Whenever I see a Julia macro in use like #assert or #time I'm always wondering about the need to distinguish a macro syntactically with the # prefix. What should I be thinking of when using # for a macro? For me it adds noise and distraction to an otherwise very nice language (syntactically speaking).
I mean, for me '#' has a meaning of reference, i.e. a location like a domain or address. In the location sense # does not have a meaning for macros other than that it is a different compilation step.
The # should be seen as a warning sign which indicates that the normal rules of the language might not apply. E.g., a function call
f(x)
will never modify the value of the variable x in the calling context, but a macro invocation
#mymacro x
(or #mymacro f(x) for that matter) very well might.
Another reason is that macros in Julia are not based on textual substitution as in C, but substitution in the abstract syntax tree (which is much more powerful and avoids the unexpected consequences that textual substitution macros are notorious for).
Macros have special syntax in Julia, and since they are expanded after parse time, the parser also needs an unambiguous way to recognise them
(without knowing which macros have been defined in the current scope).
ASCII characters are a precious resource in the design of most programming languages, Julia very much included. I would guess that the choice of # mostly comes down to the fact that it was not needed for something more important, and that it stands out pretty well.
Symbols always need to be interpreted within the context they are used. Having multiple meanings for symbols, across contexts, is not new and will probably never go away. For example, no one should expect #include in a C program to go viral on Twitter.
Julia's Documentation entry Hold up: why macros? explains pretty well some of the things you might keep in mind while writing and/or using macros.
Here are a few snippets:
Macros are necessary because they execute when code is parsed,
therefore, macros allow the programmer to generate and include
fragments of customized code before the full program is run.
...
It is important to emphasize that macros receive their arguments as
expressions, literals, or symbols.
So, if a macro is called with an expression, it gets the whole expression, not just the result.
...
In place of the written syntax, the macro call is expanded at parse
time to its returned result.
It actually fits quite nicely with the semantics of the # symbol on its own.
If we look up the Wikipedia entry for 'At symbol' we find that it is often used as a replacement for the preposition 'at' (yes it even reads 'at'). And the preposition 'at' is used to express a spatial or temporal relation.
Because of that we can use the #-symbol as an abbreviation for the preposition at to refer to a spatial relation, i.e. a location like #tony's bar, #france, etc., to some memory location #0x50FA2C (e.g. for pointers/addresses), to the receiver of a message (#user0851 which twitter and other forums use, etc.) but as well for a temporal relation, i.e. #05:00 am, #midnight, #compile_time or #parse_time.
And since macros are processed at parse time (here you have it) and this is totally distinct from the other code that is evaluated at run time (yes there are many different phases in between but that's not the point here).
In addition to explicitly direct the attention to the programmer that the following code fragment is processed at parse time! as oppossed to run time, we use #.
For me this explanation fits nicely in the language.
thanks#all ;)
I am aware that by default Java does not have the so-called eval (what I pronounce as "evil") method. This sounds like a bad thing—knowing you do not have something which so many others do. But even worse seems being notified that you can't have it.
My question is: What is solid reasoning behind it? I mean, Google'ing this just returns a massive amount of old data and bogus reasons—even if there is an answer that I'm looking for, I can't filter it from people who are just throwing generic tag-words around.
I'm not interested in answers that are telling me how to get around that; I can do that myself:
Using Bean Scripting Framework (BSF)
File sample.py (in py folder) contents:
def factorial(n):
return reduce(lambda x, y:x * y, range(1, n + 1))
And Java code:
ScriptEngine engine = new ScriptEngineManager().getEngineByName("jython");
engine.eval(new FileReader("py" + java.io.File.separator + "sample.py"));
System.out.println(engine.eval("factorial(932)"));
Using designed bridges like JLink
This is equivalent to:
String expr = "N[Integrate[E^(2 y^5)/(2 x^3), {x, 4, 7}, {y, 2, 3}]]";
System.out.println(MM.Eval(expr));
//Output: 1.5187560850359461*^206 + 4.2210685420287355*^190*I
Other methods
Using Dijkstras shunting-yard algorithm or alike and writing an expression evaluator from scratch.
Using complex regex and string manipulations with delegates and HashMultimaps.
