When fetching data, most people use PublishSubject, but what happens when they use PublishRelay? If an error occurs in the PublishSubject while using the app, isn't it dangerous because the app dies?
You shouldn't be using either when fetching data.
Subjects [and Relays] provide a convenient way to poke around Rx, however they are not recommended for day to day use... Instead of using subjects, favor the factory methods.
The Observable interface is the dominant type that you will be exposed to for representing a sequence of data in motion, and therefore will comprise the core concern for most of your work with Rx...
Avoid the use of the subject types [including Relays]. Rx is effectively a functional programming paradigm. Using subjects means we are now managing state, which is potentially mutating. Dealing with both mutating state and asynchronous programming at the same time is very hard to get right. Furthermore, many of the operators (extension methods) have been carefully written to ensure that correct and consistent lifetime of subscriptions and sequences is maintained; when you introduce subjects, you can break this.
-- Introduction to Rx
Note that URLSession.shared.rx.data(request:) returns an Observable, not a Subject or Relay.
Events in an event store (event sourcing) are most often persisted in a serialized format with versions to represent a changed in the model or schema for an event type. I haven't been able to find good documentation showing the actual model or schema for an actual event (often data table in event store schema if using a RDBMS) but understand that ideally it should be generic.
What are the most basic fields/properties that should exist in an event?
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Any well defined examples would be greatly appreciated.
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Don't overlook forward and backward compatibility.
You should plan to review Greg Young's book on event versioning; it doesn't directly answer your question, but it does cover a lot about the basics of interpreting an event.
Short answer: pretty much everything is optional, because you need to be able to change it later.
You should also review Hohpe's Enterprise Integration Patterns, in particular his work on messaging, which details a lot of cases you may care about.
de Graauw's Nobody Needs Reliable Messaging helped me to understan an important point.
To summarize: if reliability is important on the business level, do it on the business level.
So while there are some interesting bits of meta data tracking that you may want to do, the domain model is really only going to look at the data; and that is going to tend to be specific to your domain.
You also have the fun that the representation of events that you use in the service that produces them may not match the representation that it shares with other services, and in particular may not be the same message that gets broadcast.
I worked through an exercise trying to figure out what the minimum amount of information necessary for a subscriber to look at an event to understand if it cares. My answers were an id (have I seen this specific event before?), a token that tells you the semantic meaning of the message (is that something I care about?), and a location (URI) to get a richer representation if it is something I care about.
But outside of the domain -- for example, when you are looking at the system as a whole trying to figure out what is going on, having correlation identifiers and causation identifiers, time stamps, signatures of the source location, and so on stored in a consistent location in the meta data can be a big help.
Just modelling with basic types that map to Json to write as you would for an API can go a long way.
You can spend a lot of time generating overly complex models if you throw too much tooling at it - things like Apache Thrift and/or Protocol Buffers (or derived things) will provide all sorts of IDL mechanisms for you to generate incidental complexity with.
In .NET land and many other platforms, if you namespace the types you can do various projections from the types
Personally, I've used records and DUs in F# as a design and representation tool
you get intellisense, syntax hilighting, and types you can use from F# or C# for free
if someone wants to look, types.fs has all they need
GraphQL consists of a type system, query language and execution
semantics, static validation, and type introspection, each outlined
below. To guide you through each of these components, we've written an
example designed to illustrate the various pieces of GraphQL.
- https://github.com/facebook/graphql
Falcor lets you represent all your remote data sources as a single
domain model via a virtual JSON graph. You code the same way no matter
where the data is, whether in memory on the client or over the network
on the server.
- http://netflix.github.io/falcor/
What is the difference between Falcor and GraphQL (in the context of Relay)?
I have viewed the Angular Air Episode 26: FalcorJS and Angular 2 where Jafar Husain answers how GraphQL compares to FalcorJS. This is the summary (paraphrasing):
FalcorJS and GraphQL are tackling the same problem (querying data, managing data).
The important distinction is that GraphQL is a query language and FalcorJS is not.
When you are asking FalcorJS for resources, you are very explicitly asking for finite series of values. FalcorJS does support things like ranges, e.g. genres[0..10]. But it does not support open-ended queries, e.g. genres[0..*].
GraphQL is set based: give me all records where true, order by this, etc. In this sense, GraphQL query language is more powerful than FalcorJS.
With GraphQL you have a powerful query language, but you have to interpret that query language on the server.
