class A
def a
puts 'in #a'
end
end
class B < A
def a
b()
end
def b
# here i want to call A#a.
end
end
class B < A
alias :super_a :a
def a
b()
end
def b
super_a()
end
end
There's no nice way to do it, but you can do A.instance_method(:a).bind(self).call, which will work, but is ugly.
You could even define your own method in Object to act like super in java:
class SuperProxy
def initialize(obj)
#obj = obj
end
def method_missing(meth, *args, &blk)
#obj.class.superclass.instance_method(meth).bind(#obj).call(*args, &blk)
end
end
class Object
private
def sup
SuperProxy.new(self)
end
end
class A
def a
puts "In A#a"
end
end
class B<A
def a
end
def b
sup.a
end
end
B.new.b # Prints in A#a
If you don't explicitly need to call A#a from B#b, but rather need to call A#a from B#a, which is effectively what you're doing by way of B#b (unless you're example isn't complete enough to demonstrate why you're calling from B#b, you can just call super from within B#a, just like is sometimes done in initialize methods. I know this is kind of obvious, I just wanted to clarify for any Ruby new-comers that you don't have to alias (specifically this is sometimes called an "around alias") in every case.
class A
def a
# do stuff for A
end
end
class B < A
def a
# do some stuff specific to B
super
# or use super() if you don't want super to pass on any args that method a might have had
# super/super() can also be called first
# it should be noted that some design patterns call for avoiding this construct
# as it creates a tight coupling between the classes. If you control both
# classes, it's not as big a deal, but if the superclass is outside your control
# it could change, w/o you knowing. This is pretty much composition vs inheritance
end
end
Related
In Rails we can define a class like:
class Test < ActiveRecord::Base
before_initialize :method
end
and when calling Test.new, method() will be called on the instance. I'm trying to learn more about Ruby and class methods like this, but I'm having trouble trying to implement this in plain Ruby.
Here's what I have so far:
class LameAR
def self.before_initialize(*args, &block)
# somehow store the symbols or block to be called on init
end
def new(*args)
## Call methods/blocks here
super(*args)
end
end
class Tester < LameAR
before_initialize :do_stuff
def do_stuff
puts "DOING STUFF!!"
end
end
I'm trying to figure out where to store the blocks in self.before_initialize. I originally tried an instance variable like #before_init_methods, but that instance variable wouldn't exist in memory at that point, so I couldn't store or retrieve from it. I'm not sure how/where could I store these blocks/procs/symbols during the class definition, to later be called inside of new.
How could I implement this? (Either having before_initialize take a block/proc/list of symbols, I don't mind at this point, just trying to understand the concept)
For a comprehensive description, you can always check the Rails source; it is itself implemented in 'plain Ruby', after all. (But it handles lots of edge cases, so it's not great for getting a quick overview.)
The quick version is:
module MyCallbacks
def self.included(klass)
klass.extend(ClassMethods) # we don't have ActiveSupport::Concern either
end
module ClassMethods
def initialize_callbacks
#callbacks ||= []
end
def before_initialize(&block)
initialize_callbacks << block
end
end
def initialize(*)
self.class.initialize_callbacks.each do |callback|
instance_eval(&callback)
end
super
end
end
class Tester
include MyCallbacks
before_initialize { puts "hello world" }
end
Tester.new
Left to the reader:
arguments
calling methods by name
inheritance
callbacks aborting a call and supplying the return value
"around" callbacks that wrap the original invocation
conditional callbacks (:if / :unless)
subclasses selectively overriding/skipping callbacks
inserting new callbacks elsewhere in the sequence
... but eliding all of those is what [hopefully] makes this implementation more approachable.
One way would be by overriding Class#new:
class LameAR
def self.before_initialize(*symbols_or_callables, &block)
#before_init_methods ||= []
#before_init_methods.concat(symbols_or_callables)
#before_init_methods << block if block
nil
end
def self.new(*args, &block)
obj = allocate
#before_init_methods.each do |symbol_or_callable|
if symbol_or_callable.is_a?(Symbol)
obj.public_send(symbol_or_callable)
else
symbol_or_callable.(obj)
end
end
obj.__send__(:initialize, *args, &block)
end
end
class Tester < LameAR
before_initialize :do_stuff
def do_stuff
puts "DOING STUFF!!"