Using Java Expressions Library
Using Java Expression Language
Using JRE compliant scripting language like BeanShell.
Using the Java Assembler and approach below or direct bytecode manipulation like Javaassist.
Using the Java Compiler API and reflections.
Using Runtime.getRuntime().exec as root
"eval" is only available in scripting languages, because it uses the same interpreter that runs the rest of the code; in such languages the feature is free and well integrated, as in scripting environment it makes little difference if you run a string or a "real" function.
In copiled languages, adding "eval" would mean bundling the whole compiler - which would defy the purpose of compiling. No compiled language I know (even dynamic ones, like ActionScrip3) has eval.
Incidentally, the easiest way to eval in Java is the one you forgot to mention: JRE 1.6 comes with Javascript engine, so you can eval any Javascript in two lines of code. You could even argue that the presuposition of your question is false. Java 1.6 bundles a very advanced expression evaluator.
As Daniel points out there is at least one limitation that eval-solutions face in java. The php eval for example executes the code as if it was part of the surrounding method with complete access to local variables, this is not possible to do in standard java. Without this feature eval alternatives require a lot more work and verbosity, which makes them a lot less attractive for "quick" and "easy" solutions.
eval() is mostly part of interpreted languages where the names of local variables and code structure(scopes) are available at runtime, making it possible to "insert" new code. Java bytecode no longer contains this information leaving eval() alternatives unable to map access to local variables. (Note: I ignore debug information as no program should rely on it and it may not be present)
An example
int i = 0;
eval("i = 1");
System.out.println(i);
required pseudocode for java
context.put("i",new Integer(0));
eval(context,"i = 1");
System.out.println(context.get("i"));
This looks nice for one variable used in the eval, try it for 10 in a longer method and you get 20 additional lines for variable access and the one or other runtime error if you forget one.
Because evaluation of arbitrary Java expressions depends on the context of it, of variable scopes etc.
If you need some kind of variable expression, just use the scripting framework, and badamm! you have lots of different kinds of expression evaluation. Just take one kind like JavaScript as a default, and there is your eval()!
Enterprisy as Java is, you are not constrained to one choice.
But even worse seems being notified that you can't have it.
I think you are misunderstanding what (most of) those articles are saying. Clearly, there are many ways to do expression evaluation in a Java application. They haven't always been available, but at least some of them have been around for a long time.
I think what people are trying to say is that expression evaluation is not available as native (i.e. as an intrinsic part of Java or the standard libraries) and is unlikely to be added for a number of good reasons. For example:
Native eval would have significant security issues if used in the wrong place. (And it does for other languages; e.g. you shouldn't use eval in Javascript to read JSON because it can be a route for injecting bad stuff into the user's browser.)
Native eval would have significant performance issues, compared with compiled Java code. We are talking of 100 to 10,000 times slower, depending on the implementation techniques and the amount of caching of "compiled" eval expressions.
Native eval would introduce a whole stack of reliability issues ... much as overuse / misuse of type casting and reflection to.
Native eval is "not Java". Java is designed to be a primarily static programming language.
and of course ...
There are other ways to do this, including all of the implementation approaches that you listed. The Java SE platform is not in the business of providing every possible library that anyone could possibly want. (JRE downloads are big enough already.)
For these reasons, and probably others as well, the Java language designers have decided not to support expression evaluation natively in Java SE. (Even so, some expression support has officially made it into Java EE; e.g. in the form of JSP Expression Language. The classes are in the javax.el package ... or javax.servlet.jsp.el for an older / deprecated version.)
I think you already put the solution to your answer - bundle the BeanShell jar with your application (or lobby for it to be included in the JRE sometime), and you have your Java expression evaluator. It will still need a Binding of the input variables, though.
(What I'm more curious about: How does sandboxing of such a script/expression work? I don't want my web users to execute dangerous code in my server.)
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I've read some of the recent language vs. language questions with interest... Perl vs. Python, Python vs. Java, Can one language be better than another?
One thing I've noticed is that a lot of us have very superficial reasons for disliking languages. We notice these things at first glance and they turn us off. We shun what are probably perfectly good languages as a result of features that we'd probably learn to love or ignore in 2 seconds if we bothered.