Jafar argues that in most applications, the types of the queries that go from client to server share the same shape. Therefore, having a specific and predictable operations like get and set exposes more opportunities to leverage cache. Furthermore, a lot of the developers are familiar with mapping the requests using a simple router in REST architecture.
The end discussion resolves around whether the power that comes with GraphQL outweighs the complexity.
I have now written apps with both libraries and I can agree with everything in Gajus' post, but found some different things most important in my own use of the frameworks.
Probably the biggest practical difference is that most of the examples and presumably work done up to this point on GraphQL has been concentrated on integrating GraphQL with Relay - Facebook's system for integrating ReactJS widgets with their data requirements. FalcorJS on the other hand tends to act separately from the widget system which means both that it may be easier to integrate into a non-React/Relay client and that it will do less for you automatically in terms of matching widget data dependencies with widgets.
The flip side of FalcorJS being flexible in client side integrations is that it can be very opinionated about how the server needs to act. FalcorJS actually does have a straight up "Call this Query over HTTP" capability - although Jafar Husain doesn't seem to talk about it very much - and once you include those, the way the client libraries react to server information is quite similar except that GraphQL/Relay adds a layer of configuration. In FalcorJS, if you are returning a value for movie, your return value better say 'movie', whereas in GraphQL, you can describe that even though the query returns 'film', you should put that in the client side datastore as 'movie'. - this is part of the power vs complexity tradeoff that Gajus mentioned.
On a practical basis, GraphQL and Relay seems to be more developed. Jafar Husain has mentioned that the next version of the Netflix frontend will be running at least in part on FalcorJS whereas the Facebook team has mentioned that they've been using some version of the GraphQL/Relay stack in production for over 3 years.
The open source developer community around GraphQL and Relay seems to be thriving. There are a large number of well-attended supporting projects around GraphQL and Relay whereas I have personally found very few around FalcorJS. Also the base github repository for Relay (https://github.com/facebook/relay/pulse) is significantly more active than the github repository for FalcorJS (https://github.com/netflix/falcor/pulse). When I first pulled the Facebook repo, the examples were broken. I opened a github issue and it was fixed within hours. On the other hand, the github issue I opened on FalcorJS has had no official response in two weeks.
Lee Byron one of the engineer behind GraphQL did an AMA on hashnode, here is his answer when asked this question:
Falcor returns Observables, GraphQL just values. For how Netflix wanted to use Falcor, this makes a lot of sense for them. They make multiple requests and present data as it's ready, but it also means that the client developer has to work with the Observables directly. GraphQL is a request/response model, and returns back JSON, which is trivially easy to then use. Relay adds back in some of the dynamicism that Falcor presents while maintaining only using plain values.
Type system. GraphQL is defined in terms of a type system, and that's allowed us to built lots of interesting tools like GraphiQL, code generators, error detection, etc. Falcor is much more dynamic, which is valuable in its own right but limits the ability to do this kind of thing.
Network usage. GraphQL was originally designed for operating Facebook's news feed on low end devices on even lower end networks, so it goes to great lengths to allow you to declare everything you need in a single network request in order to minimize latency. Falcor, on the other hand, often performs multiple round trips to collect additional data. This is really just a tradeoff between the simplicity of the system and the control of the network. For Netflix, they also deal with very low end devices (e.g. Roku stick) but the assumption is the network will be good enough to stream video.
Edit: Falcor can indeed batch requests, making the comment about the network usage inaccurate. Thanks to #PrzeoR
UPDATE: I've found the very useful comment under my post that I want to share with you as a complementary thing to the main content:
Regarding lack of examples, you can find the awesome-falcorjs repo userful, there are different examples of a Falcor's CRUD usage:
https://github.com/przeor/awesome-falcorjs ... Second thing, there is a book called "Mastering Full Stack React Development" which includes Falcor as well (good way to learn how to use it):
ORGINAL POST BELOW:
FalcorJS (https://www.facebook.com/groups/falcorjs/) is much more simpler to be efficient in comparison to Relay/GraphQL.
The learning curve for GraphQL+Relay is HUGE:
In my short summary: Go for Falcor. Use Falcor in your next project until YOU have a large budget and a lot of learning time for your team then use RELAY+GRAPHQL.
GraphQL+Relay has huge API that you must be efficient in. Falcor has small API and is very easy to grasp to any front-end developer who is familiar with JSON.
If you have an AGILE project with limited resources -> then go for FalcorJS!