end
end
How to define an original name scope in module/class with Ruby
I want to implement class like the following:
module SomeModule
extend OriginalNameScope
scope(:some) do
def method1
puts 1
end
def method2
puts 2
end
end
end
class SomeClass
include SomeModule
end
c = SomeClass.new
# I want to call methods like the following:
c.some_method1
c.some_method2
How to implement the OriginalNameScope module? I found out to get the method definitions in this method, but I don't know how to redefine methods with a prefix scope.
module OriginalNameScope
def scope(name, &method_definition)
puts method_definition.class
# => Proc
end
end
This is actually just a combination of some simple standard Ruby metaprogramming patterns and idioms:
module OriginalNameScope
def scope(name)
singleton_class.prepend(Module.new do
define_method(:method_added) do |meth|
if name && !#__recursion_guard__
#__recursion_guard__ = meth
method = instance_method(meth)
undef_method(meth)
define_method(:"#{name}_#{meth}") do |*args, &block|
method.bind(self).(*args, &block)
end
end
#__recursion_guard__ = nil
super(meth)
end
end)
yield
end
end
I just slapped this together, there's probably a lot that can be improved (e.g. use Refinements) and simplified.
I'm trying to create a method that passes the caller as the default last argument. According to this, I only need:
class A
def initialize(object = self)
# work with object
end
end
so that in:
class B
def initialize
A.new # self is a B instance here
end
end
self will be B rather than A;
However, this doesn't seem to work. Here's some test code:
class A
def self.test test, t=self
puts t
end
end
class B
def test test,t=self
puts t
end
end
class T
def a
A.test 'hey'
end
def b
B.new.test 'hey'
end
def self.a
A.test 'hey'
end
def self.b
B.new.test'hey'
end
end
and I get:
T.new.a # => A
T.new.b # => #<B:0x000000015fef00>
T.a # => A
T.b # => #<B:0x000000015fed98>
whereas I expect it to be T or #<T:0x000000015fdf08>. Is there a way to set the default last argument to the caller?
EDIT:
class Registry
class << self
def add(component, base=self)
self.send(component).update( base.to_s.split('::').last => base)
end
end
end
The idea is pretty simple, you would use it like this
class Asset_Manager
Registry.add :utilities
end
and you access it like:
include Registry.utilities 'Debugger'
I'm trying to de-couple classes by having a middle-man management type class that takes care of inter-class communications, auto-loading of missing classes and erroring when it doesn't exist, it works but I just want to be able to use the above rather than:
class Asset_Manager
Registry.add :utilities, self
end
It just feels cleaner, that and I wanted to know if such a thing was possible.
You can't escape the explicit self. But you can hide it with some ruby magic.
class Registry
def self.add(group, klass)
puts "registering #{klass} in #{group}"
end
end
module Registrable
def self.included(base)
base.extend(ClassMethods)
end
module ClassMethods
def register_in(group)
Registry.add(group, self)
end
end
end
class AssetManager
include Registrable
register_in :utilities
end
# >> registering AssetManager in utilities
In short, you can't.
Ruby resolves the default arguments in the context of the receiver. That is, the object before the . in a method call. What you called the receiver should be the caller, actually.
class A
def test1(value = a)
puts a
end
def test2(value = b)
puts b
end
def a
"a"
end
end
a = A.new
a.test1 #=> a
def a.b; "b" end
a.test2 #=> b
If I were you, I would use the extended (or included) hook, where both the extending class and the extended module can be accessed. You can program what ever logic you want based on the information.
module Registry
module Utilities
def self.extended(cls)
#puts cls
::Registry.send(component).update( cls.to_s.split('::').last => cls)
end
end
end
class Asset_Manager
extend Registry::Utilities
end
It's possible to create a Complex number in Ruby using
c = Complex.new(1,2)
but, it can be shortened to
c = Complex(1,2)
Is it possible to achieve the same functionality without having to define a function outside the class, like in the example below?
class Bits
def initialize(bits)
#bits = bits
end
end
def Bits(list) # I would like to define this function inside the class
Bits.new list
end
b = Bits([0,1])
I think Ruby should allow at least one of the proposed constructors below
class Bits
def initialize(bits)
#bits = bits
end
def self.Bits(list) # version 1
new list
end
def Bits(list) # version 2
new list
end
def Bits.Bits(list) # version 3
new list
end
end
Have this snippet:
def make_light_constructor(klass)
eval("def #{klass}(*args) #{klass}.new(*args) end")
end
Now you can do this:
class Test
make_light_constructor(Test)
def initialize(x,y)
print x + y
end
end
t = Test(5,3)
Yes, I know you're still defining a function outside a class - but it is only one function, and now any class you want can make use of its implementation rather than making one function per class.
c = Complex(1,2)
is actually calling a method on Kernel
Basically you can't - the () operator cannot be overriden in Ruby (Complex class is written in C).