Well, I'm as guilty as the next guy, if not more. Here goes:
Ruby: All the Ruby example code I see uses the puts command, and that's a sort of childish Yiddish anatomical term. So as a result, I can't take Ruby code seriously even though I should.
Python: The first time I saw it, I smirked at the whole significant whitespace thing. I avoided it for the next several years. Now I hardly use anything else.
Java: I don't like identifiersThatLookLikeThis. I'm not sure why exactly.
Lisp: I have trouble with all the parentheses. Things of different importance and purpose (function declarations, variable assignments, etc.) are not syntactically differentiated and I'm too lazy to learn what's what.
Fortran: uppercase everything hurts my eyes. I know modern code doesn't have to be written like that, but most example code is...
Visual Basic: it bugs me that Dim is used to declare variables, since I remember the good ol' days of GW-BASIC when it was only used to dimension arrays.
What languages did look right to me at first glance? Perl, C, QBasic, JavaScript, assembly language, BASH shell, FORTH.
Okay, now that I've aired my dirty laundry... I want to hear yours. What are your language hangups? What superficial features bother you? How have you gotten over them?
I hate Hate HATE "End Function" and "End IF" and "If... Then" parts of VB. I would much rather see a curly bracket instead.
PHP's function name inconsistencies.
// common parameters back-to-front
in_array(needle, haystack);
strpos(haystack, needle);
// _ to separate words, or not?
filesize();
file_exists;
// super globals prefix?
$GLOBALS;
$_POST;
I never really liked the keywords spelled backwards in some scripting shells
if-then-fi is bad enough, but case-in-esac is just getting silly
I just thought of another... I hate the mostly-meaningless URLs used in XML to define namespaces, e.g. xmlns="http://purl.org/rss/1.0/"
Pascal's Begin and End. Too verbose, not subject to bracket matching, and worse, there isn't a Begin for every End, eg.
Type foo = Record
// ...
end;
Although I'm mainly a PHP developer, I dislike languages that don't let me do enough things inline. E.g.:
$x = returnsArray();
$x[1];
instead of
returnsArray()[1];
or
function sort($a, $b) {
return $a < $b;
}
usort($array, 'sort');
instead of
usort($array, function($a, $b) { return $a < $b; });
I like object-oriented style. So it bugs me in Python to see len(str) to get the length of a string, or splitting strings like split(str, "|") in another language. That is fine in C; it doesn't have objects. But Python, D, etc. do have objects and use obj.method() other places. (I still think Python is a great language.)
Inconsistency is another big one for me. I do not like inconsistent naming in the same library: length(), size(), getLength(), getlength(), toUTFindex() (why not toUtfIndex?), Constant, CONSTANT, etc.
The long names in .NET bother me sometimes. Can't they shorten DataGridViewCellContextMenuStripNeededEventArgs somehow? What about ListViewVirtualItemsSelectionRangeChangedEventArgs?
And I hate deep directory trees. If a library/project has a 5 level deep directory tree, I'm going to have trouble with it.
C and C++'s syntax is a bit quirky. They reuse operators for different things. You're probably so used to it that you don't think about it (nor do I), but consider how many meanings parentheses have:
int main() // function declaration / definition
printf("hello") // function call
(int)x // type cast
2*(7+8) // override precedence
int (*)(int) // function pointer
int x(3) // initializer
if (condition) // special part of syntax of if, while, for, switch
And if in C++ you saw
foo<bar>(baz(),baaz)
you couldn't know the meaning without the definition of foo and bar.
the < and > might be a template instantiation, or might be less-than and greater-than (unusual but legal)
the () might be a function call, or might be just surrounding the comma operator (ie. perform baz() for size-effects, then return baaz).
The silly thing is that other languages have copied some of these characteristics!
Java, and its checked exceptions. I left Java for a while, dwelling in the .NET world, then recently came back.
It feels like, sometimes, my throws clause is more voluminous than my method content.
There's nothing in the world I hate more than php.
Variables with $, that's one extra odd character for every variable.
Members are accessed with -> for no apparent reason, one extra character for every member access.
A freakshow of language really.
No namespaces.
Strings are concatenated with ..