MY SUBJECTIVE opinion: FalcorJS is 500%+ easier to be efficient in full-stack javascript.
I have also published some FalcorJS starter kits on my project (+more full-stack falcor's example projects): https://www.github.com/przeor
To be more in technical details:
1) When you are using Falcor, then you can use both on front-end and backend:
import falcor from 'falcor';
and then build your model based upon.
... you need also two libraries which are simple to use on backend:
a) falcor-express - you use it once (ex. app.use('/model.json', FalcorServer.dataSourceRoute(() => new NamesRouter()))). Source: https://github.com/przeor/falcor-netflix-shopping-cart-example/blob/master/server/index.js
b) falcor-router - there you define SIMPLE routes (ex. route: '_view.length'). Source:
https://github.com/przeor/falcor-netflix-shopping-cart-example/blob/master/server/router.js
Falcor is piece of cake in terms of learning curve.
You can also see documentation which is much simpler than FB's lib and check also the article "why you should care about falcorjs (netflix falcor)".
2) Relay/GraphQL is more likely like a huge enterprise tool.
For example, you have two different documentations that separately are talking about:
a) Relay: https://facebook.github.io/relay/docs/tutorial.html
- Containers
- Routes
- Root Container
- Ready State
- Mutations
- Network Layer
- Babel Relay Plugin
- GRAPHQL
GraphQL Relay Specification
Object Identification
Connection
Mutations
Further Reading
API REFERENCE
Relay
RelayContainer
Relay.Route
Relay.RootContainer
Relay.QL
Relay.Mutation
Relay.PropTypes
Relay.Store
INTERFACES
RelayNetworkLayer
RelayMutationRequest
RelayQueryRequest
b) GrapQL: https://facebook.github.io/graphql/
2Language
2.1Source Text
2.1.1Unicode
2.1.2White Space
2.1.3Line Terminators
2.1.4Comments
2.1.5Insignificant Commas
2.1.6Lexical Tokens
2.1.7Ignored Tokens
2.1.8Punctuators
2.1.9Names
2.2Query Document
2.2.1Operations
2.2.2Selection Sets
2.2.3Fields
2.2.4Arguments
2.2.5Field Alias
2.2.6Fragments
2.2.6.1Type Conditions
2.2.6.2Inline Fragments
2.2.7Input Values
2.2.7.1Int Value
2.2.7.2Float Value
2.2.7.3Boolean Value
2.2.7.4String Value
2.2.7.5Enum Value
2.2.7.6List Value
2.2.7.7Input Object Values
2.2.8Variables
2.2.8.1Variable use within Fragments
2.2.9Input Types
2.2.10Directives
2.2.10.1Fragment Directives
3Type System
3.1Types
3.1.1Scalars
3.1.1.1Built-in Scalars
3.1.1.1.1Int
3.1.1.1.2Float
3.1.1.1.3String
3.1.1.1.4Boolean
3.1.1.1.5ID
3.1.2Objects
3.1.2.1Object Field Arguments
3.1.2.2Object Field deprecation
3.1.2.3Object type validation
3.1.3Interfaces
3.1.3.1Interface type validation
3.1.4Unions
3.1.4.1Union type validation
3.1.5Enums
3.1.6Input Objects
3.1.7Lists
3.1.8Non-Null
3.2Directives
3.2.1#skip
3.2.2#include
3.3Starting types
4Introspection
4.1General Principles
4.1.1Naming conventions
4.1.2Documentation
4.1.3Deprecation
4.1.4Type Name Introspection
4.2Schema Introspection
4.2.1The "__Type" Type
4.2.2Type Kinds
4.2.2.1Scalar
4.2.2.2Object
4.2.2.3Union
4.2.2.4Interface
4.2.2.5Enum
4.2.2.6Input Object
4.2.2.7List
4.2.2.8Non-null
4.2.2.9Combining List and Non-Null
4.2.3The __Field Type
4.2.4The __InputValue Type
5Validation
5.1Operations
5.1.1Named Operation Definitions
5.1.1.1Operation Name Uniqueness
5.1.2Anonymous Operation Definitions
5.1.2.1Lone Anonymous Operation
5.2Fields
5.2.1Field Selections on Objects, Interfaces, and Unions Types
5.2.2Field Selection Merging
5.2.3Leaf Field Selections
5.3Arguments
5.3.1Argument Names
5.3.2Argument Uniqueness
5.3.3Argument Values Type Correctness
5.3.3.1Compatible Values
5.3.3.2Required Arguments
5.4Fragments
5.4.1Fragment Declarations
5.4.1.1Fragment Name Uniqueness
5.4.1.2Fragment Spread Type Existence
5.4.1.3Fragments On Composite Types
5.4.1.4Fragments Must Be Used
5.4.2Fragment Spreads
5.4.2.1Fragment spread target defined
5.4.2.2Fragment spreads must not form cycles
5.4.2.3Fragment spread is possible
5.4.2.3.1Object Spreads In Object Scope
5.4.2.3.2Abstract Spreads in Object Scope
5.4.2.3.3Object Spreads In Abstract Scope
5.4.2.3.4Abstract Spreads in Abstract Scope
5.5Values