You could achieve something similar using []:
class Bits
def self.[](list)
Bits.new list
end
end
Which would allow something like:
b = Bits[[1,2]]
If you pack your classes into some module you can use 2 methods:
self.included - called when you include Mod
self.extend - called when you extend Mod
I have created very basic method using self.included.
Cons: It is hard to write. You can say it is complex; It may not contain all features.
Pros: It looks exactly like Complex(2,3) (it uses () instead of [] as in https://stackoverflow.com/a/24351316/2597260 answer); You create just initialize, self.included create the rest.
module M1
# some random classes
class A; end
class B
def initialize list
#list = list
end
attr_accessor :list
end
class C
def initialize var1
#var1 = var1
end
attr_accessor :var1
end
Answer = 42
# called on `include module_name`
def self.included mod
# classes are constants (in normal cases)
constants.each do |cons|
class_eval do
# I don't like hard-coded `::M1`
klass = ::M1.const_get cons
if klass.class==Class
define_method cons do |*args, &block|
klass.new *args, &block
end
end
end
end
end
end
include M1
p A()
b = B([1,2,3])
p b.list
c = C 42
p c.var1
puts Answer()
# NoMethodError: undefined method `Answer' for main:Object
# thats good, because Answer is not a class!
Here's another hack that you could (but shouldn't) use, inspired by this blog post:
def method_missing(sym, *args, **kwargs, &blk)
Object.const_get(sym).new(*args, **kwargs, &blk)
end
This simply expects any unknown method name to be the name of a class and calls :new on the class.
With rudimentary error handling:
alias sys_method_missing method_missing
def method_missing(sym, *args, **kwargs, &blk)
cls = Object.const_get(sym) if Object.constants.include? sym
if cls.is_a?(Class) then cls.new(*args, **kwargs, &blk)
else sys_method_missing(sym, *args, **kwargs, &blk) end
end
If an unknown method name is the name of a class, this calls :new on the class. Otherwise, it delegates the call to the original implementation of method_missing().
Usage:
class Foo
end
foo = Foo()
p foo
Result:
#<Foo:0x00007f8fe0877180>
I need to define the constant in the module that use the method from the class that includes this module:
module B
def self.included(base)
class << base
CONST = self.find
end
end
end
class A
def self.find
"AAA"
end
include B
end
puts A::CONST
But the compiler gives the error on the 4th line.
Is there any other way to define the constant?
The more idiomatic way to achieve this in Ruby is:
module B
def self.included(klass)
klass.class_eval <<-ruby_eval
CONST = find
ruby_eval
# note that the block form of class_eval won't work
# because you can't assign a constant inside a method
end
end
class A
def self.find
"AAA"
end
include B
end
puts A::CONST
What you were doing (class << base) actually puts you into the context of A's metaclass, not A itself. The find method is on A itself, not its metaclass. The thing to keep in mind is that classes are themselves objects, and so have their own metaclasses.
To try to make it clearer:
class Human
def parent
# this method is on the Human class and available
# to all instances of Human.
end
class << self
def build
# this method is on the Human metaclass, and
# available to its instance, Human itself.
end
# the "self" here is Human's metaclass, so build
# cannot be called.
end
def self.build
# exactly the same as the above
end
build # the "self" here is Human itself, so build can
# be called
end
Not sure if that helps, but if you don't understand it, you can still use the class_eval idiom above.
In your specific case.
module B
def self.included(base)
base.const_set("CONST", base.find)
end
end
class A
def self.find
"AAA"
end
include B
end
puts A::CONST
Despite it works, it's a little bit messy. Are you sure you can't follow a different way to achieve your goal?
module B
def self.included(base)
class << base
CONST = self.find
end
end
end
class A
class << self
def self.find
"AAA"
end
end
include B
end
then the compiler error is fixed, pls try.