A freakshow of language.
All the []s and #s in Objective C. Their use is so different from the underlying C's native syntax that the first time I saw them it gave the impression that all the object-orientation had been clumsily bolted on as an afterthought.
I abhor the boiler plate verbosity of Java.
writing getters and setters for properties
checked exception handling and all the verbiage that implies
long lists of imports
Those, in connection with the Java convention of using veryLongVariableNames, sometimes have me thinking I'm back in the 80's, writing IDENTIFICATION DIVISION. at the top of my programs.
Hint: If you can automate the generation of part of your code in your IDE, that's a good hint that you're producing boilerplate code. With automated tools, it's not a problem to write, but it's a hindrance every time someone has to read that code - which is more often.
While I think it goes a bit overboard on type bureaucracy, Scala has successfully addressed some of these concerns.
Coding Style inconsistencies in team projects.
I'm working on a large team project where some contributors have used 4 spaces instead of the tab character.
Working with their code can be very annoying - I like to keep my code clean and with a consistent style.
It's bad enough when you use different standards for different languages, but in a web project with HTML, CSS, Javascript, PHP and MySQL, that's 5 languages, 5 different styles, and multiplied by the number of people working on the project.
I'd love to re-format my co-workers code when I need to fix something, but then the repository would think I changed every line of their code.
It irritates me sometimes how people expect there to be one language for all jobs. Depending on the task you are doing, each language has its advantages and disadvantages. I like the C-based syntax languages because it's what I'm most used to and I like the flexibility they tend to bestow on the developer. Of course, with great power comes great responsibility, and having the power to write 150 line LINQ statements doesn't mean you should.
I love the inline XML in the latest version of VB.NET although I don't like working with VB mainly because I find the IDE less helpful than the IDE for C#.
If Microsoft had to invent yet another C++-like language in C# why didn't they correct Java's mistake and implement support for RAII?
Case sensitivity.
What kinda hangover do you need to think that differentiating two identifiers solely by caSE is a great idea?
I hate semi-colons. I find they add a lot of noise and you rarely need to put two statements on a line. I prefer the style of Python and other languages... end of line is end of a statement.
Any language that can't fully decide if Arrays/Loop/string character indexes are zero based or one based.
I personally prefer zero based, but any language that mixes the two, or lets you "configure" which is used can drive you bonkers. (Apache Velocity - I'm looking in your direction!)
snip from the VTL reference (default is 1, but you can set it to 0):
# Default starting value of the loop
# counter variable reference.
directive.foreach.counter.initial.value = 1
(try merging 2 projects that used different counter schemes - ugh!)
In no particular order...
OCaml
Tuples definitions use * to separate items rather than ,. So, ("Juliet", 23, true) has the type (string * int * bool).
For being such an awesome language, the documentation has this haunting comment on threads: "The threads library is implemented by time-sharing on a single processor. It will not take advantage of multi-processor machines. Using this library will therefore never make programs run faster." JoCaml doesn't fix this problem.
^^^ I've heard the Jane Street guys were working to add concurrent GC and multi-core threads to OCaml, but I don't know how successful they've been. I can't imagine a language without multi-core threads and GC surviving very long.
No easy way to explore modules in the toplevel. Sure, you can write module q = List;; and the toplevel will happily print out the module definition, but that just seems hacky.
C#
Lousy type inference. Beyond the most trivial expressions, I have to give types to generic functions.
All the LINQ code I ever read uses method syntax, x.Where(item => ...).OrderBy(item => ...). No one ever uses expression syntax, from item in x where ... orderby ... select. Between you and me, I think expression syntax is silly, if for no other reason than that it looks "foreign" against the backdrop of all other C# and VB.NET code.
LINQ
Every other language uses the industry standard names are Map, Fold/Reduce/Inject, and Filter. LINQ has to be different and uses Select, Aggregate, and Where.
Functional Programming
Monads are mystifying. Having seen the Parser monad, Maybe monad, State, and List monads, I can understand perfectly how the code works; however, as a general design pattern, I can't seem to look at problems and say "hey, I bet a monad would fit perfect here".
Ruby
GRRRRAAAAAAAH!!!!! I mean... seriously.