5.5.1Input Object Field Uniqueness
5.6Directives
5.6.1Directives Are Defined
5.7Variables
5.7.1Variable Uniqueness
5.7.2Variable Default Values Are Correctly Typed
5.7.3Variables Are Input Types
5.7.4All Variable Uses Defined
5.7.5All Variables Used
5.7.6All Variable Usages are Allowed
6Execution
6.1Evaluating requests
6.2Coercing Variables
6.3Evaluating operations
6.4Evaluating selection sets
6.5Evaluating a grouped field set
6.5.1Field entries
6.5.2Normal evaluation
6.5.3Serial execution
6.5.4Error handling
6.5.5Nullability
7Response
7.1Serialization Format
7.1.1JSON Serialization
7.2Response Format
7.2.1Data
7.2.2Errors
AAppendix: Notation Conventions
A.1Context-Free Grammar
A.2Lexical and Syntactical Grammar
A.3Grammar Notation
A.4Grammar Semantics
A.5Algorithms
BAppendix: Grammar Summary
B.1Ignored Tokens
B.2Lexical Tokens
B.3Query Document
It's your choice:
Simple sweet and short documented Falcor JS VERSUS Huge-enterprise-grade tool with long and advanced documentation as GraphQL&Relay
As I said before, if you are a front-end dev who grasp idea of using JSON, then JSON graph implementation from Falcor's team is best way to do your full-stack dev project.
In short, Falcor or GraphQL or Restful solve the same problem - provide a tool to query/manipulate data effectively.
How they differ is in how they present their data:
Falcor wants you to think their data as a very big virtual JSON tree, and uses get, set and call to read, write data.
GraphQL wants you to think their data as a group of predefined typed objects, and uses queries and mutations to read, write data.
Restful wants you to think their data as a group of resources, and uses HTTP verbs to read, write data.
Whenever we need to provide data for user, we end up with something liked: client -> query -> {a layer translate query into data ops} -> data.
After struggling with GraphQL, Falcor and JSON API (and even ODdata), I wrote my own data query layer. It's simpler, easier to learn, and more equivalent with GraphQL.
Check it out at:
https://github.com/giapnguyen74/nextql
It also integrates with featherjs for real time query/mutation.
https://github.com/giapnguyen74/nextql-feathers
OK, just start from a simple but important difference, GraphQL is a query based while Falcor is not!
But how they help u?
Basically, they both helping us to manage and querying data, but GraphQL has a req/res Model and return the data as JSON, basically the idea in GraphQL is having a single request to get all your data in one goal... Also, have exact response by having an exact request, So something to run on low-speed internet and mobile devices, like 3G networks... So if you have many mobile users or for some reasons you'd like to have less requests and faster response, use GraphQL... While Faclor is not too far from this, so read on...
On the other hand, Falcor by Netflix, usually have extra request (usually more than once) to retrieve all your data, eventhough they trying to improving it to a single req... Falcor is more limited for queries and doesn't have pre-defined query helpers like range and etc...
But for more clarification, let's see how each of them introduce itself:
GraphQL, A query language for your API
GraphQL is a query language for APIs and a runtime for fulfilling
those queries with your existing data. GraphQL provides a complete and
understandable description of the data in your API, gives clients the
power to ask for exactly what they need and nothing more, makes it
easier to evolve APIs over time, and enables powerful developer tools.
Send a GraphQL query to your API and get exactly what you need,
nothing more and nothing less. GraphQL queries always return
predictable results. Apps using GraphQL are fast and stable because
they control the data they get, not the server.
GraphQL queries access not just the properties of one resource but
also smoothly follow references between them. While typical REST APIs
require loading from multiple URLs, GraphQL APIs get all the data your
app needs in a single request. Apps using GraphQL can be quick even on
slow mobile network connections.
