so bandwidth isn't an issue. The best solution so far is using ffmpeg with a mpjpeg gives me around 1 sec delay. Anything better?
I have been asked this many times so I will try and answer this a bit generically and not just for mjpeg. Getting very low delays in a system requires a bit of system engineering effort and also understanding of the components.
Some simple top level tweaks I can think of are:
Ensure the codec is configured for the lowest delay. Codecs will have (especially embedded system codecs) a low delay configuration. Enable it. If you are using H.264 it's most useful. Most people don't realize that by standard requirements H.264 decoders need to buffer frames before displaying it. This can be upto 16 for Qcif and upto 5 frames for 720p. That is a lot of delay in getting the first frame out. If you do not use H.264 still ensure you do not have B pictures enabled. This adds delay to getting the first picture out.
Since you are using mjpeg, I don't think this is applicable to you much.
Encoders will also have a rate control delay. (Called init delay or vbv buf size). Set it to the smallest value that gives you acceptable quality. That will also reduce the delay. Think of this as the bitstream buffer between encoder and decoder. If you are using x264 that would be the vbv buffer size.
Some simple other configurations: Use as few I pictures as possible (large intra period).
I pictures are huge and add to the delay to send over the network. This may not be very visible in systems where end to end delay is in the range of 1 second or more but when you are designing systems that need end to end delay of 100ms or less, this and several other aspects come into play. Also ensure you are using a low latency audio codec aac-lc (and not heaac).
In your case to get to lower latencies I would suggest moving away from mjpeg and use at least mpeg4 without B pictures (Simple profile) or best is H.264 baseline profile (x264 gives a zerolatency option). The simple reason you will get lower latency is that you will get lower bitrate post encoding to send the data out and you can go to full framerate. If you must stick to mjpeg you have close to what you can get without more advanced features support from the codec and system using the open source components as is.
Another aspect is the transmission of the content to the display unit. If you can use udp it will reduce latency quite a lot compared to tcp, though it can be lossy at times depending on network conditions. You have mentioned html5 video. I am curious as to how you are doing live streaming to a html5 video tag.
There are other aspects that can also be tweaked which I would put in the advanced category and requires the system engineer to try various things out
What is the network buffering in the OS? The OS also buffers data before sending it out for performance reasons. Tweak this to get a good balance between performance and speed.
Are you using CR or VBR encoding? While CBR is great for low jitter you can also use capped vbr if the codec provides it.
Can your decoder start decoding partial frames? So you don't have to worry about framing the data before providing it to the decoder. Just keep pushing the data to the decoder as soon as possible.
Can you do field encoding? Halves the time from frame encoding before getting the first picture out.
Can you do sliced encoding with callbacks whenever a slice is available to send over the network immediately?
In sub 100 ms latency systems that I have worked in all of the above are used. Some of the features may not be available in open source components but if you really need it and are enthusiastic you could go ahead and implement them.
EDIT:
I realize you cannot do a lot of the above for a ipad streaming solution and there are limitations because of hls also to the latency you can achieve. But I hope it will prove useful in other cases when you need any low latency system.
We had a similar problem, in our case it was necessary to time external events and sync them with the video stream. We tried several solutions but the one described here solved the problem and is extremely low latency:
Github Link
It uses gstreamer transcode to mjpeg which is then sent to a small python streaming server. This has the advantage that it uses the tag instead of so it can be viewed by most modern browsers, including the iPhone.
As you want the <video> tag, a simple solution is to use http-launch. That
had the lowest latency of all the solutions we tried so it might work for you. Be warned that ogg/theora will not work on Safari or IE so those wishing to target the Mac or Windows will have to modify the pipe to use MP4 or WebM.
Another solution that looks promising, gst-streaming-server. We simply couldn't find enough documentation to make it worth pursuing. I'd grateful if somebody could ask a stackoverflow question about how it should be used!

BackgroundAudioPlayer- Buffering & MediaStreamSource

I have created a MediaStreamSource to decode an live internet audio stream and pass it to the BackgroundAudioPlayer. This now works very well on the device. However I would now like to implement some form of buffering control. Currently all works well over WLAN - however i fear that in live situations over mobile operator networks that there will be a lot of cutting in an out in the stream.
What I would like to find out is if anybody has any advice on how best to implement buffering.
Does the background audio player itself build up some sort of buffer before it begings to play and if so can the size of this be increased if necessary?
Is there something I can set whilst sampling to help with buffering or do i simply need to implement a kind of storeage buffer as i retrieve the stream from the network and build up a substantial reserve in this before sampling.
What approach have others taken to this problem?
Thanks,
Brian
One approach to this that I've seen is to have two processes managing the stream. The first gets the stream and writes it a series of sequentially numbered files in Isolated Storage. The second reads the files and plays them.
Obviously that's a very simplified description but hopefully you get the idea.
I don't know how using a MediaStreamSource might affect this, but from experience with a simple Background Audio Player agent streaming direct from remote MP3 files or MP3 live radio streams:
The player does build up a buffer of data received from the server before it will start playing your track.
you can't control the size of this buffer or how long it takes to fill that buffer (I've seen it take over a minute of buffering in some cases).
once playback starts if you lose connection or bandwidth goes so low that your buffer is emptied after the stream has started then the player doesn't try and rebuffer the audio, so you can lose the audio completely or it can cut in or out.
you can't control that either.
Implementing the suggestion in Matt's answer solves this by allowing you to take control of the buffering and separates download and playback neatly.

Resources