VB
Module Hangups
Dim _juliet as String = "Too Wordy!"
Public Property Juliet() as String
Get
Return _juliet
End Get
Set (ByVal value as String)
_juliet = value
End Set
End Property
End Module
And setter declarations are the bane of my existence. Alright, so I change the data type of my property -- now I need to change the data type in my setter too? Why doesn't VB borrow from C# and simply incorporate an implicit variable called value?
.NET Framework
I personally like Java casing convention: classes are PascalCase, methods and properties are camelCase.
In C/C++, it annoys me how there are different ways of writing the same code.
e.g.
if (condition)
{
callSomeConditionalMethod();
}
callSomeOtherMethod();
vs.
if (condition)
callSomeConditionalMethod();
callSomeOtherMethod();
equate to the same thing, but different people have different styles. I wish the original standard was more strict about making a decision about this, so we wouldn't have this ambiguity. It leads to arguments and disagreements in code reviews!
I found Perl's use of "defined" and "undefined" values to be so useful that I have trouble using scripting languages without it.
Perl:
($lastname, $firstname, $rest) = split(' ', $fullname);
This statement performs well no matter how many words are in $fullname. Try it in Python, and it explodes if $fullname doesn't contain exactly three words.
SQL, they say you should not use cursors and when you do, you really understand why...
its so heavy going!
DECLARE mycurse CURSOR LOCAL FAST_FORWARD READ_ONLY
FOR
SELECT field1, field2, fieldN FROM atable
OPEN mycurse
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
WHILE ##fetch_status = 0
BEGIN
-- do something really clever...
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
END
CLOSE mycurse
DEALLOCATE mycurse
Although I program primarily in python, It irks me endlessly that lambda body's must be expressions.
I'm still wrapping my brain around JavaScript, and as a whole, Its mostly acceptable. Why is it so hard to create a namespace. In TCL they're just ugly, but in JavaScript, it's actually a rigmarole AND completely unreadable.
In SQL how come everything is just one, huge freekin SELECT statement.
In Ruby, I very strongly dislike how methods do not require self. to be called on current instance, but properties do (otherwise they will clash with locals); i.e.:
def foo()
123
end
def foo=(x)
end
def bar()
x = foo() # okay, same as self.foo()
x = foo # not okay, reads unassigned local variable foo
foo = 123 # not okay, assigns local variable foo
end
To my mind, it's very inconsistent. I'd rather prefer to either always require self. in all cases, or to have a sigil for locals.
Java's packages. I find them complex, more so because I am not a corporation.
I vastly prefer namespaces. I'll get over it, of course - I'm playing with the Android SDK, and Eclipse removes a lot of the pain. I've never had a machine that could run it interactively before, and now I do I'm very impressed.
Prolog's if-then-else syntax.
x -> y ; z
The problem is that ";" is the "or" operator, so the above looks like "x implies y or z".
Java
Generics (Java version of templates) are limited. I can not call methods of the class and I can not create instances of the class. Generics are used by containers, but I can use containers of instances of Object.
No multiple inheritance. If a multiple inheritance use does not lead to diamond problem, it should be allowed. It should allow to write a default implementation of interface methods, a example of problem: the interface MouseListener has 5 methods, one for each event. If I want to handle just one of them, I have to implement the 4 other methods as an empty method.
It does not allow to choose to manually manage memory of some objects.
Java API uses complex combination of classes to do simple tasks. Example, if I want to read from a file, I have to use many classes (FileReader, FileInputStream).
Python
Indentation is part of syntax, I prefer to use the word "end" to indicate end of block and the word "pass" would not be needed.
In classes, the word "self" should not be needed as argument of functions.
C++
Headers are the worst problem. I have to list the functions in a header file and implement them in a cpp file. It can not hide dependencies of a class. If a class A uses the class B privately as a field, if I include the header of A, the header of B will be included too.
Strings and arrays came from C, they do not provide a length field. It is difficult to control if std::string and std::vector will use stack or heap. I have to use pointers with std::string and std::vector if I want to use assignment, pass as argument to a function or return it, because its "=" operator will copy entire structure.