GraphQL APIs are organized in terms of types and fields, not
endpoints. Access the full capabilities of your data from a single
endpoint. GraphQL uses types to ensure Apps only ask for what’s
possible and provide clear and helpful errors. Apps can use types to
avoid writing manual parsing code.
Falcor, a JavaScript library for efficient data fetching
Falcor lets you represent all your remote data sources as a single
domain model via a virtual JSON graph. You code the same way no matter
where the data is, whether in memory on the client or over the network
on the server.
A JavaScript-like path syntax makes it easy to access as much or as
little data as you want, when you want it. You retrieve your data
using familiar JavaScript operations like get, set, and call. If you
know your data, you know your API.
Falcor automatically traverses references in your graph and makes
requests as needed. Falcor transparently handles all network
communications, opportunistically batching and de-duping requests.
I am currently designing system which should allow access to database. Assumptions are as follows:
Database should has access layer. The access layer should provide objects that represents database tables. (This would be done using some ORM framework).
Client which want to get data from database, should get object from access layer first, and then get data using those objects.
Clients could use Python, Java or C++.
Access layer is based on Java.
There won't be to many clients, but they will be opearating on large amounts of data.
The question which is hard for me is what technology should be used for passing object between acces layer and clients. I consider using ZeroC ICE, Apache Thrift or Google Protocol Buffers.
Does anyone have opinion which one is worth using?
This is my research for Protocol Buffers:
Advantages:
simple to use and easy to start
well documented
highly optimized
defining object data structure in java-like language
automatically generating implementation of setters and getters and build methods for Python, Java and C++
open-source bidnings for other languages
object could be extended without affecting old version of an applications
there are many of open-source RpcChanel and RpcController implementation (not tested)
Disadvantages:
need to implement object transfer
objects structure have to be defined before use, so we can't add some fields on the fly (Updated: there are posibilities to do that, see the comments)
if there is a need for reading one object's filed, we have to parse whole file (in contrast, in XML we could ignore chosen tags)
if we want to use RPC for invoke object methods, we need to define services and deliver RpcChanel and RpcController implementation
This is my research for Apache Thrift:
Advantages:
provide compiler that generates source code for supported languages (classes, all things that are important)
allow defining optional fields in the structures ( when we do not set value on a field, the size of transfered data is lower)
enable point out some methods that are "one way" (returning nothing and client after invokation do not wait for answer from server about completion processing of query)
support collections (maps, lists, sets), objects, primitives serialization (deserialization), constants, enumerations, exceptions
most of problems, errors are solved and explained
provide different methods of serialization: (TBinaryProtocol...) and different ways of exchanging data: (TBufferedTransport, TZlibTransport... )
compiler produces classes (structures) for languages thaw we can extend by adding some new methods.
possible to add fields to protocol(server as well as client) and remove other- old code and new one can properly interact(some rules in update)
enable asynchronous calls
easy to use
Disadvantages:
documentation - contains some errors that sometimes it is really hard to get to know what is the source of the problem
not allways problems are well taged (when we look for solution in the Internet).
not support overloading for service methods
tutorials cover only simple examples of thrift usage
hard to start
ICE ZeroC:
Is better than Protocol Buffers, because I wouldn't need to implement object passing by myself via e.g. sockets. ICE also gives ServantLocators which can provide management of connections.
The question is: whether ICE is much slower and less efficient than the PB?
The rationale:
HQL and NH criteria are NHibernate specific constructs and as such they are server side DAL implementation details. I do not want them to "leak" to the client side. So, our client side provides LINQ expressions for the server to process.
Seems legitimate to me, some, however, think otherwise and so I would like to know why.
Thanks.
The argument against accepting expressions from (or exposing IQueryable<> to) the client side is that it allows non-client logic like filtering and joining to happen in the "wrong" place. If the client is exposing the wrong data, you now have two places the check: the client-side logic and the logic behind the DAL. Essentially, it makes it too easy to not separate your concerns.
That said, there are certainly times that deliberate and careful use of those techniques can improve your application. For example, using an IQueryable<> is a great way to support client-side sorting and partitioning (skip/take) that are executed efficiently by the server rather than on the result set. The counter-argument is that you should just provide sort and partition parameters in the DAL.
Ultimately use what make sense for your application. If you give yourself too much rope and find yourself hanging, you can always refactor later.