I can not control the constructor and destructor. It is difficult to create an array of objects without a default constructor or choose what constructor to use with if and switch statements.
In most languages, file access. VB.NET is the only language so far where file access makes any sense to me. I do not understand why if I want to check if a file exists, I should use File.exists("") or something similar instead of creating a file object (actually FileInfo in VB.NET) and asking if it exists. And then if I want to open it, I ask it to open: (assuming a FileInfo object called fi) fi.OpenRead, for example. Returns a stream. Nice. Exactly what I wanted. If I want to move a file, fi.MoveTo. I can also do fi.CopyTo. What is this nonsense about not making files full-fledged objects in most languages? Also, if I want to iterate through the files in a directory, I can just create the directory object and call .GetFiles. Or I can do .GetDirectories, and I get a whole new set of DirectoryInfo objects to play with.
Admittedly, Java has some of this file stuff, but this nonsense of having to have a whole object to tell it how to list files is just silly.
Also, I hate ::, ->, => and all other multi-character operators except for <= and >= (and maybe -- and ++).
[Disclaimer: i only have a passing familiarity with VB, so take my comments with a grain of salt]
I Hate How Every Keyword In VB Is Capitalized Like This. I saw a blog post the other week (month?) about someone who tried writing VB code without any capital letters (they did something to a compiler that would let them compile VB code like that), and the language looked much nicer!
My big hangup is MATLAB's syntax. I use it, and there are things I like about it, but it has so many annoying quirks. Let's see.
Matrices are indexed with parentheses. So if you see something like Image(350,260), you have no clue from that whether we're getting an element from the Image matrix, or if we're calling some function called Image and passing arguments to it.
Scope is insane. I seem to recall that for loop index variables stay in scope after the loop ends.
If you forget to stick a semicolon after an assignment, the value will be dumped to standard output.
You may have one function per file. This proves to be very annoying for organizing one's work.
I'm sure I could come up with more if I thought about it.
I'm learning Ruby in my spare time, and I have a question about language constructs for constants. Does Ruby have an equivalent of the C++ const keyword to keep variables from being modified? Here's some example code:
first_line = f.gets().chomp()
column_count = first_line.split( %r{\s+} ).size()
print column_count, "\n"
I'd like to declare column_count to be const, because I use it below in my program and I really don't want to modify it by mistake. Does Ruby provide a language construct for doing this, or should I just suck it up and realize that my variables are always mutable?
Response to comments:
'The most likely cause of "accidental" overwriting of variables is, I'd guess, long blocks of code.' I agree with the spirit of your point, but disagree with the letter. Your point about avoiding long blocks of code and unnecessary state is a good one, but for constants can also be useful in describing the design of code inside of the implementation. A large part of the value of const in my code comes from annotating which variables I SHOULD change and which I shouldn't, so that I'm not tempted to change them if I come back to my code next year. This is the same sentiment that suggests that code that uses short comments because of good variable names and clear indentation is better than awkwardly written code explained by detailed comments.
Another option appears to be Ruby's #freeze method, which I like the look of as well. Thanks for the responses everyone.
Ruby variables in general are, well, variable.
Beyond Jeremy's answer, while entirely accurate, doesn't lead you to a Ruby style that's very "mainstream" or idiomatically sound and I wouldn't recommend it for adoption. Ruby doesn't work like C++ and generally isn't very appropriate for things that C++ is best used for. Operating systems, word processors, that kind of thing.
The most likely cause of "accidental" overwriting of variables is, I'd guess, long blocks of code. After all, if you change the value of a variable in a five-line method, it's going to be fairly apparent! If you're habitually writing blocks of code longer than, say, 10 lines, then those chunks are probably doing too many things and I strongly advise that you make efforts to break them up (increase cohesion). Localise variables as much as possible to minimise the chance of unexpected side-effects (reduce coupling).
By convention, constants in ruby are generally written in all caps such as COLUMN_COUNT. But as it was pointed out, all variables that start with a capital letter are Constants.
Variables that start with a capital letter are constants in Ruby. So you could change your code to this:
first_line = f.gets().chomp()
Column_count = first_line.split( %r{\s+} ).size()
print Column_count, "\n"
Now you'll get a warning if you try to modify Column_count.